MII—P S

TECHNOLOGIES

MIPS32™ Architecture For Programmers
Volume IlI: The MIPS32™ Privileged Resource
Architecture

Document Number: MD0O0090
Revision 2.00
June 9, 2003

MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043-1353

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Copyright © 2001-2003 MIPS Technologies, Inc. All rights reserved.
Unpublished rights (if any) are reserved under the Copyright Laws of the United States of America.

If this document is provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format),
then its use and distribution is subject to a written agreement with MIPS Technologies, Inc. ("MIPS Technologies™). UNDER
NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD

PARTY WITHOUT THE EXPRESS WRITTEN CONSENT OF MIPS TECHNOLOGIES.

This document contains information that is proprietary to MIPS Technologies. Any copying, reproducing, modifying, ol
this information (in whole or in part) which is not expressly permitted in writing by MIPS Technologies or a
contractually-authorized third party is strictly prohibited. At a minimum, this information is protected under unfair comp
and copyright laws. Violations thereof may result in criminal penalties and fines.

MIPS Technologies or any contractually-authorized third party reserves the right to change the information containe
document to improve function, design or otherwise. MIPS Technologies does not assume any liability arising out of
application or use of this information, or of any error of omission in such information. Any warranties, whether expre
statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a pat
purpose, are excluded. Any license under patent rights or any other intellectual property rights owned by MIPS Tecl
or third parties shall be conveyed by MIPS Technologies or any contractually-authorized third party in a separate lic
agreement between the parties.

The information contained in this document shall not be exported or transferred for the purpose of reexporting in vic
any U.S. or non-U.S. regulation, treaty, Executive Order, law, statute, amendment or supplement thereto.

The information contained in this document constitutes one or more of the following: commercial computer software
commercial computer software documentation or other commercial items. If the user of this information, or any rela
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of tt
States government (“Government”), the use, duplication, reproduction, release, modification, disclosure, or transfer
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulatior
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The u
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or a
contract terms and conditions covering this information from MIPS Technologies or any contractually-authorized thir

MIPS®, R300, R400&, R5008 and R10008 are among the registered trademarks of MIPS Technologies, Inc. in tt
United States and certain other countries, and MIPS16™, MIPS16e™, MIPS32™, MIPS64™, MIPS-3D™, MIPS-b:
MIPS I™, MIPS [I™, MIPS lII™ MIPS IV™, MIPS V™ MDMX™, MIPSsim™, MIPSsimCA™, MIPSsimIA™,
QuickMIPS™, SmartMIPS™, MIPS Technologies logo, 4K™, 4Kc™, 4AKm™, 4Kp™, 4KE™, 4KEc™, 4KEm™, 4KE
4AKS™ 4KSc™, M4K™ B5K™ 5Kc™, 5Kf™, 20K™, 20Kc™, 25Kf™ R4300™, ASMACRO™, ATLAS™, BusBridge’
CoreFPGA™, CoreLV™, EC™, JALGO™, MALTA™, MGB™, PDtrace™, SEAD™, SEAD-2™, SOC-it™, The Pipelin
and YAMON™ are among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

Template: B1.06Build with Conditional Tags: 2B ARCH MIPS32
MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

w wn

Table of Contents

Chapter 1 ADOUL THIS BOOKceiiiiiiiiiiee ettt e e e o444 —— £ £t 2222224111 nb bt be e 1.
1.1 Typographical Conventions
0 R 1 = [= T PP OPPPRPPPPPPRPRN
L1.1.2 BOI TEXE .eeeeiiiiiiee ettt ettt e e .
R I 01U 1= g I =) PP PR OUP PRSPPI 1.
1.2 UNPREDICTABLE and UNDEFINED
1.2.1 UNPREDICTABLE.......coiitiiiiii ettt
1.2.2 UNDERINED.......coiitiie ittt ettt e sttt e bt e e s st et e 41t et 42t st s £ 45444 b et e e b b e e 2
1.3 Special Symbols in PSEUAOCOTE NOTALION...........uuiiiiiiiiiee i+ s——— et e 2122
R o Y To] (=M [0 (o1 4 F= X o o RO PO PP PP PPPPRRP PP 4.

Chapter 2 The MIPS32 Privileged ReSOUICe ArChItECIUIEccoiiiiiiiiiiiiiiiee et rmmeeeee e eeeaee e e e e e e 7
P2 A [011 (oo 11 od 1 o] ¢ PO PP P POPPPPPPPPPPPPN 7..
2.2 The MIPS Coprocessor Model :
2.2.1 CPO - The SYSEM COPIOCESSON ...ceeiuverteetiutteeteeattaeteesateeeeeeaastsee e et abbeeeeesasbeeeeesassssmneeeaeaannnenaeesannneeas Z
2.2.2 CPO REQISTEIS ... tetieeiitet ettt ettt ettt e e ettt et e s ottt e e a4kt ettt a4 aat b e et e 4428t £ ¢ eo—— 44411115t 441 n e e s 7.

Chapter 3 MIPS32 Operating MOUESuuueiiiiieeeeieiiciiieie et e e e e e e s s s s et e e e ae e e e s s e s st et e eee s ammmmmeeeneeeenseeeeesesannnsnssnnneees Q.
G 0 A I 7= o1 o 1Y o o [SRR 9.
I =T T 1Y o o PP PPU PPN 9.
3.3 Supervisor Mode
BuZ USEI IMOE...... ittt ettt b bt e e e s ettt e e ook bttt e e e an bttt e e e 4at e et e+ m—————— 1444+ 4 1111242 e e 1t breeeeanee
ST @] 1 1= g 1Y oo L= PRSP

3.5.1 64-bit Floating Point Operations ENADIE...........c.ciiii i s cmmmem e e 10
3.5.2 B4-DIt FPR ENADIE........eiiiiiieiiei ettt s e s e e e s e b e nnees 10

Chapter 4 VIFtUAI IMEIMOIYcooiiiiiitee ettt e e e e e e oottt et e e e e e e e o e o a bbbt e s mmmmeeeeeeeeeeeeeeeesaaasnbbbbneeeaaaaess
4.1 Support in Release 1 and Release 2 of the ArchiteCtureoeiiiiiiiiiiiii e ceeeeeeee e
O R VT (1 = LY/ =T o o
o I =T 1 11 o] (o o Y2
o R o [0 | 1T SR o 1= (o OO PRPPRPP
4.2.2 Segment anNd SEOMENT SIZE.......uuuuiuiiiiii i et e e ettt a e e s e e e eeeeeeaaaaaaaaaansseseeeaaeas
4.2.3 Physical AAdress SizZe (PABITS).. ..ottt e e e
4.3 Virtual AdAreSS SPACESuueeiiiiiiieaiiiai e
4.4 COMPHANCE ...t e e e e e e e e
4.5 Access Control as a Function of Address and Operating Mode ..
4.6 Address Translation and Cache Coherency Attributes for the ksegO and ksegl Segments

4.7 Address Translation for the kuseg Segment when StatusSERL = 1ovvviiiiiiiiiiiii e
4.8 Special Behavior for the kseg3 Segment when DebugDM = 1oiiiiiiiiiiiiiieeee e
4.9 TLB-Based Virtual ADdress TranSIAtioNooiiiiiiiiiiiieeiee e —— e
4.9.1 Address Space [dentifiers (ASID)ueeeeiiiiiiiiii et e e e e e e e er e e e e e e e e e e e aaaae
4.9.2 TLB OrganizatiOnccuuuuiiiiiiiiiiiiiis e e e e e e et e e e
4.9.3 TLB INIIAIZALION.cei ittt e e e e e e e s et et ¢ c—— £+ £ 41 bbb b e e e e e s 17
4.9.4 AAreSS TIANSIALIONeeeieiiieiiee ittt e e e e e e e e bbbt et e e e e e e e e e saanseneeeeeeaaaesaaannnbnbeeeeeess 19
Chapter 5 INterrupts and EXCEPLIONSccciitiiiieiiiiiiee ettt e ettt e ettt e e et e e et et bb e e e e s st mneeeeaeaameeeeeeesanbeeeeesanbreeeeean 23
T A 0 (=T 4 AU o] £ PO TP PP 23
I R 1 L= 0 10 oY/ o [P O PP PPPPPPPR 24
5.1.2 Generation of Exception Vector Offsets for Vectored Interrupts eyl
5.2 EXCEPLIONS ...ttt ettt ettt ettt e ook et e e 4R et e 4 aR R R et e e+ 42ttt ¢ ——— 1114444111112t e e e bnr e e s 32
L2 A (ot =T o 1o g BV =T (o] gl Mo Tox= L1 o] S T PUURPRPR 32
5.2.2 General EXCEPLiON PrOCESSING ..ccoiiiiiiiiiiiiiitieae e et ee ettt ettt e e e e e s s sttt aeeeeeaee e e s e s s s meeeeneeaaaaanntaeeeeeeanns 34
MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 i

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

5.2.3 EJTAG DEDUG EXCEPLIONeeeiiiiiiie ittt e e e e e e e ee e e e e e e e e e e e e e aans 36

5.2.4 RESETE EXCEPLION ...ttt ettt e e e e e oo e s s bbb et ettt e e e e e s smmmmmeeeeeeeebeeeeeeaeeeeeeaaaaan 36
5.2.5 SOft RESEE EXCEOPUION.eiiiiiiiiiiii ettt e ettt e e e s s mmmmmmeeeea s e b beseeeeaeaeeeas 37
5.2.6 Non Maskable Interrupt (NMI) EXCEPLIONcooiiiiiiiiiiiiiiee ettt e e 38
5.2.7 Maching CheCK EXCEPLIONceiiiiiiiiiititte ettt e e e st e et e e e e e e e s smmmeeeeeeeeanasnbebeeeeeeas 39
5.2.8 AdAreSS ErTOr EXCEPLIONuiiiiiiiiiiie ettt e e e e e et e et e e e e e e e as s s anasbeereeeeeaaeeas 39
5.2.9 TLB RETII EXCEPLION. ...ttt ettt et e e e e e e s et e e et e e e e e s eesannbesreeeeaaaeeensennnd 40
5.2.10 TLB INValid EXCEPLIONccoiiiiiiiiiiieeee ettt e e e e e e einees
5.2.11 TLB Modified Exception
5.2.12 CaChe Error EXCEPLIONuutiiiiiiiiiee ettt ettt ettt e e e e e e e s s st bbb ettt e e e s smmmmmmmmeenens s beseeeeeeeaeeas 42
5.2.13 BUS EITON EXCEPLON.utiiiiiiiiiiee ettt ettt et e e e e e e s s bbbt e e e et e e e s cmmmmmmmmmmme s e et e e e e e e e e e eannd 42
5.2.14 Integer OVErflOW EXCEPLION.uuuiiiiiiiiiiii ittt ettt e e e e e e s etk s e e e 43
I T I =T o = ol =T o 1 [o F OO P PP PPPPPPPPR 43
5.2.16 System Call EXCEOPLIONcoiiiiiteeii ettt e e e e e e s et b e e e e e e e e e e e e ansbrsreeeaaaaeeas 43
5.2.17 BreakpOiNt EXCEPLION.ccii ittt e e e e e e s s bbbt e et e e e e e e s e s s mmmemeemnmnn e e e s e nbbnbee s 43
5.2.18 Reserved INSrUCHION EXCEPLIONuiiiiiiiie i — 44
5.2.19 Coprocessor UNUSable EXCEPLIONccouiii it e 1 D
5.2.20 Floating Point EXCEPLIONcooiiiiiiiiiiiiieeie ettt e e
5.2.21 COPrOCESSOr 2 EXCEPLIONuieiiiiiiiiieee e e e ettt ettt e e e e e e e e ettt et e e e e e e e s e s s anbbbbe s e mmneeeeaeeaaaaaeeesssaannnnns 45
5.2.22 WALCH EXCEPLIONeuiiiiiiiieeiii ittt ettt e e e e ettt e et e e e e e e e s s memeeessssmmn s s snnnnnreneeeeees D)
5.2.23 INtErrupt EXCEPLION ..cooiiiiiiiiiee ettt e e e e e e e mmmmnmmmmnms s ennnrneeeeee e O
Chapter 6 GPR ShaOOW REGISIEIS.uviiiiiiiiiiie ettt e ettt e e e e st et e e s s seeemmmeeeesamm s bee e e e e anbbeeeeeannees 47
6.1 INtrodUCtioN 10 SNAGOW SELSccoiiiiieeiee e e e e e e e e e e e s rmmmemeem—— s+ s n st b e b e e eeeeas a7
6.2 SUPPOIT INSIFUCLIONS ...eeiiiiieiei ittt ettt e e e e e e sttt e e e e e e e e e e s e s nneb st mmemmmmmmmn s e s s e st ebseeeeaaaeeesesannd 48
(O aT= T o] 1= G O = O N o = . T o £ USRS 49
4% A [11 (Yo [1 od 1o o [ORI 49
7.2 TYPES OF HAZAIUS ...ttt e e e e s e e et e e e e e s s e et ee e et e e e e seaammnneeeeeessannnstnnrnneneeaeeenesnnnd 49
7.2.1 EXECULION HAZAIAS ...cccoiviiiiee ittt e e ettt smmmenessmmmnnnssee e e s snnneeeeeen D00
7.2.2 INSEUCHON HAZAIISeiiiiiiiiie ettt e sttt e e st et e e s e st mne e e e e sme e e e e e e e nbbeeeesannres 50
7.3 Hazard Clearing INSIIUCTIONSuuiiiiiiiiieee e e s e e e e e e s s s e e e e ae e e s e s e s ab e aaeeereaaaeeeesesanannnsennnnenees 51
4 T A 12 1 1 T o) = o Yo o PR 51
Chapter 8 CoproCeSSOr O REGISIEIScociiiiiiiiiieiie ettt ettt et e e e e e e e e e bbb e e et e e e e s eeeeaaaeaeaaammsssbbsbeeeaeaaeeesaaanan 53
8.1 Coprocessor 0 REGISIEr SUMMIAIYcoiiuueiiiiieeiie e e e ettt e e e e e e e e s e bbbt et e e e e e e e ae s s mememeemanmnmnn s s 1 e s s sbbebeees 53
T2 L] 7= 1 1o o DT U TP OP PP PPPPPPT 56
8.3 Index Register (CPO RegiSter 0, SEIECE 0).......uuuuuiiuiiiiiiiieie i e i e e e e e e e e e e ettt emmmmmmmmmmmm——— e e e e e aaeees 57
8.4 Random Register (CPO Register 1, SEIECE 0)uuuuuiuieiiiiiiis it a e 58
8.5 EntryLoO, EntryLol (CPO Registers 2 and 3, SEIECE 0)covvviiiiiiiiiiiiiiiiiiiiiie e ve e e e e e e e e eeeeeee e e 59
8.6 Context Register (CPO Register 4, SElECt 0)uuvuuiuimiuiiiiiiiiieisieieeeeeeee e e ee e
8.7 PageMask Register (CPO Register 5, Select 0)
8.8 PageGrain Register (CPO Register 5, Select 1)
8.9 Wired Register (CPO RegiSter 6, SEIECE 0).....uuuuiuiuiiiiiiiiie i i e e e e e ettt e s e s
8.10 HWREnNa Register (CP0 Register 7, SEIECE 0) ...uuuuuiiieie i e mmmmmmmmmmmman e e 69
8.11 BadVAddr Register (CPO Register 8, SEIECE 0)ccceeeiiiiiiiiieeeeeeeeee s e errreese s e e e e e e es e e e 70
8.12 Count Register (CPO Register 9, SEIECT 0)cciiiiiii i mmmmmmmmmmmmmmmm s e e eenees 71
8.13 Reserved for Implementations (CP0O Register 9, Selects 6 and 7)cccccoevviiiiiiiiiiiieieee s eeceeeeseeeeed L
8.14 EntryHi Register (CPO Register 10, SElECt Q)ccoviiiiiiiiiiiiieiicieie i e e 12
8.15 Compare Register (CPO Register 11, Select 0)ccooiiiiiiiiiiiiiiiieeiieiiiiiiieeeee e e eeeeee L D
8.16 Reserved for Implementations (CPO Register 11, Selects 6 and 7)ccooovvviiiiiiieieneeeeen i e 4
8.17 Status Register (CP Register 12, SElECt 0)uuuuuuuuiiiiii it en s 75
8.18 IntCtl Register (CPO RegiSter 12, SEIECE 1)covvviiiiiiiiiiiiiiiies it e e e e e ettt e eeeeesaeaneeeeeeeeeeenes 82
8.19 SRSCtl Register (CPO Register 12, SEIECE 2).....ccoci e e e e e e e e e e e as 84
8.20 SRSMap Register (CPO Register 12, SEIECE 3)uuiiiiiiiiiiiiiiiiiieeet et mmmeeeee e e 36

8.21 Cause Register (CP0 Register 13, SElECt 0).....ccocvvviiiiiiiiiiiiiiiiiiieie e i e e e e e e eeee e e e e e e eeee e mmmmmm————— 1111112 O]

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.22 Exception Program Counter (CPO Register 14, SeleCt 0)c.coeiiiiiiiiiiiiiiiiiieee e e 91
8.22.1 Special Handling of the EPC Register in Processors That Implement the MIPS16e ASE.............. 9l...........
8.23 Processor Identification (CPO Register 15, SEIECt 0)......cuuuiviiiiiiiiiiiiiiiie e mms——— 111
8.24 EBase Register (CPO Register 15, SEIECE 1)uvviuiiiiiiiiiiiiiiiiii i i e e eeeee e e
8.25 Configuration Register (CPO Register 16, SeleCt 0)oevvviiiiiiiiiiiiiiiieie e
8.26 Configuration Register 1 (CPO Register 16, SeleCt 1)ovvvviiiieiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee
8.27 Configuration Register 2 (CPO Register 16, SeleCt 2)ovvvviiiveiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee,
8.28 Configuration Register 3 (CPO Register 16, Select 3)ovvviiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeee,
8.29 Reserved for Implementations (CPO Register 16, Selects 6 and 7) -
8.30 Load Linked Address (CPO Register 17, SEleCt Q)ceiiiiiiiii i s 1 118

8.31 WatchLo Register (CPO REQISIEN 18)......uuuuuiuiuiiiiiiiieie i e e e e e e e e e e ettt ee et s e e e e eeeeseeanensesnnnnnnnnns
8.32 WatchHi Register (CPO ReQISIEr 19)ccciiiii it e e e e e e e e e e e e e s m—————————— s
8.33 Reserved for Implementations (CP0O Register 22, all Select values)
8.34 Debug Register (CPO REQISIEN 23)ciiieieiiiiiiiuiiiiiiiiasissseseeeeeeaeaeeteteteteteaeteteteraeeae s mmmmmmmmmmmmmmmsesssssssssnnes
8.35 DEPC RegiSter (CPO REQISIEI 24) ...uuvueieiiiie i e ettt s e e e e e e e e eeennaaaaaaaaeeeeseaeaeaeaeas
8.35.1 Special Handling of the DEPC Register in Processors That Implement the MIPS16e ASE.......... 114.........
8.36 Performance Counter Register (CPO Register 25)
8.37 ErrCtl Register (CPO Register 26, SEleCt 0)......cccceeiiiiiiiiiiieeeeeeeee s eeeeeeeeeeeeeaes
8.38 CacheErr Register (CPO Register 27, SEIECt 0)......cccceeiiiiiiiiiieeeeeesrs s e e e ne s e e e e nennr e
8.39 TagLo Register (CPO Register 28, SeleCt 0, 2)coiiiiiiiiiieieieiiiirs s e e e e e e e e e e e e e eeeeenen e
8.40 Datalo Register (CPO Register 28, SelecCt 1, 3)....ccovuvrriiiiiiiiiiiiiiiiieieie e eeeeeeeee e meas
8.41 TagHi Register (CPO Register 29, SeleCt 0, 2)uuvvviiiriiiiiiiiii e
8.42 DataHi Register (CP0O Register 29, SeleCt 1, 3) ...uuuiiiiiiiiiiieie e
8.43 ErrorEPC (CPO Register 30, SEIECT 0) ...uuuiiiiiiiii i e e e e e e e nnnns s es
8.43.1 Special Handling of the ErrorEPC Register in Processors That Implement the MIPS16e ASE124.........
8.44 DESAVE Register (CPO REQISIEr 31)....cciei i it s s s s e s e e e e e e e e e e e e e e et s 1121222222 L 2D
Appendix A Alternative MMU OFganiZatIONSoiuuuiieiiiiiiie ettt e et e e et e e e smeeeeesenmne s e anrreeeeeannees 127
AL Fixed MapPING MMU ...ttt e e o bbbt e e s e s bttt e e sk be e e e s annn e e e s aabbr et e e e annr e e e 127
A.1.1 Fixed ADAress TranSIationc...uiiiiiiiiieee ettt e e e e e e e e e s s ae b eeeemmmmmmmmn s e eeeeeas 127
A.1.2 Cacheability AMIDULESeiiiiiiiiiii e e e e e ettt e s dmmmmmmmmmmn bt e e e e e e e ae s 130
A.1.3 Changes to the CPO RegiSter INErfACEuueeiiiiiiiiiiiiie e o eeeeenn e 131
A.2 BIOCK AAreSS TraNSIALIONciiiiiiie ittt ettt e e e e e e e e ettt e e e ee e e s smmmmmeeeaeeeessseeeeeaaeeesssannns 131
LN R =Y N I @ (o F- 1 4= Lo o PO PP O UPPPPO 131
A.2.2 AAAreSS TraNSIALIONccoiiiiiiie et e e e ettt e et e e e e e e e s e s e s mmemmemmmnn e s s ne b b enee s 132
A.2.3 Changes to the CPO RegiSter INEIfACEueiiiiiiieiiii e eeeennnn e s 133
APPENTIX B REVISION HISOIY ...ttt e e s e et e e e e e e e e e s s st et e e e e« s—— et e e e e e e e e e annnn 135
MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 iii

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

List of Figures

Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 5-1:
Figure 5-2:
Figure 8-1:
Figure 8-2:
Figure 8-3:
Figure 8-4:
Figure 8-5:
Figure 8-6:

Figure 8-7:
Figure 8-8:
Figure 8-9:

VirTUBI AQAIESS SPACEottt e e oottt et e e e e e e e s e s aaseeeeeeeeaaeesaasnbbbebeeeeaaaeeesaaannn 12
References as a Function of Operating MOOEuuiiiiiiiiiiiiiii e e 14
LOT0]) (=T 1 k3) =T I = TN oY PO 17
Interrupt Generation for Vectored INterrupt MOE............uuviiiiiiiiiiiii e 28
Interrupt Generation for External Interrupt Controller Interrupt Modecccceeveeeeiiiiniii om0 30
[aTo Loy R =To 1Y 1= o 1 1 = 57
RaNAOM ReQISIEr FOMMAL............eiiiiiiiiiiiiieie s e e e e e e e e e e e e e e et b e eeeeeeeenenmnmn e seseeeaeaaaaeaaeeeees 58
EntryLoO, EntryLol Register Format in Release 1 of the Architecture............ccooovvvvviiccccceeee e, 59
EntryLoO, EntryLol Register Format in Release 2 of the Architecture..............oooevvviiicccceeeee e, 60
Context REQISIEr FOIMALcoiiiieiiiiiiieie e s e e e e e e e e e e e e e e et et e ettt eeaeaessseses menemmmmmmmmmmseseeeseerseesssssssnnnnnnnd 6.3
PageMask RegiSter FOMMALccooiiiii s e e e e e e e e e et e aaeeeseeeeseaeeaeeaeaeeaeeeeseaeeerrnnes 64

PageGrain Register Format
Wired And Random Entries In The TLB
Wired ReQISIEr FOMMAL........cci i e e e e e e e e e e e et et e e e e e s s eeeeeaeaeeeeeeesessssssnsnnnnnnnnnnsd 68
Figure 8-10:
Figure 8-11:
Figure 8-12:
Figure 8-13:
Figure 8-14:
Figure 8-15:
Figure 8-16:
Figure 8-17:
Figure 8-18:
Figure 8-19:
Figure 8-20:
Figure 8-21:
Figure 8-22:
Figure 8-23:
Figure 8-24:
Figure 8-25:
Figure 8-26:
Figure 8-27:
Figure 8-28:
Figure 8-29:
Figure 8-30:
Figure 8-31.:
Figure 8-32:
Figure 8-33:
Figure 8-34:
Figure 8-35:
Figure 8-36:

HWRERNA REQISIEr FOMMAL.........ciiiiiiitiiiiiiiice e sttt m— e a e e e e e e s 69
BadVAdAr ReQIStEr FOMMAL.........ueieiiiiiiii i e e e e e e e e e e eeene s e e e e e eaaaaaeaas 70
Count Register Format
ENtryHi REQISIEI FOMMALeeiiiiiiiiiiiiiie s et e e et — 1111111111 a e s 72
CoMPAre REQISEI FOIMMALeeiiiiieieeii ittt et e e e e e e e r e et e e e e e e e eeaa s e s nnbbbbeeeeaeaaeeaeas 74
Status Register Format
INtCtl Register FOrMaAL............coooiiiiiiiieeeeeee e
SRSCtl Register FOrMALuuuueiiiiii e
SRSMap Register Format
Cause Register Format
EPC Register FOIMAL.........ccoooi i e e e e e e e e e e e e e e ee e

PRI Register FOrmMaL.............oooiiiiiiiiiiiiicee s e e e e e e e e e e e e eeeeeeaaaaneee

EBASE REQISIEr FOIMMIAL.....ccci i e e e e e e e e e e e e et e e et taeer e a s e s e s eaeaaaaaaaaneeeees 93
(070010 T RY=To |51 (=T g o] 1 o 4= | PP PPPS 95
(O7e] o) 1o I =T o TR (=T gl o] 4= | PRSP a7
CoNnfig2 REQISIEr FOIMMALiiiiieieeeeeee e e e e e e e e e e et et ettt e e e e eete et e et reaeeeaaseaeeaaaeeeeeeesssenernnes 101
CoNfig3 REQISIEr FOIMMAL........iiiiieieeeeee e e e e e e e e e et et e et e et e e eete e et et e aeaesaseaeaaaaeeeeeeerasessrnres 104
[o [=T TSy (=T o] = | P PPPPPPPRNS 107
WatChLO REQISIEr FOIMALiiiiiiiiiicie e e en e e e e e a e e e e e aaeaaas 108
WatChHi ReQISIEr FOIMAL........ciiiiiiieeeeeeee e e e e e e e e e et et e et et b reaeaeaeeeaeaeeaeeeeerseeeenenes 110
Performance Counter Control Register FOrMaL...........ccoooiiiiiiiiiiiieee e s 11111
Performance Counter Counter Register FOrmMat..............uuveiiiiiiiiiii e eeee e e e e e e e e eeeeee e 117
ErrorEPC Register Format
Memory Mapping when ERL = 0
Memory Mapping when ERL = 1
Config Register AdAItIONS......ccooiiiii i e e e e e e e e e e e e eeeeeees

CoNtENS Of @ BAT ENEIY ..ciiiiiiiiiiiiiiicee st s s s e e e e e e e e e e e e et et ettt e et aeae e te et et smmmmmmmmmmmmms e e e e e e e e eeeeeeesssssnnns

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

List of Tables

Table 1-1: Symbols Used in Instruction Operation StatemMeENTScooiiiiiiiiiiiiiiiie e mmeneeeeeeeeeee e e e e
Table 4-1: Virtual MemOry AQArESS SPACESuuutiiiiiiieieaaei ittt et e e e e e et eeee e e e e e e e s

Table 4-2: Address Space Access as a Function of Operating Mode .. .
Table 4-3: Address Translation and Cache Coherency Attributes for the ksego and ksegl Segments 16.............
Table 4-4: Physical ADAreSs GENEIALIONcoeuviiiieiiiii i iieras s s e s e e e e e e e e e e e te e et e teeeeeaeteteae e aeaesesaaeaaaeaeeeeeeeeenmnnes 22
TabIle 5-1: INTEITUPE MOAESoeiiiiieiiie ittt e oottt ettt e e+ £+ 4 S—— 1525 £ 2422222241 eannnbbne 24
Table 5-2: Request for Interrupt Service in Interrupt Compatibility Mode

Table 5-3: Relative Interrupt Priority for Vectored Interrupt Mode ..o e

Table 5-4: Exception Vector Offsets for Vectored INterrupts..........cccuvveeeeeeiieiiiiiiniiiiiiecceeeeen,

Table 5-5: EXCepPtion VECIOr BASE AGQUIESSESuuuiiiiiiiieaeee ittt e ettt e e e a2+ so—— ettt e 22 e s
Table 5-6: EXCEPLION VECIOr OffSEES. ...ttt et e e e e e e e s mmmeeeeeemnn e e e e e s e bbb b beeeeeeaeeas
TabIE 5-7: EXCEPLION VECIOIS.....ueiiiiiiiii ettt e e e oo e ettt et e et e e e e s mmmmmemeeeann et e 22 e e e e e e s nnbbebeeeeaeaaeas 34
Table 5-8: Value Stored in EPC, ErrorEPC, or DEPC 0n an EXCEPLioN............euuiiiiiiiiiiiiiiiiiiiee e eeeeeeeeeeeeeee s 35
Table 6-1: Instructions SUPPOrtiNg SNAAOW SELScciiiiiiiiiiiiiiiieiei e meeeeeeeesesnme e e e e enen s B8
Table 7-1: EXECULION HAZAIISooiiiiiiiiiieiieiiie ettt enmmmmmeessmms e snrneeesennnnee e D)
Table 7-2: INSTIUCHON HAZAITSoeiiiiiiiiiie ettt e st s e me e e e e e e nmme et e e s e arre e e e e nnre e e e e eenee
Table 7-3: Hazard Clearing INSITUCLIONSccoiiiiiii e e e e e e e e e e e e e e e e e eeeeeeeees

Table 8-1: Coprocessor 0 Registers in NUMETCAl OFUENccoiiiiiiiiiiiieiiei et s s 2222221
Table 8-2: Read/Write Bit Fild NOTALIONvviiiiiiiiii et mme e e e s e e

Table 8-3: Index Register Field DESCIIPLIONScoiiiiiiiiieeii ettt e ettt e e e e e s e e enenr e e e e e e e e e e e e annnnnes 57
Table 8-4: Random Register Field DESCHPLONSoiiiuiiiiiiiiiie ettt eommmmmmeeeeeee e e e e e e e e e e e s aanes 58
Table 8-5: EntryLoO, EntryLol Register Field Descriptions in Release 1 of the Architecturecccccceeeiiiieenne. 59.
Table 8-6: EntryLoO, EntryLol Register Field Descriptions in Release 2 of the Architectureccccceeeiiiiienee. 60.
Table 8-7: EntryLo Field Widths as a FUNCHONMREBITS........ccooiiiiii s e e e e e e e e e e e eeeeaend 6l......
Table 8-8: Cache COherenCY ALHDULESouiiiiiiiii et e ettt ettt e mmmmmmmmmmmmmmm e eeeeeeeeeeeeeeeeeenes 61
Table 8-9: Context Register Field DeSCIIPLIONScoui ittt eee s mmmme st eeeeeeeeas 63
Table 8-10: PageMask Register Field DeSCHPIONSuuiiiiiiiiiiiaiie ittt semmmmmmmmseeees b s e e eeeeaee s 64
Table 8-11: Values for the Mask and Mask¥elds of the PageMask ReQISer...........covviiiiiiiiiiiiiiiiiiiie e ee e, e4.......
Table 8-12: PageGrain Register Field Descriptions

Table 8-13: Wired Register Field DeSCrPLIONS.ccciiiii ittt

Table 8-14: HWRENa Register Field DESCHPLIONScooiiiiiiiieiite ettt o £ 4222222110
Table 8-15: BadVAddr Register Field DESCIIPLONScoiiiiiiiiiie ittt esmme e e e e e e e e e e e e e e e e e e 70
Table 8-16: Count Register Field DESCHPHONS........cuiiiiiiiiiiiiieiieei et e e e e e e eeememnnnmmmmm s s ssnneeeeeeeeees L
Table 8-17: EntryHi Register Field DeSCIPLIONS.uuuiiiiiiiieeiiiiiiiie ettt s s e e e e e e e e e e e enn 2
Table 8-18: Compare Register Field Descriptions .
Table 8-19: Status Register Field DeSCIPIONS......c.ia i ittt ettt e e e e e e s e mmeeee e e e e eeeeaee e e e s e annraees 15
Table 8-20: IntCtl Register Field Descriptions

Table 8-21: SRSCtl Register Field DeSCIPLIONS.ccuiiiiiiiiiiiie it
Table 8-22: Sources for new SRS&HEon an Exception or Interrupt
Table 8-23: SRSMap Register Field DEeSCHPLIONSuuiiiiiiiiaiiiiiiiete et ee e e e eee e smn e bbb e e eeeeaaead
Table 8-24: Cause Register Field DeSCIIPLIONSuuuiiiiiiiiee ittt e e e e e sessammmneeee e e e st bb e e eeaeeaeas 87
Table 8-25: Cause Register ExcCode Field
Table 8-26: EPC Register Field DeSCrPLONScooiiiiiiiiiiiiieeee et

Table 8-27: PRId Register Field DeSCHPLONScooiiiiiiiiiiiieieee e

Table 8-28: EBase Register Field DESCHPONSooieiiiiiieiiiie ettt e e e e e e e e s e e s snbb e aeeeaaaeeeas
Table 8-29: Conditions Under Which EBasel5..12 Must Be Zero
Table 8-30: Config Register Field DEeSCIIPLIONSuuiiiiiiiiieeeiiii et e e e e e ee e s aee e bbb e aeeeaaeeeeas
Table 8-31: Configl Register Field DEeSCIIPLIONSuuiiiiiiiaiiiiiite ettt e e e e e e e ee e e e e e e e e e e e e e aaanes 97
Table 8-32: Config2 Register Field DEeSCIIPLIONSuiiiiiiiaeiiiiiiiee ettt e e e e e e e e e sessre e e e e e e aaaeeeaeaanas 101
Table 8-33: Config3 Register Field DEeSCIIPLIONSuiiiiiiiieiii ittt e e e e e e e e s s nene e e ee e e e e e e e e e aana 104

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 s

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Table 8-34:
Table 8-35:
Table 8-36:
Table 8-37:
Table 8-38:
Table 8-39:
Table 8-40:
Table 8-41:
Table 8-42:
Table 8-43:

vi

LLAddr Register Field DESCHPLIONSuiiiiiiaiiiiiiiiie ittt e e e e e e s emmeeneeeeeeesseeee e e e e e e e e annas 107
WatchLo Register Field DESCIPLIONS.uueiiiiiiiiieee ettt e e e mmmne e e s 108
WatchHi Register Field DeSCIPLIONSooiiiiiiiiiiie ittt e et e e e e e e e e e e e e aenneeee e 110
Example Performance Counter Usage of the PerfCnt CPO RegiSter..........coooiiiiiiiiiiiiiiiiiii i eeeeeeeeaes 115
Performance Counter Control Register Field DeSCrptioNSuueeeiiiiieeiiiiiiiiiiieieeee e s e 0. L 16
Performance Counter Counter Register Field DeSCIPLIONSccoiiiiiiiiiiiiiiiiieeee e ceeeeeeeeeeeeees 117
ErrorEPC Register Field DeSCriPtiONS..........uuuuiiiiiiiieeie e o

Physical Address Generation from Virtual Addresses
Config Register Field DeSCHPLIONScooiiiiiiiiiiiiii et mmeeeeeeeeeeas

BAT ENLIY ASSIONIMENTSuiiiiiiiiiiiiiiee it e s e i e e e e e e e e e e et et et e et eeaeaeaeeaee e s s e s e e e+ so— 1111122 e 2 e e e e eenes

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 1

About This Book

The MIPS32™ Architecture For Programmers Volume Il comes as a multi-volume set.

» Volume | describes conventions used throughout the document set, and provides an introduction to the MIPS32™
Architecture

» Volume |l provides detailed descriptions of each instruction in the MIPS32™ instruction set

* Volume 11l describes the MIPS32™ Privileged Resource Architecture which defines and governs the behavior of the
privileged resources included in a MIPS32™ processor implementation

* Volume IV-a describes the MIPS16e™ Application-Specific Extension to the MIPS32™ Architecture

* Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS32™ Architecture and is not
applicable to the MIPS32™ document set

* Volume IV-c describes the MIPS-3D™ Application-Specific Extension to the MIPS64™ Architecture and is not
applicable to the MIPS32™ document set

* \olume IV-d describes the SmartMIPS™ Application-Specific Extension to the MIPS32™ Architecture

1.1 Typographical Conventions

This section describes the usetalfic, bold andcourier fonts in this book.

1.1.1 Iltalic Text
* is used foemphasis

* is used fobits, fields registers that are important from a software perspective (for instance, address bits used by
software, and programmable fields and registers), and vditmating point instruction formatsuch ass, D, andPS

* is used for the memory access types, sudaesedanduncached

1.1.2 Bold Text
 represents a term that is beuhefined

* is used fobits andfields that are important from a hardware perspective (for instaggister bits, which are not
programmable but accessible only to hardware)

* is used for ranges of numbers; the range is indicated by an ellipsis. For inStdnndjcates numbers 5 through 1

* is used to emphasiz¢éNPREDICTABLE andUNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 1

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

1.2 UNPREDICTABLE and UNDEFINED

The termdUNPREDICTABLE andUNDEFINED are used throughout this book to describe the behavior of the
processor in certain caséNDEFINED behavior or operations can occur only as the result of executing instructions
in a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CPO usable bit set in the Status register).
Unprivileged software can never callldDEFINED behavior or operations. Conversely, both privileged and
unprivileged software can caud®lPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction, or
as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE . UNPREDICTABLE operations may cause a result to be generated or not. If aresultis generated,
it is UNPREDICTABLE . UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

Implementations of operations generatiiyPREDICTABLE results must not depend on any data source (memory
or internal state) which is inaccessible in the current processor mode

UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which is
inaccessible in the current processor mode. For exatdNIBREDICTABLE operations executed in user mode
must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in another process

UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instrudh@EFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer coddiNDEFINED operations
or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which there is
no exit other than powering down the processor). The assertion of any of the reset signals must restore the processor
to an operational state

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are Tiatdd i1

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol Meaning

- Assignment

=% Tests for equality and inequality

II Bit string concatenation

xY A y-bit string formed by copies of the single-bit value

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

1.3 Special Symbols in Pseudocode Notation

Table 1-1 Symbols Used in Instruction Operation Statements

binary

ented.

ne
lanness

Symbol Meaning
A constant valua in baseb. For instance 10#100 represents the decimal value 100, 2#100 represents the
b#n value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#" prefix is
omitted, the default base is 10.
X Selection of bitg/ throughz of bit stringx. Little-endian bit notation (rightmost bit is 0) is usedyli less than
y..Z z, this expression is an empty (zero length) bit string.
+, - 2's complement or floating point arithmetic: addition, subtraction
0 x 2's complement or floating point multiplication (both used for either)
div 2's complement integer division
mod 2's complement modulo
/ Floating point division
< 2's complement less-than comparison
> 2's complement greater-than comparison
< 2's complement less-than or equal comparison
> 2's complement greater-than or equal comparison
nor Bitwise logical NOR
xor Bitwise logical XOR
and Bitwise logical AND
or Bitwise logical OR
GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers
GPRIX] CPU general-purpose registerThe content o6PR[0] is always zero.
SGPR][s,x] glGRPeFI{ease 2 of the Architecture, multiple copies of the CPU general-purpose registers may be implem
[s.x]refers to GPR se registeix. GPR[X] is a short-hand notation 8GPR[SRSCtkg X].
FPR[X] Floating Point operand register
FCC[CC] Floating Point condition code CECCJ[0] has the same value @OC[1].
FPR[X] Floating Point (Coprocessor unit 1), general register
CPRJ[z,x,s] Coprocessor unit, general registex, selects
CP2CPR[X] Coprocessor unit 2, general register
CCRJz,X] Coprocessor uni, control registek
CP2CCRIx] Coprocessor unit 2, control register
COCJz] Coprocessor unit condition signal
Xlat[x] Translation of the MIPS16e GPR numizénto the corresponding 32-bit GPR number
Endian mode as configured at chip reset.(Gttle-Endian, 1- Big-Endian). Specifies the endianness of t
BigEndianMem memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the end
of Kernel and Supervisor mode execution.
The endianness for load and store instructions (0ttle-Endian, 1- Big-Endian). In User mode, this
BigEndianCPU endianness may be switched by settingRifighit in the Statusregister. Thus, BigEndianCPU may be comput

as (BigendianMem XOR ReverseEndian).

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol Meaning

Signal to reverse the endianness of load and store instructions. This feature is available in User mode gnly, and
ReverseEndian is implemented by setting tHREDbit of the Statusregister. Thus, ReverseEndian may be computed asg SR
User mode).

Bit of virtual state used to specify operation for instructions that provide atomic read-modify-uritie is set
when a linked load occurs; it is tested and cleared by the conditional store. It is cleared, during other ¢PU

operation, when a store to the location would no longer be atomic. In particular, it is cleared by exception return
instructions.

LLbit

This occurs as a prefix @perationdescription lines and functions as a label. It indicates the instruction fime
during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to p time
label ofl. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections labeled
with the instruction time, relative to the current instructiom which the effect of that pseudocode appears|to

I, occur. For example, an instruction may have a result that is not available until after the next instruction. Such an
I+n:, instruction has the portion of the instruction operation description that writes the result register in a section
I-n: labeled +1.
The effect of pseudocode statements for the current instruction lalbellegppears to occur “at the same time”
as the effect of pseudocode statements labefedthe following instruction. Within one pseudocode sequente,
the effects of the statements take place in order. However, between sequences of statements for diffefent
instructions that occur “at the same time,” there is no defined order. Programs must not depend on a particular
order of evaluation between such sections.

TheProgram Counteralue. During the instruction time of an instruction, this is the address of the instrugtion
word. The address of the instruction that occurs during the next instruction time is determined by assigning a
value toPC during an instruction time. If no value is assigneB@during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instfuction)
or 4 before the next instruction time. A taken branch assigns the target addresP@dhgng the instruction
time of the instruction in the branch delay slot.

PC

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 physical
address bits were implemented, the size of the physical address space w6l '5e=22%6 bytes.

Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). In MIPS32, the FPU has 32 32-bit
FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, the FPU has 32 64-bjt FPRs
in which 64-bit data types are stored in any FPR.

FP32RegistersMode In MIPS32 implementation§P32RegistersModes always a 0. MIPS64 implementations have a compatibility

mode in which the processor references the FPRs as if it were a MIPS32 implementation. In such a case
FP32RegisterModes computed from the FR bit in thetatusregister. If this bit is a 0, the processor operates
as if it had 32 32-bit FPRs. If this bit is a 1, the processor operates with 32 64-bit FPRs.

The value oFP32RegistersModds computed from the FR bit in ti8tatusregister.

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch or
InstructioninBranchD| jump. This condition reflects ttdynamicstate of the instruction, not teeatic state. That is, the value is falsp

elaySlot if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which is not
executed in the delay slot of a branch or jump.

Causes an exception to be signaled, using the exception parameter as the type of exception and the grgument
parameter as an exception-specific argument). Control does not return from this pseudocode function|- the
exception is signaled at the point of the call.

SignalException(exce
ption, argument)

1.4 For More Information
Various MIPS RISC processor manuals and additional information about MIPS products can be found at the MIPS URL:

http://www.mips.com
4 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

1.4 For More Information

Comments or questions on the MIPS32™ Architecture or this document should be directed to

Director of MIPS Architecture
MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043

or via E-mail to architecture@mips.com.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 5

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

6 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2

The MIPS32 Privileged Resource Architecture

2.1 Introduction

The MIPS32 Privileged Resource Architecture (PRA) is a set of environments and capabilities on which the Instruction
Set Architecture operates. The effects of some components of the PRA are user-visible, for instance, the virtual memory
layout. Many other components are visible only to the operating system kernel and to systems programmers. The PRA
provides the mechanisms necessary to manage the resources of the CPU: virtual memory, caches, exceptions and user
contexts. This chapter describes these mechanisms.

2.2 The MIPS Coprocessor Model

The MIPS ISA provides for up to 4 coprocessors. A coprocessor extends the functionality of the MIPS ISA, while
sharing the instruction fetch and execution control logic of the CPU. Some coprocessors, such as the system coprocessor
and the floating point unit are standard parts of the ISA, and are specified as such in the architecture documents.
Coprocessors are generally optional, with one exception: CPO, the system coprocessor, is required. CPO is the ISA
interface to the Privileged Resource Architecture and provides full control of the processor state and modes.

2.2.1 CPO - The System Coprocessor

CPO provides an abstraction of the functions necessary to support an operating system: exception handling, memory
management, scheduling, and control of critical resources. The interface to CPO is through various instructions encoded
with the COPOopcode, including the ability to move data to and from the CPO registers, and specific functions that
modify CPO state. The CPO registers and the interaction with them make up much of the Privileged Resource
Architecture.

2.2.2 CPO Registers

The CPO registers provide the interface between the ISA and the PRA. The CPO registers are described in Chapter 8.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 7

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 The MIPS32 Privileged Resource Architecture

8 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3

MIPS32 Operating Modes

The MIPS32 PRA requires two operating mode: User Mode and Kernel Mode. When operating in User Mode, the
programmer has access to the CPU and FPU registers that are provided by the ISA and to a flat, uniform virtual memory
address space. When operating in Kernel Mode, the system programmer has access to the full capabilities of the
processor, including the ability to change virtual memory mapping, control the system environment, and context switch
between processes.

In addition, the MIPS32 PRA supports the implementation of two additional modes: Supervisor Mode and EJTAG
Debug Mode. Refer to the EJTAG specification for a description of Debug Mode.

In Release 2 of the Architecture, support was added for 64-bit coprocessors (and, in particular, 64-bit floating point units)
with 32-bit CPUs. As such, certain floating point instructions which were previously enabled by 64-bit operations on a
MIPS64 processor are now enabled by a new 64-bit floating point operations enabled.

3.1 Debug Mode

For processors thatimplement EJTAG, the processor is operating in Debug Mode if the DM bit in tBel@RPegister
is a one. If the processor is running in Debug Mode, it has full access to all resources that are available to Kernel Mode
operation.

3.2 Kernel Mode

The processor is operating in Kernel Mode when the DM bit imdkbugregister is a zero (if the processor implements
Debug Mode), and any of the following three conditions is true:

» The KSU field in the CP8tatusregister contains 2#00

e The EXL bit in theStatusregister is one

e The ERL bit in theStatusregister is one

The processor enters Kernel Mode at power-up, or as the result of an interrupt, exception, or error. The processor leaves

Kernel Mode and enters User Mode or Supervisor Mode when all of the previous three conditions are false, usually as
the result of an ERET instruction.

3.3 Supervisor Mode
The processor is operating in Supervisor Mode (if that optional mode is implemented by the processor) when all of the
following conditions are true:
« The DM bit in theDebugregister is a zero (if the processor implements Debug Mode)
e The KSU field in theéStatusregister contains 2#01
e The EXL and ERL bits in th8tatusregister are both zero

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 9

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 MIPS32 Operating Modes

3.4 User Mode

The processor is operating in User Mode when all of the following conditions are true:
» The DM bit in theDebugregister is a zero (if the processor implements Debug Mode)
» The KSU field in theéStatusregister contains 2#10

» The EXL and ERL bits in thBtatusregister are both zero

3.5 Other Modes

3.5.1 64-bit Floating Point Operations Enable

Instructions that are implemented by a 64-bit floating point unit are legal under any of the following conditions:

» Inanimplementation of Release 1 of the Architecture, 64-bit floating point operations are never enabled in a MIPS32
processor.

« If an implementation of Release 2 of the Architecture, 64-bit floating point operations are enabled if the F64 bit in the
FIR register is a one. The processor must also implement the floating point data type.

3.5.2 64-bit FPR Enable

Access to 64-bit FPRs is controlled by the FR bit in 8tatusregister. If the FR bit is one, the FPRs are interpreted as

32 64-bit registers that may contain any data type. If the FR bit is zero, the FPRs are interpreted as 32 32-bit registers,
any of which may contain a 32-bit data type (W, S). In this case, 64-bit data types are contained in even-odd pairs of
registers.

64-bit FPRs are supported in a MIPS64 processor in Release 1 of the Architecture, or in a 64-bit floating point unit, for
both MIPS32 and MIPS64 processors, in Release 2 of the Architecture.

The operation of the processotdBIPREDICTABLE under the following conditions:

» The FR bitis a zero, 64-bit operations are enabled, and a floating point instruction is executed whose datatype is L or
PS.

» The FR bit is a zero and an odd register is referenced by an instruction whose datatype is 64-bits

10 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4

Virtual Memory

4.1 Support in Release 1 and Release 2 of the Architecture

4.1.1 Virtual Memory

In Release 1 of the Architecture, the minimum page size was 4KB, with optional support for pages as large as 256 MB.
In Release 2 of the Architecture, optional support for 1KB pages was added for use in specific embedded applications
that require access to pages smaller than 4KB. Such usage is expected to be in conjunction with a default page size of
4KB and is not intended or suggested to replace the default 4KB page size but, rather, to augment it.

Support for 1KB pages involves the following changes:

 Addition of thePageGrainregister. This register is also used by the SmartMIPS™ ASE specification, but bits used
by Release 2 of the Architecture and the SmartMIPS ASE specification do not overlap.

» Modification of theEntryHi register to enable writes to, and use of, bits 12..11 (VPN2X).
» Modification of thePageMaskegister to enable writes to, and use of, bits 12..11 (MaskX).

» Modification of theEntryLoOandEntryLolregisters to shift the PFN field to the left by 2 bits, when 1KB page
support is enabled, to create space for two lower-order physical address bits.

Support for 1KB pages is denoted by the Config3t and enabled by the PageGgajpbit.

4.2 Terminology

4.2.1 Address Space

An Address Spacs the range of all possible addresses that can be generated. There is one 32-bit Address Space in the
MIPS32 Architecture.

4.2.2 Segment and Segment Size

A Segmenis a defined subset of an Address Space that has self-consistent reference and access behavior. Segments are
either 2% or 221 bytes in size, depending on the specific Segment.

4.2.3 Physical Address Size (PABITS)

The number of physical address bits implemented is represented by the $$ABIdIS As such, if 36 physical address

bits were implemented, the size of the physical address space would#&% 236 bytes. The format of thEntryLoO
andEntryLolregisters implicitly limits the physical address size¥t®tes. Software may determine the value of
PABITS by writing all ones to th&ntryLoOor EntryLolregisters and reading the value back. Bits read as “1” from the
PFN field allow software to determine the boundary between the PFN and O fields to calculate the value of PABITS.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 11

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Virtual Memory

4.3 Virtual Address Spaces

The MIPS32 virtual address space is divided into five segments as shown in Figure 4-1.

16#FFFF FFFF
kseg3
16#E000 0000
16#DFFF FFFF
ksseg
16#C000 0000
16#BFFF FFFF
ksegl
16#A000 0000
16#9FFF FFFF
kseg0
16#8000 0000
16#7FFF FFFF

useg

16#0000 0000

Figure 4-1 Virtual Address Space

Kernel Mapped

Supervisor Mapped

Kernel Unmapped Uncached

Kernel Unmapped

User Mapped

Each Segment of an Address Space is classified as “Mapped” or “Unmapped”. A “Mapped” address is one that is
translated through the TLB or other address translation unit. An “Unmapped” address is one which is not translated
through the TLB and which provides a window into the lowest portion of the physical address space, starting at physical
address zero, and with a size corresponding to the size of the unmapped Segment.

Additionally, the ksegl Segment is classified as “Uncached”. References to this Segment bypass all levels of the cache
hierarchy and allow direct access to memory without any interference from the caches.

Table 4-1lists the same information in tabular form.

12

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.3 Virtual Address Spaces

Table 4-1 Virtual Memory Address Spaces

Reference Actual
Segment Associated | Legal from Segment
VA3; 09 | Name(s) Address Range| with Mode Mode(s) Size
16#FFFF FFFF
2#111 kseg3 through Kernel Kernel 29 bytes
16#E000 0000
16#DFFF FFFF .
2#110 kSSSSeeg through Supervisor Sl&%%\glsor 229 pytes
9 16#C000 0000
16#BFFF FFFF
2#101 ksegl through Kernel Kernel 3 pytes
16#A000 0000
16#9FFF FFFF
2#100 kseg0 through Kernel Kernel 3 pytes
16#8000 0000
useg 16#7FFF FFFF User
2#0xx suseg through User Supervisor 231 bytes
kuseg 16#0000 0000 Kernel

Each Segment of an Address Space is associated with one of the three processor operating modes (User, Supervisor, or
Kernel). A Segment that is associated with a particular mode is accessible if the processor is running in that or a more
privileged mode. For example, a Segment associated with User Mode is accessible when the processor is running in User,
Supervisor, or Kernel Modes. A Segment is not accessible if the processor is running in a less privileged mode than that
associated with the Segment. For example, a Segment associated with Supervisor Mode is not accessible when the
processor is running in User Mode and such a reference results in an Address Error Exception. The “Reference Legal
from Mode(s)” column in Table 4-2 lists the modes from which each Segment may be legally referenced.

If a Segment has more than one name, each name denotes the mode from which the Segment is referenced. For example,
the Segment name “useg” denotes a reference from user mode, while the Segment name “kuseg” denotes a reference to
the same Segment from kernel mode.

Figure 4-2shows the Address Space as seen when the processor is operating in each of the operating modes.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 13

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Virtual Memory

16#FFFF FFFF

16#8000 0000

Figure 4-2 References as a Function of Operating Mode

User Mode References

Address Error

16#7FFF FFFF

useg

16#0000 0000

User Mapped

Supervisor Mode References

164#FFFF FFFF

16#E000 0000

Address Error

16#DFFF FFFF
sseg
16#C000 0000

Supervisor Mapped

16#BFFF FFFF

16#8000 0000

Address Error

164#7FFF FFFF

suseg

16#0000 0000

User Mapped

Kernel Mode References

16#FFFF FFFF
kseg3
16#E000 0000
16#DFFF FFFF
ksseg
16#C000 0000
16#BFFF FFFF
ksegl
16#A000 0000
16#9FFF FFFF
kseg0
16#8000 0000
16#7FFF FFFF

kuseg

16#0000 0000

Kernel Mapped

Supervisor Mappefd

Kernel Unmapped
Uncached

Kernel Unmapped

User Mapped

4.4 Compliance

A MIPS32 compliant processor must implement the following Segments:

 useg/kuseg

» ksegO
e ksegl

In addition, a MIPS32 compliant processor using the TLB-based address translation mechanism must also implement

the kseg3 Segment.

4.5 Access Control as a Function of Address and Operating Mode

Table 4-2enumerates the action taken by the processor for each section of the 32-bit Address Space as a function of the
operating mode of the processor. The selection of TLB Refill vector and other special-cased behavior is also listed for

each reference.

14

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.6 Address Translation and Cache Coherency Attributes for the kseg0 and ksegl Segments

Table 4-2 Address Space Access as a Function of Operating Mode

Action when Referenced from Operating Mode

Segment Supervisor
Virtual Address Range Name(s) User Mode Mode Kernel Mode
16#FFFF FFFF Mapped
See4.8 on
through kseg3 Address Error| Address Errof page 16or
specialbehavior
16#E000 0000 when Debugy
16#DFFF FFFF
sseg
through Address Error Mapped Mapped
ksseg
16#C000 0000
16#BFFF FEFF Untarbed
through ksegl Address Error| Address Errg
16#A000 0000 45 onpage 16
16#9FFF FFFF Unmapped
through ksegO Address Error Address Erro
See Section
16#8000 0000 4.6 on page 15
Unmapped if
Statugg =1
16#7FFF FFFF
useg)
through suseg Mapped Mapped See Section
kuseg 4.7 on page 16
16#0000 0000

Mapped if

Statugg =0

4.6 Address Translation and Cache Coherency Attributes for the kseg0 and ksegl Segments

The kseg0 and ksegl Unmapped Segments provide a window into the least sigﬁﬁibyt&sZof physical memory,

and, as such, are not translated using the TLB or other address translation unit. The cache coherency attribute of the
kseg0 Segment is supplied by the KO field of the CBlfigregister. The cache coherency attribute for the ksegl
Segmentis always Uncachdeble 4-3describes how this transformation is done, and the source of the cache coherency

attributes for each Segment.

MIPS32™ Architecture For Programmers Volume lll, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

15

Chapter 4 Virtual Memory

Table 4-3 Address Translation and Cache Coherency Attributes for the kseg0 and ksegl Segments

Sﬁgr;]eent Virtual Address Range Generates Physical Address Cache Attribute
16#BFFF FFFF 16#1FFF FFFF
ksegl through through Uncached
16#A000 0000 16#0000 0000
16#9FFF FFFF 16#1FFF FFFF
kseg0 through through FcrgmigKlgéigeilsdtgrf
16#8000 0000 16#0000 0000

4.7 Address Translation for the kuseg Segment when Stagg = 1

To provide support for the cache error handler, the kuseg Segment becomes an unmapped, uncached Segment, similar
to the ksegl Segment, if the ERL bit is set inSketusregister. This allows the cache error exception code to operate
uncached using GPR RO as a base register to save other GPRs before use.

4.8 Special Behavior for the kseg3 Segment when Delpyg = 1

If EJTAG is implemented on the processor, the EJTAG block must treat the virtual addres¢de20 0000
throughl16#FF3F FFFF | inclusive, as a special memory-mapped region in Debug Mode. A MIPS32 compliant
implementation that also implements EJTAG must:

+ explicitly range check the address range as given and not assume that the entire regiorl 68E#&En0000
and16#FFFF FFFF is included in the special memory-mapped region.

* not enable the special EJTAG mapping for this region in any mode other than in EJTAG Debug mode.
Even in Debug mode, normal memory rules may apply in some cases. Refer to the EJTAG specification for details on

this mapping.

4.9 TLB-Based Virtual Address Translation

This section describes the TLB-based virtual address translation mechanism. Note that sufficient TLB entries must be
implemented to avoid a TLB exception loop on load and store instructions.

4.9.1 Address Space Identifiers (ASID)

The TLB-based translation mechanism supports Address Space Identifiers to uniquely identify the same virtual address
across different processes. The operating system assigns ASIDs to each process and the TLB keeps track of the ASID
when doing address translation. In certain circumstances, the operating system may wish to associate the same virtual

1Refer toSection A.1, "Fixed Mapping MMU" on page 12ndSection A.2, "Block Address Translation” on page I&ldescriptions
of alternative MMU organizations

16 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.9 TLB-Based Virtual Address Translation

address with all processes. To address this need, the TLB includes a global (G) bit which over-rides the ASID
comparison during translation.

4.9.2 TLB Organization

The TLB is a fully-associative structure which is used to translate virtual addresses. Each entry contains two logical
components: a comparison section and a physical translation section. The comparison section includes the virtual page
number (VPN2 and, in Release 2, VPNX) (actually, the virtual page number/2 since each entry maps two physical pages)
of the entry, the ASID, the G(lobal) bit and a recommended mask field which provides the ability to map different page
sizes with a single entry. The physical translation section contains a pair of entries, each of which contains the physical
page frame number (PFN), a valid (V) bit, a dirty (D) bit, and a cache coherency field (C), whose valid encodings are
given inTable 8-8 on page 6There are two entries in the translation section for each TLB entry because each TLB
entry maps an aligned pair of virtual pages and the pair of physical translation entries corresponds to the even and odd
pages of the pair.

Figure 4-3shows the logical arrangement of a TLB entry, including the optional support added in Release 2 of the
Architecture for 1KB page sizes. Light grey fields denote extensions to the right that are required to support 1KB page
sizes. This extension is not present in an implementation of Release 1 of the Architecture.

Figure 4-3 Contents of a TLB Entry

Mask MaskX|

VPN2 VPN2X G ASID
PFENO (0] DA V(@
PFEN1 C1l D1 V1]

|:| Fields marked with this color are optional Release 2 features required to support 1KB pages

The fields of the TLB entry correspond exactly to the fields in theRaBeMaskEntryHi, EntryLoOandEntryLol
registers. The even page entries in the TLB (e.g., PFNO) comeefogloQ Similarly, odd page entries come from
EntryLol

4.9.3 TLB Initialization

In many processor implementations, software must initialize the TLB during the power-up process. In processors that
detect multiple TLB matches and signal this via a machine check assumption, software must be prepared to handle such
an exception or use a TLB initialization algorithm that minimizes or eliminates the possibility of the exception.

In Release 1 of the Architecture, processor implementations could detect and report multiple TLB matches either on a
TLB write (TLBWI or TLBWR instructions) or a TLB read (TLB access or TLBR or TLBP instructions). In Release 2

of the Architecture, processor implentations are limited to reporting multiple TLB matches only on TLB write, and this

is also true of most implementations of Release 1 of the Architecture.

MIPS32™ Architecture For Programmers Volume lll, Revision 2.00 17

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Virtual Memory

The following code example shows a TLB initialization routine which, on implementations of Release 2 of the
Architecture, eliminates the possibility of reporting a machine check during TLB initialization. This example has
equivalent effect on implementations of Release 1 of the Architecture which report multiple TLB exceptions only on a
TLB write, and minimizes the probability of such an exception occuring on other implementations.
/*
* [nitTLB

*

* |nitialize the TLB to a power-up state, guaranteeing that all entries
* are unique and invalid.
*

* Arguments:

* a0 = Maximum TLB index (from MMUSize field of CO_Config1)
*

* Returns:

* No value

*

* Restrictions:

* This routine must be called in unmapped space
*
* Algorithm:
* va = kseg0_base;
* for (entry = max_TLB_index; entry >= 0, entry--) {
* while (TLB_Probe_Hit(va)) {
* va += Page_Size;
* }
* TLB_Write(entry, va, 0, 0, 0);
)
*
* Notes:
* - The Hazard macros used in the code below expand to the appropriate
* number of SSNOPs in an implementation of Release 2 of the
* Architecture, and to an ehb in an implementation of Release 2 of
* the Architecture. See Chapter 7, “CP0O Hazards,” on page 49 for
* more additional information.
*/
InitTLB:
/*

* Clear PageMask, EntryLoO and EntryLol so that valid bits are off, PFN values
* are zero, and the default page size is used.

*/
mtcO zero, CO_EntryLoO /* Clear out PFN and valid bits */
mtcO zero, CO_EntryLol
mtcO zero, CO_PageMask [* Clear out mask register *
/* Start with the base address of ksegO for the VA part of the TLB */
la t0, A_KOBASE /* A_KOBASE == 16#8000.0000 */
18 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.9 TLB-Based Virtual Address Translation

/*
* Write the VA candidate to EntryHi and probe the TLB to see if if is
* already there. If it is, a write to the TLB may cause a machine
* check, so just increment the VA candidate by one page and try again.

*/

10:
mtcO t0, CO_EntryHi /* Write VA candidate */
TLBP_Write_Hazard() /* Clear EntryHi hazard (ssnop/ehb in R1/2) */
tibp [* Probe the TLB to check for a match */
TLBP_Read_Hazard() /* Clear Index hazard (ssnop/ehb in R1/2) */
mfcO t1, CO_Index /* Read back flag to check for match */
bgez t1,10b [* Branch if about to duplicate an entry */
addiu t0, (1<<S_EntryHiVPN2) /* Add 1 to VPN index in va */

/*

* A write of the VPN candidate will be unique, so write this entry
* into the next index, decrement the index, and continue until the
* index goes negative (thereby writing all TLB entries)

*
mtcO a0, CO_Index /* Use this as next TLB index */
TLBW_Write_Hazard() /* Clear Index hazard (ssnop/ehb in R1/2) */
tibwi [* Write the TLB entry */
bne a0, zero, 10b /* Branch if more TLB entries to do */
addiu a0, -1 /* Decrement the TLB index

/*

* Clear Index and EntryHi simply to leave the state constant for all

* returns

*/
mtcO zero, CO_Index
mtcO zero, CO_EntryHi
jr ra /* Return to caller */

nop

4.9.4 Address Translation

Release 2 of the Architecture introduced support for 1KB pages. For clarity in the discussion below, the following terms
should be taken in the general sense to include the new Release 2 features:

Term Used Below Release 2 Substitution Comment

Release 2 implementations
that support 1KB pages
concatenate the VPN2 and

VPN2 VPNZ|| VPNZX VPN2X fields to form the
virtual page number for a
1KB page

Release 2 implementations
that support 1KB pages
concatenate the Mask and

Mask Mask|| MaskX MaskX fields to form the
don’t care mask for 1KB
pages

When an address translation is requested, the virtual page number and the current process ASID are presented to the
TLB. All entries are checked simultaneously for a match, which occurs when all of the following conditions are true:

» The current process ASID (as obtained from EreryHi register) matches the ASID field in the TLB entry, or the G
bit is set in the TLB entry.

MIPS32™ Architecture For Programmers Volume lll, Revision 2.00 19

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Virtual Memory

» The appropriate bits of the virtual page number match the corresponding bits of the VPN2 field stored within the
TLB entry. The “appropriate” number of bits is determined by the Mask fields in each entry by ignoring each bit in
the virtual page number and the TLB VPN2 field corresponding to those bits that are set in the Mask fields. This
allows each entry of the TLB to support a different page size, as determined Bggbe®& askegister at the time that
the TLB entry was written. If the recommendBdgeMaskegister is not implemented, the TLB operation is as if the
PageMask register was written with the encoding for a 4KB page.

If a TLB entry matches the address and ASID presented, the corresponding PFN, C, V, and D bits are read from the
translation section of the TLB entry. Which of the two PFN entries is read is a function of the virtual address bit
immediately to the right of the section masked with the Mask entry.

The valid and dirty bits determine the final success of the translation. If the valid bit is off, the entry is not valid and a
TLB Invalid exception is raised. If the dirty bit is off and the reference was a store, a TLB Modified exception is raised.

If there is an address match with a valid entry and no dirty exception, the PFN and the cache coherency bits are appended
to the offset-within-page bits of the address to form the final physical address with attributes.

For clarity, the TLB lookup processes have been separated into two sets of pseudo code:

1. One used by an implementation of Release 1 of the Architecture, or an implementation of Release 2 of the
Architecture which does not include 1KB page support (as denoted by Gehfiglis instance is called the
“4KB TLB Lookup”.

2. One used by an implementation of Release 2 of the Architecture which does include 1KB page support. This
instance is called the “1KB TLB Lookup”.

The 4KB TLB Lookup pseudo code is as follows:

found ~ 0
foriin 0...TLBEntries-1
if ((TLB[i] vpnzand not (TLBIi] Mask)) = (V@ 3113 and not (TLB[i] Mask))) and
(TLB[l] Gor (TLB[l] ASID = EntryHI AS|D)) then

EvenOddBit selects between even and odd halves of the TLB as a function of
the page size in the matching TLB entry. Not all page sizes need

be implemented on all processors, so the case below uses an ‘X’ to

denote don’t-care cases. The actual implementation would select

the even-odd bit in a way that is compatible with the page sizes

actually implemented.

case TLB[i] mask

2#0000 0000 0000 0000: EvenOddBit
2#0000 0000 0000 0011: EvenOddBit
2#0000 0000 0000 11xx: EvenOddBit
2#0000 0000 0011 xxxx: EvenOddBit
2#0000 0000 11xx xxxx: EvenOddBit
2#0000 0011 xxxx xxxx: EvenOddBit
2#0000 11xx xxxx xxxx: EvenOddBit
2#0011 xxxx Xxxx xxxx: EvenOddBit
2H#1IXX XXXX XXXX XXxX: EvenOddBit
otherwise: UNDEFINED
endcase
ifva gyenodasit = O then
pfn — TLB[] prno
vV < TLB[i] o
C « TLB[l] co
d — TLB[i] pg
else
pfn — TLB[] prNn1
v <« TLB[i]
C « TLB[] 1
d « TLB[i] p1

~ 12 /* 4KB page */

~ 14 /* 16KB page */
16 /* 64KB page */
18 /* 256KB page */
~ 20 /* 1MB page */

~ 22 [* AMB page */

~ 24 [* 16MB page */
~ 26 [* 64MB page */
~ 28 [* 256MB page */

1

1

20 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.9 TLB-Based Virtual Address Translation

endif
if v=0then
SignalException(TLBInvalid, reftype)
endif
if (d = 0) and (reftype = store) then
SignalException(TLBModified)

endif
#pfn papiTs.1-12.0 corresponds to pa PABITS-1..12
pa < pfn pagiTs.1-12. EvenoddBit-12 [lva EvenoddBit-1..0
found 1
break

endif

endfor

if found = 0 then
SignalException(TLBMiss, reftype)

endif

The 1KB TLB Lookup pseudo code is as follows:

found ~ 0
foriin 0...TLBEntries-1
if ((TLB[] vpnzand not (TLBI] Mask) = (V& 31.13 and not (TLBII] Mask))) and

(TLBI[i] cor (TLBIi] asip = EntryHi pgp)) then
EvenOddBit selects between even and odd halves of the TLB as a function of
the page size in the matching TLB entry. Not all pages sizes need
be implemented on all processors, so the case below uses an ‘X’ to
denote don’'t-care cases. The actual implementation would select
the even-odd bit in a way that is compatible with the page sizes
actually implemented.

case TLB[i] mask
2#0000 0000 0000 0000 00: EvenOddBit 10 /* 1KB page */

2#0000 0000 0000 0000 11: EvenOddBit ~ 12 /* 4KB page */
2#0000 0000 0000 0011 xx: EvenOddBit 14 /* 16KB page */
2#0000 0000 0000 11xx xx: EvenOddBit 16 /* 64KB page */

1

1

N

2#0000 0000 0011 xxxx xx: EvenOddBit ~ 18 /* 256KB page */
2#0000 0000 11xx xxxx xx: EvenOddBit ~ 20 /* 1MB page */
2#0000 0011 xxxx xxxx xx: EvenOddBit ~ 22 I* 4AMB page */
2#0000 11xx Xxxx Xxxx xx: EvenOddBit ~ 24 [* 16MB page */
2#0011 xxxx XXXX XXXX xx: EvenOddBit ~ 26 /* 64MB page */
2#LIXX XXXX XXXX XXXX XX: EvenOddBit ~ 28 /* 256MB page */
otherwise: UNDEFINED

endcase

ifva gyenodasit = O then
pfn — TLB[] prno
v « TLB[i] o
C « TLB[l] co
d < TLB[i] po

else
pfn — TLB[] prn:
v <« TLB[i] 1
C < TLB[] 1
d « TLB[i] p1
endif
if v=0 then
SignalException(TLBInvalid, reftype)
endif

if (d = 0) and (reftype = store) then
SignalException(TLBModified)

endif
#pfn papiTsi1-10.0 corresponds to pa PABITS-1..10
pa < pfn pagiTs.1-10.Evenoddeit-10 Il V@ Evenoddsit-1..0

MIPS32™ Architecture For Programmers Volume lll, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Virtual Memory

found <~ 1
break
endif
endfor
if found = 0 then
SignalException(TLBMiss, reftype)
endif

Table 4-4demonstrates how the physical address is generated as a function of the page size of the TLB entry that matches
the virtual address. The “Even/Odd Select” colummaifle 4-dindicates which virtual address bit is used to select
between the even (EntryLo0) or odd (EntryLo1) entry in the matching TLB entry. TheaBf¥s.1)..oGenerated From”

columns specify how the physical address is generated from the selected PFN and the offset-in-page bits in the virtual
address. In this column, PFN is the physical page number as loaded into the TLB feorirtheOor EntryLol

registers, and has one of two bit ranges:

PFN Range

PA Range Comment

PFNpaBITS1)-12..0

Release 1 implementation, or Release 2

PApABITS1. .12 implementation without

support for 1KB pages

PFNpaABITS1)-10..0

Release 2 implementation with support for 1KB

PAPABITS1.10 pages enabled

Table 4-4 Physical Address Generation

PAPaBITS-1)..0 Ge€nerated From:
Even/Odd Release 1 or Release 2 with Release 2 with 1KB Page

Page Size Select 1KB Page Support Disabled Support Enabled

1K Bytes VAo Not Applicable PFI}]:,AB|T51)_10”0|| VA9 o
4K Bytes VA2 PFNpagiTs1)-12.0ll VA11.0 PFNpagiTs1)-10.21l VA11.0
16K Bytes VA4 PFNpagITs1)-12..21 VA13.0 PFNpagITS1)-10.41 VA13.0
64K Bytes VA PFNpagiTs1)-12..4llvA15.0 PFNpagiTs1)-10.6lvA15.0
256K Bytes VAs PFNpagiTs1)-12.6ll VA17.0 PFNpaBiTs1)-10.8ll VA17.0
1M Bytes VAo PFNpagITs1)-12.8! VA19..0 FNPaBITS1)-10..10ll VA19..0
4M Bytes VA PENpaBTs1)-12..10ll VA21.0 PENpaBITs1)-10..12]l VA21.0
16M Bytes ViAo, PENpaBiTs1)-12..121l VA23.0 PENpaBITs1)-10..14l VA23.0
64MBytes VArg PFENpagiTs1)-12..14ll VA5 0 PFENpagiTs1)-10..161l VA25..0
256MBytes ViApg PFNpagiTs1)-12..16ll VA27.0 PFNpagiTs1)-10..18ll VA27.0

22

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5

|

Interrupts and Exceptions

Release 2 of the Architecture added the following features related to the processing of Exceptions and Interrupts:

» The addition of the CoprocessoEBaseregister, which allows the exception vector base address to be modified for
exceptions that occur when Stgigs equals 0. Th&Baseregister is required.

» The extension of the Release 1 interrupt control mechanism to include two optional interrupt modes:

» Vectored Interrupt (VI) mode, in which the various sources of interrupts are prioritized by the processor and
each interrupt is vectored directly to a dedicated handler. When combined with GPR shadow registers,
introduced in the next chapter, this mode significantly reduces the number of cycles required to process an
interrupt.

» External Interrupt Controller (EIC) mode, in which the definition of the coprocessor 0 register fields associated
with interrupts changes to support an external interrupt controller. This can support many more prioritized
interrupts, while still providing the ability to vector an interrupt directly to a dedicated handler and take
advantage of the GPR shadow registers.

» The ability to stop the&€ountregister for highly power-sensitive applications in which the Count register is not used,
or for reduced power mode. This change is required.

» The addition of the DI and El instructions which provide the ability to atomically disable or enable interrupts. Both
instructions are required.

» The addition of the Tl and PCI bits in tgauseregister to denote pending timer and performance counter interrupts.
This change is required.

5.1 Interrupts

Release 1 of the Architecture included support for two software interrupts, six hardware interrupts, and two
special-purpose interrupts: timer and performance counter. The timer and performance counter interrupts were
combined with hardware interrupt 5 in an implementation-dependent manner. Interrupts were handled either through the
general exception vector (offset 16#180) or the special interrupt vector (16#200), based on the valug,of Cause
Software was required to prioritize interrupts as a function of the (gchitgein the interrupt handler prologue.

Release 2 of the Architecture adds an upward-compatible extension to the Release 1 interrupt architecture that supports
vectored interrupts. In addition, Release 2 adds a new interrupt mode that supports the use of an external interrupt
controller by changing the interrupt architecture.

Although a Non-Maskable Interrupt (NMI) includes “interrupt” in its name, it is more correctly described as an NMI
exception because it does not affect, nor is it controlled by the processor interrupt system.

An interrupt is only taken when all of the following are true:

* A specific request for interrupt service is made, as a function of the interrupt mode, described below.

» The IE bit in theStatusregister is a one.

» The DM bit in theDebugregister is a zero (for processors implementing EJTAG)

» The EXL and ERL bits in thBtatusregister are both zero.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 23

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

Logically, the request for interrupt service is ANDed with the IE bit of 8tatusregister. The final interrupt request is
then asserted only if both the EXL and ERL bits in Btatusregister are zero, and the DM bit in tBebugregister is
zero, corresponding to a non-exception, non-error, non-debug processing mode, respectively.

5.1.1 Interrupt Modes
An implementation of Release 1 of the Architecture only implements interrupt compatibility mode.

An implementation of Release 2 of the Architecture may implement up to three interrupt modes:

« Interrupt compatibility mode, which acts identically to that in an implementation of Release 1 of the Architecture.
This mode is required.

 Vectored Interrupt (VI) mode, which adds the ability to prioritize and vector interrupts to a handler dedicated to that
interrupt, and to assign a GPR shadow set for use during interrupt processing. This mode is optional and its presence
is denoted by the VInt bit in théonfig3register.

» External Interrupt Controller (EIC) mode, which redefines the way in which interrupts are handled to provide full
support for an external interrupt controller handling prioritization and vectoring of interrupts. This mode is optional
and its presence is denoted by the VEIC bit inGbafig3register.

A compatible implementation of Release 2 of the Architecture must implement interrupt compatibility mode, and may
optionally implement one or both vectored interrupt modes. Inclusion of the optional modes may be done selectively in
the implementation of the processor, or they may always be inculcated and be dynamically enabled based on coprocessor
0 control bits. The reset state of the processor is to interrupt compatibility mode such that an implementation of Release
2 of the Architecture is fully compatible with implementations of Release 1 of the Architecture.

Table 5-1shows the current interrupt mode of the processor as a function of the coprocessor 0 register fields that can
affect the mode.

Table 5-1 Interrupt Modes

Causgy

Statussgy
IntCtl VS
Config3ynt
Config3ygic

Interrupt Mode

=
x
x
x
x

Compatibly

x| 0| x | x| x| Compatibility

X | x | =0 | x| x | Compatibility

0|1]|#0 | 1| O| Vectored Interrupt

0| 1] #0 | x| 1| External Interrupt Controller

Can't happen - IntGfls can not be non-zero if neither
0|21]|#0 | O O] Vectored Interrupt nor External Interrupt Controller
mode is implemented.

“x" denotes don't care|

5.1.1.1 Interrupt Compatibility Mode
This is the only interrupt mode for a Release 1 processor and the default interrupt mode for a Release 2 processor. This

mode is entered when a Reset exception occurs. In this mode, interrupts are non-vectored and dispatched though

24 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

5.1 Interrupts

exception vector offset 16#180 (if Capse 0) or vector offset 16#200 (if Cayges 1). This mode is in effect if any
of the following conditions are true:

» Causg, =0

d StatU@EV =1

* IntCtlyg = 0, which would be the case if vectored interrupts are not implemented, or have been disabled.

The current interrupt requests are visible via the IP field in the Cause register on any read of the register (not just after
an interrupt exception has occurred). Note that an interrupt request may be deasserted between the time the processor
starts the interrupt exception and the time that the software interrupt handler runs. The software interrupt handler must

be prepared to handle this condition by simply returning from the interrupt via ERET. A request for interrupt service is
generated as shownTable 5-2

Table 5-2 Request for Interrupt Service in Interrupt Compatibility Mode

Interrupt Interrupt Request
Interrupt Type Source Calculated From
Hardware Interrupt, Timer Interrupt
or Performance Counter Interrupt HW5 Causgp7and Statugy
HW4 Causgg and Statuge
HW3 Causgs and Statugs
Hardware Interrupt HW2 Causgy, and Statug,
HW1 Causgz and Statugs
HWO Causg, and Statugy,
Swi Causg; and Statug,
Software Interrupt

SWo Causgg and Statugyg

A typical software handler for interrupt compatibility mode might look as follows:

/*
* Assumptions:
* - Cause v = 1 (if it were zero, the interrupt exception would have to

* be isolated from the general exception vector before getting

* here)

* - GPRs kO and k1 are available (no shadow register switches invoked in

* compatibility mode)

* - The software priority is IP7..IPO (HW5..HWO0, SW1..SW0)

*

* Location: Offset 0x200 from exception base

*/

IVexception:
mfcO kO, CO_Cause /* Read Cause register for IP bits */
mfcO k1, CO_Status [* and Status register for IM bits */
andi kO, kO, M_CauselM /* Keep only IP bits from Cause */
and kO, kO, k1 /* and mask with IM bits */
beq kO, zero, Dismiss /* no bits set - spurious interrupt */
clz kO, kO /* Find first bit set, IP7..1P0; kO = 16..23 */
xori kO, kO, 0x17 [*16..23=>7..0%*
sli ko, k0, VS * Shift to emulate software IntCtl vs ¥/
la k1, VectorBase [* Get base of 8 interrupt vectors */
addu kO, kO, k1 /* Compute target from base and offset */
jr kO [* Jump to specific exception routine */

MIPS32™ Architecture For Programmers Volume lll, Revision 2.00 25

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

nop

/*

* Each interrupt processing routine processes a specific interrupt, analogous
* to those reached in VI or EIC interrupt mode. Since each processing routine
* is dedicated to a particular interrupt line, it has the context to know

* which line was asserted. Each processing routine may need to look further
* to determine the actual source of the interrupt if multiple interrupt requests
* are ORed together on a single IP line. Once that task is performed, the

* interrupt may be processed in one of two ways:

*

* - Completely at interrupt level (e.g., a simply UART interrupt). The

* Simplelnterrupt routine below is an example of this type.

* - By saving sufficient state and re-enabling other interrupts. In this

* case the software model determines which interrupts are disabled during
* the processing of this interrupt. Typically, this is either the single

* StatusIM bit that corresponds to the interrupt being processed, or some

* collection of other Status v bits so that “lower” priority interrupts are
* also disabled. The NestedInterrupt routine below is an example of this type.
*/

Simplelnterrupt:
/*
* Process the device interrupt here and clear the interupt request
* at the device. In order to do this, some registers may need to be
* saved and restored. The coprocessor O state is such that an ERET
* will simply return to the interrupted code.
*/
eret /* Return to interrupted code */

NestedException:

/*

* Nested exceptions typically require saving the EPC and Status registers,

* any GPRs that may be modified by the nested exception routine, disabling
* the appropriate IM bits in Status to prevent an interrupt loop, putting

* the processor in kernel mode, and re-enabling interrupts. The sample code
* below can not cover all nuances of this processing and is intended only

* to demonstrate the concepts.

*/

/* Save GPRs here, and setup software context */

mfcO kO, CO_EPC [* Get restart address */

SwW k0, EPCSave [* Save in memory */

mfcO kO, CO_Status /* Get Status value */

SwW kO, StatusSave /* Save in memory */

li k1, ~IMbitsToClear /* Get Im bits to clear for this interrupt */
/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */

and kO, kO, k1 [* Clear bits in copy of Status */

ins kO, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in kO */
mtcO kO, CO_Status I* Modify mask, switch to kernel mode, */
[* re-enable interrupts */

/*

* Process interrupt here, including clearing device interrupt.

* In some environments this may be done with a thread running in

* kernel or user mode. Such an environment is well beyond the scope of

* this example.

26 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

5.1 Interrupts

*/

/*
* To complete interrupt processing, the saved values must be restored
* and the original interrupted code restarted.

*/
di /* Disable interrupts - may not be required */
Iw kO, StatusSave /* Get saved Status (including EXL set) */
Iw k1, EPCSave /* and EPC */
mtcO kO, CO_Status [* Restore the original value */
mtcO k1, CO_EPC [* and EPC */
/* Restore GPRs and software state */
eret [* Dismiss the interrupt */

5.1.1.2 Vectored Interrupt Mode

Vectored Interrupt mode builds on the interrupt compatibility mode by adding a priority encoder to prioritize pending
interrupts and to generate a vector with which each interrupt can be directed to a dedicated handler routine. This mode
also allows each interrupt to be mapped to a GPR shadow set for use by the interrupt handler. Vectored Interrupt mode
is in effect if all of the following conditions are true:

» Config3nt =1

. Configa/ac =0
|ntctlvs #0

» Causg, =1

Statuggy =0

In VI interrupt mode, the six hardware interrupts are interpreted as individual hardware interrupt requests. The timer and
performance counter interrupts are combined in an implementation-dependent way with the hardware interrupts (with
the interrupt with which they are combined indicated by Ijp@thnd IntCtlppc), respectively) to provide the

appropriate relative priority of these interrupts with that of the hardware interrupts. The processor interrupt logic ANDs
each of the Caugebits with the corresponding Stajyits. If any of these values is 1, and if interrupts are enabled
(Statug= = 1, Statusy, = 0, and Statys, = 0), an interrupt is signaled and a priority encoder scans the values in the
order shown irmable 5-3

Table 5-3 Relative Interrupt Priority for Vectored Interrupt Mode

Vector Number
Relative Interrupt | Interrupt Interrupt Request Generated by
Priority Type Source Calculated From Priority Encoder
Highest Priority HW5 Causg>7and Statug,; 7
HW4 Causgg and Statuge 6
HW3 Causgs and Statugys 5
Hardware
HW2 Causg4 and Statugys 4
HW1 Causgs and Statugs 3
HWO Causgs, and Statugyo 2
Swi Causg; and Statugy, 1
Software
Lowest Priority SWo Caugsy and Statugg 0
MIPS32™ Architecture For Programmers Volume lll, Revision 2.00 27

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

The priority order places a relative priority on each hardware interrupt and places the software interrupts at a priority
lower than all hardware interrupts. When the priority encoder finds the highest priority pending interrupt, it outputs an
encoded vector number that is used in the calculation of the handler for that interrupt, as described below. This is shown
pictorially in Figure 5-1

Figure 5-1 Interrupt Generation for Vectored Interrupt Mode

Latch Mask Encode Generate

. |ntct||ppc|
IntCtI|pT|
HW5 | IP7 - IM7 > ég)c;uest ::lgterrupt
eque
HW4 ° | IP6 - IM6 L ° Statuge
HW3 3 | IP5 - IM5 B 3| IntCtlyg
£ 2
HW?2 8 | P4 - IM4 BT
HW1 —p IP3 - IM3 - 2 5 | Exception
8 | Vector =% | Vector Offset
HWO | IP2l gl IM2|—Pr ,;T_INumber 35 ‘
= ﬁ
IP1— e IM1|— o8
IPO - 1MO Ll
Cause | SRSMap |
Causec Shadow Set

Number -

Note that an interrupt request may be deasserted between the time the processor detects the interrupt request and the time
that the software interrupt handler runs. The software interrupt handler must be prepared to handle this condition by
simply returning from the interrupt via ERET.

A typical software handler for vectored interrupt mode bypasses the entire sequence of code following the 1Vexception
label shown for the compatibility mode handler above. Instead, the hardware performs the prioritization, dispatching
directly to the interrupt processing routine. Unlike the compatibility mode examples, a vectored interrupt handler may
take advantage of a dedicated GPR shadow set to avoid saving any registers. As such, the Simplelnterrupt code shown
above need not save the GPRs.

A nested interrupt is similar to that shown for compatibility mode, but may also take advantage of running the nested
exception routine in the GPR shadow set dedicated to the interrupt or in another shadow set. Such a routine might look
as follows:

NestedException:

/*

* Nested exceptions typically require saving the EPC, Status and SRSCtl registers,
* setting up the appropriate GPR shadow set for the routine, disabling

* the appropriate IM bits in Status to prevent an interrupt loop, putting

* the processor in kernel mode, and re-enabling interrupts. The sample code

* below can not cover all nuances of this processing and is intended only

* to demonstrate the concepts.

*/
/* Use the current GPR shadow set, and setup software context */
mfcO kO, CO_EPC /* Get restart address */
sw kO, EPCSave /* Save in memory */
28 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

5.1 Interrupts

mfcO kO, CO_Status /* Get Status value */
S kO, StatusSave /* Save in memory */
mfcO kO, CO_SRSCtl /* Save SRSCtl if changing shadow sets */

S k0, SRSCtlSave
li k1, ~IMbitsToClear /* Get Im bits to clear for this interrupt */
/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */
and ko, kO, k1 [* Clear bits in copy of Status */
* If switching shadow sets, write new value to SRSCtl psshere */
ins kO, zero, S_StatuseXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)
/* Clear KSU, ERL, EXL bits in kO */
mtcO kO, CO_Status /* Modify mask, switch to kernel mode, */
/* re-enable interrupts */
/*
* |f switching shadow sets, clear only KSU above, write target
* address to EPC, and do execute an eret to clear EXL, switch
* shadow sets, and jump to routine
*/

/* Process interrupt here, including clearing device interrupt */

/*

* To complete interrupt processing, the saved values must be restored
* and the original interrupted code restarted.

*/

di /* Disable interrupts - may not be required */
Iw kO, StatusSave [* Get saved Status (including EXL set) */

Iw k1, EPCSave /* and EPC */

mtcO kO, CO_Status /* Restore the original value */

Iw k0, SRSCtlSave /* Get saved SRSCtl */

mtcO k1, CO_EPC /* and EPC */

mtcO kO, CO_SRSCtl /* Restore shadow sets */

ehb /* Clear hazard */

eret [* Dismiss the interrupt */

5.1.1.3 External Interrupt Controller Mode

External Interrupt Controller Mode redefines the way that the processor interrupt logic is configured to provide support
for an external interrupt controller. The interrupt controller is responsible for prioritizing all interrupts, including
hardware, software, timer, and performance counter interrupts, and directly supplying to the processor the vector number
of the highest priority interrupt. EIC interrupt mode is in effect if all of the following conditions are true:

d Config3VE|C =1

d IntCtlvs 0

» Causg, =1

» Statuggy =0

In EIC interrupt mode, the processor sends the state of the software interrupt requestp(Gagsthe timer interrupt
request (Causgg), and the performance counter interrupt request (Gayde the external interrupt controller, where

it prioritizes these interrupts in a system-dependent way with other hardware interrupts. The interrupt controller can be

a hard-wired logic block, or it can be configurable based on control and status registers. This allows the interrupt
controller to be more specific or more general as a function of the system environment and needs.

The external interrupt controller prioritizes its interrupt requests and produces the vector number of the highest priority
interrupt to be serviced. The vector number, called the Requested Interrupt Priority Level (RIPL), is a 6-bit encoded

MIPS32™ Architecture For Programmers Volume lll, Revision 2.00 29

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

value in the range 0..63, inclusive. A value of 0 indicates that no interrupt requests are pending. The values 1..63
represent the lowest (1) to highest (63) RIPL for the interrupt to be serviced. The interrupt controller passes this value
on the 6 hardware interrupt line, which are treated as an encoded value in EIC interrupt mode.

Statugp, (which overlays Statyg; v2) is interpreted as the Interrupt Priority Level (IPL) at which the processor is
currently operating (with a value of zero indicating that no interrupt is currently being serviced). When the interrupt
controller requests service for an interrupt, the processor compares RIPL witfpStatdetermine if the requested
interrupt has higher priority than the current IPL. If RIPL is strictly greater than g{atasd interrupts are enabled
(Statuge = 1, Statugy, =0, and Statysg, = 0) an interrupt request is signaled to the pipeline. When the processor starts
the interrupt exception, it loads RIPL into Cagge (which overlays Cauge; p9 and signals the external interrupt
controller to notify it that the request is being serviced. The interrupt exception uses the value ¢f|&aasthe vector
number. Because Cauygg, is only loaded by the processor when an interrupt exception is signaled, it is available to

software during interrupt processing.

In EIC interrupt mode, the external interrupt controller is also responsible for supplying the GPR shadow set number to
use when servicing the interrupt. As such, 8RRSMapegister is not used in this mode, and the mapping of the vectored
interrupt to a GPR shadow set is done by programming (or designing) the interrupt controller to provide the correct GPR
shadow set number when an interrupt is requested. When the processor loads an interrupt request it daise

loads the GPR shadow set number into SRR&SL which is copied to SRSGiswhen the interrupt is serviced.

The operation of EIC interrupt mode is shown pictoriallfFigure 5-2

A typical software handler for EIC interrupt mode bypasses the entire sequence of code following the 1Vexception

Figure 5-2 Interrupt Generation for External Interrupt Controller Interrupt Mode

Encode Latch Compare Generate
Any
Cavept g [RPo] et nterup
Stalugp, g = IPL? Statu%«Di s
Statuseg n

thm

5 Exception
S | Interrupt Service
= | Started
= § - Load IntCtly,g *v
= Fields
> — 1
g g |Requested T vecor | B | Qe et
S __ _p 2 [IPL & Numbe o8
»n —Br g 3 03
8 —» £ o © ©
S Q Q
5™ & re 7
] ga O Shadow Set
= 15 — s Number
c = %) >
v o
n

label shown for the compatibility mode handler above. Instead, the hardware performs the prioritization, dispatching
directly to the interrupt processing routine. Unlike the compatibility mode examples, an EIC interrupt handler may take
advantage of a dedicated GPR shadow set to avoid saving any registers. As such, the Simplelnterrupt code shown above

need not save the GPRs.

30 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

5.1 Interrupts

A nested interrupt is similar to that shown for compatibility mode, but may also take advantage of running the nested
exception routine in the GPR shadow set dedicated to the interrupt or in another shadow set. It also need only copy
Causgp to Statug, to prevent lower priority interrupts from interrupting the handler. Such a routine might look as
follows:

NestedException:

/*

* Nested exceptions typically require saving the EPC, Status,and SRSCtl registers,
* setting up the appropriate GPR shadow set for the routine, disabling

* the appropriate IM bits in Status to prevent an interrupt loop, putting

* the processor in kernel mode, and re-enabling interrupts. The sample code

* below can not cover all nuances of this processing and is intended only

* to demonstrate the concepts.

*/
/* Use the current GPR shadow set, and setup software context */
mfcO k1, CO_Cause /* Read Cause to get RIPL value */
mfcO kO, CO_EPC /* Get restart address */
srl k1, k1, S_CauseRIPL /* Right justify RIPL field */
SwW kO, EPCSave /* Save in memory */
mfcO kO, CO_Status /* Get Status value */
sw kO, StatusSave /* Save in memory */
ins ko, k1, S_StatusIPL, 6 /* Set IPL to RIPL in copy of Status */
mfcO k1, CO_SRSCtl /* Save SRSCtl if changing shadow sets */
SwW k1, SRSCtlSave
* If switching shadow sets, write new value to SRSCtl psshere */
ins kO, zero, S_StatuseEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)
/* Clear KSU, ERL, EXL bits in kO */
mtcO kO, CO_Status I* Modify IPL, switch to kernel mode, */
/* re-enable interrupts */
/*
* |f switching shadow sets, clear only KSU above, write target
* address to EPC, and do execute an eret to clear EXL, switch
* shadow sets, and jump to routine
*/
/* Process interrupt here, including clearing device interrupt */
/*

* The interrupt completion code is identical to that shown for VI mode above.
*

5.1.2 Generation of Exception Vector Offsets for Vectored Interrupts

For vectored interrupts (in either VI or EIC interrupt mode), a vector number is produced by the interrupt control logic.
This number is combined with IntGY to create the interrupt offset, which is added to 16#200 to create the exception
vector offset. For VI interrupt mode, the vector number is in the range 0..7, inclusive. For EIC interrupt mode, the vector
number is in the range 1..63, inclusive (0 being the encoding for “no interrupt”). The\gtf3tld specifies the spacing
between vector locations. If this value is zero (the default reset state), the vector spacing is zero and the processor reverts
to Interrupt Compatibility Mode. A non-zero value enables vectored interruptSahted5-4shows the exception

vector offset for a representative subset of the vector numbers and values of tkyg fieidtl

MIPS32™ Architecture For Programmers Volume lll, Revision 2.00 31

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

Table 5-4 Exception Vector Offsets for Vectored Interrupts

Value of IntCtl\,g Field
Vector Number 2#00001 | 2#0001Q0 2#0010p 2#01000 2#10Q00
0 16#0200 16#0200 16#020(16#0200 16#02p0
1 16#0220 16#0240 16#028(16#0300 16#04P0
2 16#0240 16#0280 16#030(16#0400 16#06p0
3 16#0260 16#02C0 16#038(16#0500 16#08p0
4 16#0280 16#0300 16#040(16#0600 16#0AP0O
5 16#02A0 16#0340 16#048(16#070D 16#0CpO
6 16#02C0 16#0380 16#050(16#0800 16#0EPO
7 16#02E0 16#03C0 16#058(16#0900 16#10D0
61 16#09A0 16#1140 16#208(16#3F00 16#7CPO
62 16#09C0 16#1180 16#210(16#40(0 16#7E00
63 16#09E0 16#11CO 16#218(16#41Q0 16#80p0

The general equation for the exception vector offset for a vectored interrupt is:
vectorOffset ~ 16#200 + (vectorNumber x (IntCtl vs || 2#00000))

5.2 Exceptions

32

Normal execution of instructions may be interrupted when an exception occurs. Such events can be generated as a
by-product of instruction execution (e.g., an integer overflow caused by an add instruction or a TLB miss caused by a
load instruction), or by an event not directly related to instruction execution (e.g., an external interrupt). When an
exception occurs, the processor stops processing instructions, saves sufficient state to resume the interrupted instruction
stream, enters Kernel Mode, and starts a software exception handler. The saved state and the address of the software
exception handler are a function of both the type of exception, and the current state of the processor.

5.2.1 Exception Vector Locations

The Reset, Soft Reset, and NMI exceptions are always vectored to loté#&#C0.0000 . EJTAG Debug exceptions
are vectored to locatiob6#BFC0.0480 , or to locationl6#FF20.0200 if the ProbTrap bit is zero or one,
respectively, in the EJTAG_Control_register.

Addresses for all other exceptions are a combination of a vector offset and a vector base address. In Release 1 of the
architecture, the vector base address was fixed. In Release 2 of the architecture, software is allowed to specify the vector
base address via tl#Baseregister for exceptions that occur when Sigiysequals OTable 5-5gives the vector base
address as a function of the exception and whether the BEV bit is seSitathsregister.Table 5-6gives the offsets

from the vector base address as a function of the exception. Note that the IV bEausieeegister causes Interrupts

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

5.2 Exceptions

to use a dedicated exception vector offset, rather than the general exception vector. For implementations of Release 2 of
the ArchitectureTable 5-4gives the offset from the base address in the case where §tgta® and Causg = 1. For
implementations of Release 1 of the architecture in which Gaesk, the vector offset is as if IntGY were 0.

Table 5-7combines these two tables into one that contains all possible vector addresses as a function of the state that can
affect the vector selection. To avoid complexity in the table, the vector address value assume$itBasthegister, as
implemented in Release 2 devices, is not changed from its reset state and tRaf is@Ctl

In Release 2 of the Architecture, software must guarantee that EBaseontains zeros in all bit positions less than or
equal to the most significant bit in the vector offset. This situation can only occur when a vector offset greater than
16#FFF is generated when an interrupt occurs with VI or EIC interrupt mode enabled. The operation of the processor is
UNDEFINED if this condition is not met.

Table 5-5 Exception Vector Base Addresses

Statussey
Exception 0 1
Reset, Soft Reset, NMI 16#BFC0.0000
EJTAG Debug (with ProbEn =0 in
the EJTAG_Control_register) 16#BFC0.0480
EJTAG Debug (with ProbEn =1 in 16#FF20.0200

the EJTAG_Control_register)

For Release 1 of the architecture:
16#A000.0000

For Release 2 of the architecture:

Cache Error 16#BFC0.0300
EBases; 30 [1 |

EBasezg__lz ” 164000

Note that EBasg_zghave the
fixed value2#10

For Release 1 of the architecture:

16#8000.0000
Other For Release 2 of the architecture: 16#BECO0.0200
EBase31__12 ” 16#000
Note that EBasg_zghave the
fixed value2#10
Table 5-6 Exception Vector Offsets
Exception Vector Offset

TLB Refill, EXL = 0 16#000
Cache error 16#100
General Exception 16#180

16#200 (In Release 2

implementations, this is the base of

the vectored interrupt table when
StatU%EV =0)

Interrupt, Causg =1

Reset, Soft Reset, NMI None (Uses Reset Base Addresss)

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 33

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

Table 5-7 Exception Vectors

Vector
For Release 2
Implementations, assumes
EJTAG | that EBase retains its reset
Exception Statugey | Statusey, | Causgy, | ProbEn | state and that IntCtly,g =0
Reset, Soft Reset, NM| X X X X 16#BFC0.0000
EJTAG Debug X X X 0 16#BFC0.0480
EJTAG Debug X X X 1 16#FF20.0200
TLB Refill 0 0 X X 16#8000.0000
TLB Refill 0 1 X X 16#8000.0180
TLB Refill 1 0 X X 16#BFC0.0200
TLB Refill 1 1 X X 16#BFC0.0380
Cache Error 0 X X X 16#A000.0100
Cache Error 1 X X X 16#BFC0.0300
Interrupt 0 0 0 X 16#8000.0180
Interrupt 0 0 1 X 16#8000.0200
Interrupt 1 0 0 X 16#BFC0.0380
Interrupt 1 0 1 X 16#BFC0.0400
All others 0 X X X 16#8000.0180
All others 1 X X X 16#BFC0.0380
‘X’ denotes don't care

5.2.2 General Exception Processing

With the exception of Reset, Soft Reset, NMI, cache error, and EJTAG Debug exceptions, which have their own special
processing as described below, exceptions have the same basic processing flow:

« If the EXL bit in theStatusregister is zero, thEPC register is loaded with the PC at which execution will be
restarted and the BD bit is set appropriately in @aiseregister (sedable 8-24 on page §7The value loaded into
theEPCregister is dependent on whether the processor implements the MIPS16 ASE, and whether the instruction is
in the delay slot of a branch or jump which has delay Slatse 5-8shows the value stored in each of the CPO PC
registers, includingePC. For implementations of Release 2 of the Architecture if Sigtys 0, the CSS field in the
SRSCitlegister is copied to the PSS field, and the CSS value is loaded from the appropriate source.

If the EXL bit in theStatusregister is set, thEPCregister is not loaded and the BD bit is not changed i€ #use
register. For implementations of Release 2 of the Architectur§RISECtkegister is not changed.

34 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

5.2 Exceptions

Table 5-8 Value Stored in EPC, ErrorEPC, or DEPC on an Exception

MIPS16 In Branch/Jump
Implemented? Delay Slot? Value stored in EPC/ErrorEPC/DEPC

No No Address of the instruction

No Yes Address of the branch or jump instruction (PC-4)

Yes No Upper 31 bits of the address of the instruction, combined
with thelSA Modebit
Upper 31 bits of the branch or jump instruction (PC-2 jn

Yes Yes the MIPS16 ISA Mode and PC-4 in the 32-bit ISA
Mode), combined with thESA Modebit

» The CE, and ExcCode fields of tBauseregisters are loaded with the values appropriate to the exception. The CE
field is loaded, but not defined, for any exception type other than a coprocessor unusable exception.

» The EXL bit is set in thStatusregister.
» The processor is started at the exception vector.
The value loaded into EPC represents the restart address for the exception and need not be modified by exception handler

software in the normal case. Software need not look at the BD bit in the Cause register unless it wishes to identify the
address of the instruction that actually caused the exception.

Note that individual exception types may load additional information into other registers. This is noted in the description
of each exception type below.

Operation:
/* If Status exL IS 1, all exceptions go through the general exception vector */
/* and neither EPC nor Cause gp hor SRSCtl are modified */

if Status gy = 1then
vectorOffset ~ 16#180
else
if InstructioninBranchDelaySlot then
EPC - restartPC/* PC of branch/jump */
Causegp ~ 1
else
EPC - restartPC [* PC of instruction */
Causegp ~ 0O
endif

/* Compute vector offsets as a function of the type of exception */
NewShadowSet ~ SRSCtl ggg /* Assume exception, Release 2 only */
if ExceptionType = TLBREefill then
vectorOffset ~ 16#000
elseif (ExceptionType = Interrupt) then
if (Cause |y =0)then
vectorOffset ~ 16#180

else
if (Status gev= 1) or (IntCtl vs = 0) then
vectorOffset ~ 16#200
else
if Config3 g c = 1then
VecNum ~ Cause gipL
NewShadowSet ~ SRSCtl gcss
else
VecNum ~ VIntPriorityEncoder()
MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 35

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

NewShadowSet — SRSMapp| X443 1pL %4

endif
vectorOffset ~ 16#200 + (VecNum x (IntCtl vs |l 2#00000))
endif /* if (Status gev= 1) or (IntCtl vs = 0) then */
endif /* if (Cause v = 0) then */

endif /* elseif (ExceptionType = Interrupt) then */

/* Update the shadow set information for an implementation of */
/* Release 2 of the architecture */
if (ArchitectureRevision 22)and (SRSCtl psg >0) and (Status gev= 0) then
SRSCtl pgg « SRSCtl g5
SRSCtl cg5 ~ NewShadowSet
endif
endif /* if Status exL = 1then*/

Causecg ~ FaultingCoprocessorNumber
Causegyccode « EXceptionType
Status gy < 1

/* Calculate the vector base address */
if Status ggy=1then
vectorBase ~ 16#BFC0.0200

else
if ArchitectureRevision = 2 then
[* The fixed value of EBase 31.30 forces the base to be in ksegO or ksegl */
vectorBase ~ EBases; 1o || 16#000
else
vectorBase ~ 16#8000.0000
endif
endif

/* Exception PC is the sum of vectorBase and vectorOffset. Vector */

[* offsets > 16#FFF (vectored or EIC interrupts only), require */

/* that EBase 15.12 have zeros in each bit position less than or */

/* equal to the most significant bit position of the vector offset */

PC — vectorBase 3; 39 |[l(vectorBase o9 g + vectorOffset 29.0)
/* No carry between bits 29 and 30 */

5.2.3 EJTAG Debug Exception

An EJTAG Debug Exception occurs when one of a number of EJTAG-related conditions is met. Refer to the EJTAG
Specification for details of this exception.

Entry Vector Used

16#BFCO 0480 if the ProbTrap bit is zero in the EJTAG_Control_regists#FF20 0200 if the ProbTrap bit is
one.

5.2.4 Reset Exception

A Reset Exception occurs when the Cold Reset signal is asserted to the processor. This exception is not maskable. When
a Reset Exception occurs, the processor performs a full reset initialization, including aborting state machines,
establishing critical state, and generally placing the processor in a state in which it can execute instructions from
uncached, unmapped address space. On a Reset Exception, only the following registers have defined state:

e TheRandonregister is initialized to the number of TLB entries - 1.

36 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

5.2 Exceptions

TheWiredregister is initialized to zero.

TheConfig, Configl, ConfigandConfig3registers are initialized with their boot state.
The RP, BEV, TS, SR, NMI, and ERL fields of thmtusregister are initialized to a specified state.

Watch register enables and Performance Counter register interrupt enables are cleared.

TheErrorEPC register is loaded with the restart PC, as describ&dble 5-8 Note that this value may or may not

be predictable if the Reset Exception was taken as the result of power being applied to the processor because PC may
not have a valid value in that case. In some implementations, the value loadedari®C register may not be
predictable on either a Reset or Soft Reset Exception.

PC is loaded witi6#BFCO0 0000 .

CauseRegister ExcCode Value

None

Additional State Saved
None

Entry Vector Used
Reset {6#BFCO0 0000)

Operation

Random ~ TLBEntries -1

Wired ~ 0

Config « ConfigurationState

Config g < 2

Configl ~ ConfigurationState

Suggested - see Config register description

Config2 ~ ConfigurationState # if implemented
Config3 ~ ConfigurationState # if implemented

Status gp ~ O
Status BEV < 1
Status TS < 0
Status g < O
Status NMI < 0
Status gg. < 1
WatchLo[n] |, <O
WatchLo[n] g < O
WatchLo[n] w < O
PerfCnt.Control[n]

if InstructionInBranchDelaySlot then

IE

<0

For all implemented Watch registers
For all implemented Watch registers
For all implemented Watch registers
For all implemented PerfCnt registers

ErrorEPC — restartPC # PC of branch/jump

else

ErrorEPC — restartPC # PC of instruction

endif
PC — 16#BFCO0 0000

5.2.5 Soft Reset Exception

A Soft Reset Exception occurs when the Reset signal is asserted to the processor. This exception is not maskable. When
a Soft Reset Exception occurs, the processor performs a subset of the full reset initialization. Although a Soft Reset
Exception does not unnecessarily change the state of the processor, it may be forced to do so in order to place the
processor in a state in which it can execute instructions from uncached, unmapped address space. Since bus, cache, or
other operations may be interrupted, portions of the cache, memory, or other processor state may be inconsistent.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

37

Chapter 5 Interrupts and Exceptions

38

The primary difference between the Reset and Soft Reset Exceptions is in actual use. The Reset Exception is typically
used to initialize the processor on power-up, while the Soft Reset Exception is typically used to recover from a
non-responsive (hung) processor. The semantic difference is provided to allow boot software to save critical coprocessor
0 or other register state to assist in debugging the potential problem. As such, the processor may reset the same state
when either reset signal is asserted, but the interpretation of any state saved by software may be very different.

In addition to any hardware initialization required, the following state is established on a Soft Reset Exception:
» The RP, BEV, TS, SR, NMI, and ERL fields of thmtusregister are initialized to a specified state.

» Watch register enables and Performance Counter register interrupt enables are cleared.

» TheErrorEPC register is loaded with the restart PC, as describédbte 5-8

* PCis loaded witli6#BFCO 0000 .

CauseRegister ExcCode Value
None

Additional State Saved
None

Entry Vector Used
Reset {6#BFCO0 0000)

Operation

Config kg < 2 # Suggested - see Config register description
Status gp ~ O
Status BEV < 1
Status TS < 0
Status gg ~ 1
Status NMI < 0
Status gg. < 1

WatchLo[n] |, <O # For all implemented Watch registers
WatchLo[n] g < O # For all implemented Watch registers
WatchLo[n] w < O # For all implemented Watch registers
PerfCnt.Control[n] E <O # For all implemented PerfCnt registers

if InstructionInBranchDelaySlot then

ErrorEPC — restartPC # PC of branch/jump
else

ErrorEPC < restartPC # PC of instruction
endif
PC ~ 16#BFCO0 0000

5.2.6 Non Maskable Interrupt (NMI) Exception

A non maskable interrupt exception occurs when the NMI signal is asserted to the processor.

Although described as an interrupt, it is more correctly described as an exception because it is not maskable. An NMI
occurs only at instruction boundaries, so does not do any reset or other hardware initialization. The state of the cache,
memory, and other processor state is consistent and all registers are preserved, with the following exceptions:

» The BEV, TS, SR, NMI, and ERL fields of tBe¢atusregister are initialized to a specified state.
» TheErrorEPC register is loaded with restart PC, as describdalie 5-8
* PCis loaded witi6#BFCO0 0000 .

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

5.2 Exceptions

CauseRegister ExcCode Value

None

Additional State Saved

None

Entry Vector Used
Reset {6#BFCO0 0000)

Operation

Status
Status
Status
Status
Status

Bev < 1
1s <0
srR <0
nv < 1
ErL < 1

if InstructioninBranchDelaySlot then
ErrorEPC ~ restartPC # PC of branch/jump

else

ErrorEPC -~ restartPC # PC of instruction

endif

PC ~ 16#BFCO0 0000

5.2.7 Machine Check Exception

A machine check exception occurs when the processor detects an internal inconsistency.

The following conditions cause a machine check exception:

* Detection of multiple matching entries in the TLB in a TLB-based MMU.

CauseRegister ExcCode Value
MCheck (Sedlable 8-25 on page 0

Additional State Saved
Depends on the condition that caused the exception. See the descriptions above.

Entry Vector Used

General exception vector (offset 16#180)

5.2.8 Address Error Exception

An address error exception occurs under the following circumstances:

» Aninstruction is fetched from an address that is not aligned on a word boundary.

» A load or store word instruction is executed in which the address is not aligned on a word boundary.

» A load or store halfword instruction is executed in which the address is not aligned on a halfword boundary.

» A reference is made to a kernel address space from User Mode or Supervisor Mode.

» A reference is made to a supervisor address space from User Mode.

Note that in the case of an instruction fetch that is not aligned on a word boundary, the PC is updated before the condition
is detected. Therefore, both EPC and BadVAddr point at the unaligned instruction address.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 39

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

CauseRegister ExcCode Value

AdEL: Reference was a load or an instruction fetch
AdES: Reference was a store

SeeTable 8-25 on page 90

Additional State Saved

Register State

Value

BadVAddr

failing address

ConteXQ/pNz

UNPREDICTABLE

EntryHiypno

UNPREDICTABLE

EntryLoO

UNPREDICTABLE

EntryLol

Entry Vector Used

General exception vector (offset 16#180)

5.2.9 TLB Refill Exception

A TLB Refill exception occurs in a TLB-based MMU when no TLB entry matches a reference to a mapped address space
and the EXL bit is zero in th8tatusregister. Note that this is distinct from the case in which an entry matches but has

UNPREDICTABLE

the valid bit off, in which case a TLB Invalid exception occurs.

CauseRegister ExcCode Value

TLBL: Reference was a load or an instruction fetch
TLBS: Reference was a store

SeeTable 8-25 on page 90

Additional State Saved

Register State Value
BadVAddr failing address
Context The BadVPN2 field contains YA 130f the failing address
EntryHi X?S/FNZ field contains V4 130f the failing address; the
ield contains the ASID of the reference that missed.
EntryLoO UNPREDICTABLE
EntryLol UNPREDICTABLE

Entry Vector Used

» TLB Refill vector (offset 16#000) if Statdg, = O at the time of exception.

» General exception vector (offset 16#180) if Stajys= 1 at the time of exception

5.2.10 TLB Invalid Exception

A TLB invalid exception occurs when a TLB entry matches a reference to a mapped address space, but the matched entry

has the valid bit off.

40 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

5.2 Exceptions

Note that the condition in which no TLB entry matches a reference to a mapped address space and the EXL bitis one in
the Statusregister is indistinguishable from a TLB Invalid Exception in the sense that both use the general exception
vector and supply an ExcCode value of TLBL or TLBS. The only way to distinguish these two cases is by probing the
TLB for a matching entry (using TLBP).

CauseRegister ExcCode Value

TLBL: Reference was a load or an instruction fetch

TLBS: Reference was a store

SeeTable 8-24 on page 87

Additional State Saved

Register State Value
BadVAddr failing address
Context The BadVPN2 field contains YA 130f the failing address

The VPN2 field contains V4 130f the failing address; the

EntryHi ASID field contains the ASID of the reference that missed.
EntryLoO UNPREDICTABLE
EntryLol UNPREDICTABLE

Entry Vector Used
General exception vector (offset 16#180)

5.2.11 TLB Modified Exception

A TLB modified exception occurs onstorereference to a mapped address when the matching TLB entry is valid, but
the entry’s D bit is zero, indicating that the page is not writable.

CauseRegister ExcCode Value
Mod (SeeTable 8-24 on page 87

Additional State Saved

Register State Value
BadVAddr failing address
Context The BadVPN2 field contains YA 130f the failing address
EntryHi Xg?B/F’NZ field contains VA 130f the failing address; the
ield contains the ASID of the reference that missed.
EntryLoO UNPREDICTABLE
EntryLol UNPREDICTABLE

Entry Vector Used
General exception vector (offset 16#180)

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 41

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

5.2.12 Cache Error Exception

A cache error exception occurs when an instruction or data reference detects a cache tag or data error, or a parity or ECC
error is detected on the system bus when a cache miss occurs. This exception is not maskable. Because the error was in
a cache, the exception vector is to an unmapped, uncached address.

CauseRegister ExcCode Value
N/A

Additional State Saved

Register State Value

CacheErr Error state
ErrorEPC Restart PC

Entry Vector Used
Cache error vector (offset 16#100)

Operation

CacheErr —~ ErrorState
Status gg. < 1
if InstructionIinBranchDelaySlot then
ErrorEPC - restartPC # PC of branch/jump
else
ErrorEPC « restartPC # PC of instruction
endif
if Status ~ ggy= 1 then
PC ~ 16#BFCO0 0200 + 16#100
else
PC ~ 16#A000 0000 + 16#100
endif

5.2.13 Bus Error Exception

A bus error occurs when an instruction, data, or prefetch access makes a bus request (due to a cache miss or an
uncacheable reference) and that request is terminated in an error. Note that parity errors detected during bus transactions
are reported as cache error exceptions, not bus error exceptions.

CauseRegister ExcCode Value

IBE: Error on an instruction reference
DBE: Error on a data reference
SeeTable 8-25 on page 90

Additional State Saved
None

Entry Vector Used
General exception vector (offset 16#180)

42 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

5.2 Exceptions

5.2.14 Integer Overflow Exception

An integer overflow exception occurs when selected integer instructions result in a 2’'s complement overflow.

CauseRegister ExcCode Value
Ov (SeeTable 8-25 on page 90

Additional State Saved
None

Entry Vector Used
General exception vector (offset 16#180)

5.2.15 Trap Exception

A trap exception occurs when a trap instruction results in a TRUE value.

CauseRegister ExcCode Value
Tr (SeeTable 8-25 on page %0

Additional State Saved
None

Entry Vector Used
General exception vector (offset 16#180)

5.2.16 System Call Exception

A system call exception occurs when a SYSCALL instruction is executed.

CauseRegister ExcCode Value
Sys (Sedable 8-24 on page 37

Additional State Saved
None

Entry Vector Used
General exception vector (offset 16#180)

5.2.17 Breakpoint Exception

A breakpoint exception occurs when a BREAK instruction is executed.

CauseRegister ExcCode Value
Bp (SeeTable 8-25 on page %0

Additional State Saved
None

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

43

Chapter 5 Interrupts and Exceptions

Entry Vector Used
General exception vector (offset 16#180)

5.2.18 Reserved Instruction Exception

A Reserved Instruction Exception occurs if any of the following conditions is true:

An instruction was executed that specifies an encoding of the opcode field that is flaggéti (nagetved), B”
(higher-order ISA), or an unimplementes! {ASE).

An instruction was executed that specifi&&PECIALopcode encoding of the function field that is flagged with “
(reserved), orB” (higher-order ISA).

An instruction was executed that specifid8EGIMM opcode encoding of the rt field that is flagged with “
(reserved).

An instruction was executed that specifies an unimplem@&R&LIAL2opcode encoding of the function field that
is flagged with an unimplemente@™(partner available), or an unimplemented (EJTAG).

An instruction was executed that specifies@Pzopcode encoding of the rs field that is flagged with (feserved),

“B” (higher-order ISA), or an unimplemented (ASE), assuming that access to the coprocessor is allowed. If

access to the coprocessor is not allowed, a Coprocessor Unusable Exception occurs insted@iOPdojneode,

some implementations of previous ISAs reported this case as a Floating Point Exception, setting the Unimplemented
Operation bit in the Cause field of tRESRregister.

An instruction was executed that specifies an unimplemed@¥gOopcode encoding of the function field when rs is
COthat is flagged with[¥ (reserved), or an unimplemented™(EJTAG), assuming that access to coprocessor 0 is
allowed. If access to the coprocessor is not allowed, a Coprocessor Unusable Exception occurs instead.

An instruction was executed that specifi€&@@P1opcode encoding of the function field that is flagged with “
(reserved), B” (higher-order ISA), or an unimplemented (ASE), assuming that access to coprocessor 1 is
allowed. If access to the coprocessor is not allowed, a Coprocessor Unusable Exception occurs instead. Some
implementations of previous ISAs reported this case as a Floating Point Exception, setting the Unimplemented
Operation bit in the Cause field of tRESRregister.

CauseRegister ExcCode Value

RI (SeeTable 8-25 on page 0

Additional State Saved
None

Entry Vector Used
General exception vector (offset 16#180)

5.2.19 Coprocessor Unusable Exception

A coprocessor unusable exception occurs if any of the following conditions is true:

* A COPO or Cache instruction was executed while the processor was running in a mode other than Debug Mode or

Kernel Mode, and the CUO bit in ti8tatusregister was a zero

« ACOP1, LWC1, SWC1, LDC1, SDC1 or MOVCI (Special opcode function field encoding) instruction was executed

and the CU1 bit in th8tatusregister was a zero.

« ACOP2,LWC2, SWC2, LDC2, or SDC2 instruction was executed, and the CU2 bit Btétesregister was a zero.

« A COP3 instruction was executed, and the CU3 bit irStiaéusregister was a zero.

44

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

5.2 Exceptions

CauseRegister ExcCode Value
CpU (SeeTable 8-24 on page 37

Additional State Saved

Register State Value

Causeg unit number of the coprocessor being referenced

Entry Vector Used

General exception vector (offset 16#180)

5.2.20 Floating Point Exception

A floating point exception is initiated by the floating point coprocessor to signal a floating point exception.

Register ExcCode Value
FPE (Sedable 8-24 on page 37

Additional State Saved

Register State Value

FCSR indicates the cause of the floating point exception

Entry Vector Used
General exception vector (offset 16#180)

5.2.21 Coprocessor 2 Exception

A coprocessor 2 exception is initiated by coprocessor 2 to signal a precise coprocessor 2 exception.

Register ExcCode Value
C2E (Seé€Table 8-24 on page 37

Additional State Saved

Defined by the coprocessor

Entry Vector Used
General exception vector (offset 16#180)

5.2.22 Watch Exception

The watch facility provides a software debugging vehicle by initiating a watch exception when an instruction or data
reference matches the address information stored WaltehHiandWatchLoregisters. A watch exception is taken
immediately if the EXL and ERL bits of ti&tatusregister are both zero. If either bit is a one at the time that a watch
exception would normally be taken, the WP bit in@aiseregister is set, and the exception is deferred until both the
EXL and ERL bits in the Status register are zero. Software may use the WP bit@Qatlseregister to determine if the

EPC register points at the instruction that caused the watch exception, or if the exception actually occurred while in
kernel mode.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 45

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

If the EXL or ERL bits are one in th8tatugegister and a single instruction generates both a watch exception (which is
deferred by the state of the EXL and ERL bits) and a lower-priority exception, the lower priority exception is taken.

Watch exceptions are never taken if the processor is executing in Debug Mode. Should a watch register match while the
processor is in Debug Mode, the exception is inhibited and the WP bit is not changed.

It is implementation dependent whether a data watch exception is triggered by a prefetch or cache instruction whose
address matches the Watch register address match conditions. A watch triggered by a SC instruction does so even if the
store would not complete because the LLbit is zero.

Register ExcCode Value
WATCH (SeeTable 8-24 on page 37

Additional State Saved

Register State Value

indicates that the watch exception was deferred until after
both Statusy, and Statusg, were zero. This bit directly

Causgyp causes a watch exception, so software must clear this bit as
part of the exception handler to prevent a watch exception
loop at the end of the current handler execution.

Entry Vector Used
General exception vector (offset 16#180)

5.2.23 Interrupt Exception

The interrupt exception occurs when an enabled request for interrupt service is made. Seb.$ectiopage 28r
more information.

Register ExcCode Value
Int (SeeTable 8-25 on page Y0

Additional State Saved

Register State Value

Cause indicates the interrupts that are pending.

Entry Vector Used
General exception vector (offset 16#180) if the IV bit in@laeiseregister is zero.
Interrupt vector (offset 16#200) if the IV bit in tR&Auseregister is one.

46 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 6

GPR Shadow Registers

The capability in this chapter is targeted at removing the need to save and restore GPRs on entry to high priority
interrupts or exceptions, and to provide specified processor modes with the same capability. This is done by introducing
multiple copies of the GPRs, callattadow setsand allowing privileged software to associate a shadow set with entry

to Kernel Mode via an interrupt vector or exception. The normal GPRs are logically considered shadow set zero.

The number of GPR shadow sets is implementation dependent and may range from one (the normal GPRs) to an
architectural maximum of 16. The highest number actually implemented is indicated by the S&#€Eld. If this field
is zero, only the normal GPRs are implemented.

6.1 Introduction to Shadow Sets

Shadow sets are new copies of the GPRs that can be substituted for the normal GPRs on entry to Kernel Mode via an
interrupt or exception. Once a shadow set is bound to a Kernel Mode entry condition, reference to GPRs work exactly
as one would expect, but they are redirected to registers that are dedicated to that condition. Privileged software may
need to reference all GPRs in the register file, even specific shadow registers that are not visible in the current mode.
The RDPGPR and WRPGPR instructions are used for this purpose. The CSS fiel@R&Cteegister provides the

number of the current shadow register set, and the PSS field BRB&Ettegister provides the number of the previous
shadow register set (that which was current before the last exception or interrupt occurred).

If the processor is operating in VI interrupt mode, binding of a vectored interrupt to a shadow set is done by writing to
theSRSMapegister. If the processor is operating in EIC interrupt mode, the binding of the interrupt to a specific shadow
set is provided by the external interrupt controller, and is configured in an implementation-dependent way. Binding of
an exception or non-vectored interrupt to a shadow set is done by writing to the ESS fiel &&3i@ttegister. When

an exception or interrupt occurs, the value of SRg&4Is copied to SRSGilsg and SRSCHgis set to the value taken

from the appropriate source. On an ERET, the value of SRgEH copied back into SRSGiksto restore the shadow

set of the mode to which control returns. More precisely, the rules for updating the fieldSRS@tregister on an

interrupt or exception are as follows:

1. Nofield in theSRSCtlegister is updated if any of the following conditions is true. In this case, steps 2 and 3 are
skipped.

» The exception is one that sets Stagys NMI or cache error.
» The exception causes entry into EJTAG Debug Mode
» Statuggy =1
» Statugy, =1
2. SRSCitssis copied to SRSGikg
3. SRSCitgsis updated from one of the following sources:

» The appropriate field of tteRSMapegister, based on IPL, if the exception is an interrupt, Gaese,
Config3,gic = 0, and Configd,: = 1. These are the conditions for a vectored interrupt.

* The EICSS field of th8RSCtregister if the exception is an interrupt, Caysel and Configgg,c = 1. These
are the conditions for a vectored EIC interrupt.

» The ESS field of th&RSCtlegister in any other case. This is the condition for a non-interrupt exception, or a
non-vectored interrupt.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 a7

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 6 GPR Shadow Registers

Similarly, the rules for updating the fields in the SRSCtl register at the end of an exception or interrupt are as follows:
1. Nofield in theSRSCtlegister is updated if any of the following conditions is true. In this case, step 2 is skipped.

* A DERET is executed

* An ERET is executed with Stagg = 1 or Statuggy = 1
2. SRSCthggis copied to SRSGikg

These rules have the effect of preservingSRSCttegister in any case of a nested exception or one which occurs before
the processor has been fully initialize (Stafys= 1).

Privileged software may switch the current shadow set by writing a new value into $3§€thding EPC with a target
address, and doing an ERET.

6.2 Support Instructions

48

Table 6-1 Instructions Supporting Shadow Sets

Mnemonic Function MIPS64 Only?
RDPGPR Read GPR From Previous Shadow Set No
WRPGPR Write GPR to Shadow Set No

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 7

CPO Hazards

7.1 Introduction

Because resources controlled via Coprocessor 0 affect the operation of various pipeline stages of a MIPS32 processor,
manipulation of these resources may produce results that are not detectable by subsequent instructions for some number
of execution cycles. When no hardware interlock exists between one instruction that causes an effect that is visible to a
second instruction, @P0 hazardexists.

In Release 1 of the MIPS32™ Architecture, CPO hazards were relegated to implementation-dependent cycle-based
solutions, primarily based on the SSNOP instruction. Since that time, it has become clear that this is an insufficient and
error-prone practice that must be addressed with a firm compact between hardware and software. As such, new
instructions have been added to Release 2 of the architecture which act as explicit barriers that eliminate hazards. To the
extent that it was possible to do so, the new instructions have been added in such a way that they are
backward-compatible with existing MIPS processors.

7.2 Types of Hazards

In privileged software, there are two different types of hazards: execution hazards and instruction hazards. Both are
defined below. IMable 7-1andTable 7-2below, the final column lists the “typical” spacing required in

implementations of Release 1 of the Architecture to allow the consumer to eliminate the hazard. The “typical” value
shown in these tables represent spacing thatis in common use by operating systems today. An implementation of Release
1 of the Architecture which requires less spacing to clear the hazard (including one which has full hardware interlocking)
should operate correctly with an operating system which uses this hazard table. An implementation of Release 1 of the
Architecture which requires more spacing to clear the hazard incurs the burden of validating kernel code against the new
hazard requirements.

Note that, for superscalar MIPS implementations, the number of instructions issued per cycle may be greater than one,
and thus that the duration of the hazard in instructions may be greater than the duration in cycles. It is for this reason
that MIPS32 Release 1 defines the SSNOP instruction to convert instruction issues to cycles in a superscalar design.

7.2.1 Execution Hazards

Execution hazards are those created by the execution of one instruction, and seen by the execution of another instruction.
Table 7-1lists execution hazards.

Table 7-1 Execution Hazards

“Typical”
Spacing
Producer - Consumer Hazard On (Cycles)
TLBP, TLBR TLB entry 3
TLBWR, TLBWI -
Load/store using new TLB entry TLB entry 3
EntryHiag)p
MTCO - Load/store affected by new state WatchHi 3
WatchLo
MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 49

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 7 CP0O Hazards

Table 7-1 Execution Hazards

“Typical”
Spacing
Producer Consumer Hazard On (Cycles)
Coprocessor instruction execution depends|on
MTCO the new value of Statgg Statugy 4
Status
EPC
MTCO ERET DEPC 3
ErrorEPC
MTCO, El, DI Interrupted Instruction Statjgs 3
MTCO Interrupted Instruction Cauge 3
MTCO Interrupted Instruction Compare 3
MTCO CACHE PageGrain 2
EntryHi,
EntryLoO,
TLBR MFCO EntryLol, 3
PageMask
TLBP MFCO Index 2
TLBR
MTCO TLBWI EntryHi 2
TLBWR
TLBP .
MTCO Load or Store Instruction EntryHiasip 3
Index
TLBWI
MTCO EntryLoO 2
TLBWR EntryLol
RDPGPR
MTCO WRPGPR SRSCthgg 2
LL MFCO LLAddr 2

7.2.2 Instruction Hazards

Instruction hazards are those created by the execution of one instruction, and seen by the instruction fetch of another
instruction.Table 7-2lists instruction hazards.

Table 7-2 Instruction Hazards

“Typical”
Hazard Spacing
Producer - Consumer On (Cycles)
TLBWR, TLBWI - Instruction fetch using new TLB entry TLB entry 5
Instruction fetch seeing the new value
MTCO - (including a change to ERL followed by an Status 5
instruction fetch from the useg segment)
EntryHiAS”:)
MTCO - Instruction fetch seeing the new value WatchHi 5
WatchLo
50 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

7.3 Hazard Clearing Instructions

Table 7-2 Instruction Hazards

“Typical”
Hazard Spacing
Producer - Consumer On (Cycles)
Instruction stream Instruction fetch seeing the new instruction Cache
writes - stream entries Unbounded
Instruction fetch seeing the new instruction Cache
CACHE - stream entries 5

7.3 Hazard Clearing Instructions

Table 7-3lists the instructions designed to eliminate hazards.

Table 7-3 Hazard Clearing Instructions

Mnemonic Function

EHB Clear execution hazard

JALR.HB Clear both execution and instruction hazards

JR.HB Clear both execution and instruction hazards

SSNOP Superscalar No Operation

SYNCI Synchronize caches after instruction stream write

7.3.1 Instruction Encoding

The EHB instruction is encoded using a variant of the NOP/SSNOP encoding. This encoding was chosen for
compatibility with the Release 1 SSNOP instruction, such that existing software may be modified to be compatible with
both Release 1 and Release 2 implementations. See the EHB instruction description for additional information.

The JALR.HB and JR.HB instructions are encoding using bit 10 olfithifield of the JALR and JR instructions. These
encodings were chosen for compatibility with existing MIPS implementations, including many which pre-date the
MIPS32 architecture. Because a pipeline flush clears hazards on most early implementations, the JALR.HB or JR.HB
instructions can be included in existing software for backward and forward compatibility. See the JALR.HB and JR.HB
instructions for additional information.

The SYNCI instruction is encoded using a new encoding of the REGIMM opcode. This encoding was chosen because
it causes a Reserved Instruction exception on all Release 1 implementations. As such, kernel software running on
processors that don't implement Release 2 can emulate the function using the CACHE instruction.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 51

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 7 CP0O Hazards

52 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 8

Coprocessor 0 Registers

The Coprocessor 0 (CPO) registers provide the interface between the ISA and the PRA. Each register is discussed below,
with the registers presented in numerical order, first by register number, then by select field number.

8.1 Coprocessor 0 Register Summary

Table 8-1lists the CPO registers in numerical order. The individual registers are described later in this document. If the
compliance level is qualified (e.g Required TLB MMU)"), it applies only if the qualifying condition is true. The Sel
column indicates the value to be used in the field of the same name in the MFCO and MTCO instructions.

Table 8-1 Coprocessor 0 Registers in Numerical Order

Register Register Compliance
Number Selt Name Function Reference Level
Required
; Section8.3 on (TLB MMU);
0 0 Index Index into the TLB array nage 57 Optional
(others)
Required
. : ectiond.4 on (TLB MMU);
1 0 Random Randomly generated index into the TLB ar] a? bage 58 Optional
(others)
Required
2 0 EntrvLo0 Low-order portion of the TLB entry for Section8.5 on (TLB MMU);
ry even-numbered virtual pages page 59 Optional
(others)

Required (TLB

Low-order portion of the TLB entry for Section8.5 on .
3 0 EntryLol odd-numbered virtual pages page 59 Optig/ln'\glu()dthers)
_ Required
4 0 Context Pointer to page table entry in memory 5905'282'83 on (TI(‘)E:)MM;P’
(others)
SmartMIPS Required
4 1 ContextConfig| Context and XContext register configuration ASE (SmartMIPS ASE
Specification Only)
_ Required
5 0 PageMask Control for variable page size in TLB entriesSeclct)",ggg'é4 on (TIE)EE)tiI\ﬂ)'\r/II;)'
(others)
Section8.8 on :
Required
: page 6eand (SmanMiPS
5 1 PageGrain Control for small page support SmartMIPS ASE); Optional
ASE y
Specification (Release 2)
Required
6 0 Wired Controls the number of fixed (“wired”) TLB | Section8.9 on (TLB MMU);
entries page 68 Optional
(others)
MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 53

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 8 Coprocessor 0 Registers

Table 8-1 Coprocessor 0 Registers in Numerical Order

Register Register Compliance
Number Selt Name Function Reference Level
7 0 HWREna Enables access via the RDHWR instruction foSectior8.10 on Required
selected hardware registers page 69 (Release 2)
7 1-7 Reserved for future extensions Reserved
Reports the address for the most recent Sectior8.11 on ;
8 0 BadvAddr address-related exception page 70 Required
Sectior8.12 on :
9 0 Count Processor cycle count page 71 Required
; : . Sectior8.13 on | Implementation
9 6-7 Available for implementation dependent user page 71 Dependent
Required
; ; . Sectior8.14 on (TLB MMU);
10 0 EntryHi High-order portion of the TLB entry page 72 Optional
(others)
- : Sectior8.15 on ;
11 0 Compare Timer interrupt control page 74 Required
; ; : .-Sectior8.16 on | Implementation
11 6-7 Available for implementation dependent user page 74 Dependent
Sectior8.17 on ;
12 0 Status Processor status and control page 75 Required
Sectior8.18 on Required
12 1 IntCtl Interrupt system status and control page 82 (Release 2)
: Sectior8.19 on Required
12 2 SRSCil Shadow register set status and control page 84 (Release 2)
Required
: Sectior8.20 on (Release 2 and
12 3 SRSMap Shadow set IPL mapping page 86 shadow sets
implemented)
; Sectior8.21 on :
13 0 Cause Cause of last general exception page 87 Required
. Sectior8.22 on :
14 0 EPC Program counter at last exception page 91 Required
15 0 PRId Processor identification and revision SectiorB.23 on Required
page 92
. . Sectior8.24 on Required
15 1 EBase Exception vector base register page 93 (Release 2)
) . . : Sectior8.25 on ;
16 0 Config Configuration register page 95 Required
) ' . . Sectior8.26 on ;
16 1 Configl Configuration register 1 page 97 Required
) : : ; Sectior8.27 on ;
16 2 Config2 Configuration register 2 page 101 Optional
) ' . . Sectior8.28 on ;
16 3 Config3 Configuration register 3 page 104 Optional
: : . |- SectiorB.29 on | Implementation
16 6-7 Available for implementation dependent user page 106 Dependent
54 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.1 Coprocessor 0 Register Summary

Table 8-1 Coprocessor 0 Registers in Numerical Order

Register Register Compliance
Number Seft Name Function Reference Level
: Sectior8.30 on .
17 0 LLAddr Load linked address page 107 Optional
: SectiorB.31 on ;
18 0-n WatchLo Watchpoint address page 108 Optional
; ; Sectior8.32 on :
19 0-n WatchHi Watchpoint control page 110 Optional
20 0 XContext in 64-bit implementations Reserved
21 all Reserved for future extensions Reserved
: : : Sectior8.33 on Implementation
22 all Available for implementation dependent use page 112 Dependent
. EJTAG .
23 0 Debug EJTAG Debug register Specification Optional
23 1 TraceControl PDtrace control register PDtrace Optional
Specification
. PDtrace ;
23 2 TraceControl2| PDtrace control register Specification Optional
i ; PDtrace ;
23 3 UserTraceDatg PDtrace control register Specification Optional
23 4 TraceBPC PDtrace control register PDtrace Optional
Specification
Program counter at last EJTAG debug EJTAG .
24 0 DEPC exception Specification Optional
: Sectior8.36 on
25 0-n PerfCnt Performance counter interface page 115 Recommended
; SectiorB.37 on ;
26 0 ErrCtl Parity/ECC error control and status page 118 Optional
; Sectior8.38 on '
27 0-3 CacheErr Cache parity error control and status page 119 Optional
28 even selecty TaglLo Low-order portion of cache tag interface Secgg)grg.:igoon Required (Cache
28 odd selects| Datalo Low-order portion of cache data interface Secgg)grg.iglon Optional
29 even selecty TagHi High-order portion of cache tag interface Secgg)grg.iézon Required (Cache)
29 odd selects| DataHi High-order portion of cache data interface Secgg)grg.iggon Optional
SectiorB.43 on ;
30 0 ErrorEPC Program counter at last error page 124 Required
31 0 DESAVE EJTAG debug exception save register EJTAG Optional
Specification

1. Any select (Sel) value not explicitly noted as available for implementation-dependent use is reserved for future usehite tieré\

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

55

Chapter 8 Coprocessor 0 Registers

8.2 Notation

For each register described below, field descriptions include the read/write properties of the field, and the reset state of
the field. For the read/write properties of the field, the following notation is used:

Table 8-2 Read/Write Bit Field Notation

Read/Write
Notation Hardware Interpretation Software Interpretation
A field in which all bits are readable and writable by software and, potentially, by hardware.
Hardware updates of this field are visible by software read. Software updates of this field jare
RIW visible by hardware read.

If the Reset State of this field is “Undefined”, either software or hardware must initialize the yalue
before the first read will return a predictable value. This should not be confused with the fprmal
definition of UNDEFINED behavior.

A field which is either static or is updated onl
by hardware.

If the Reset State of this field is either “0”,
“Preset”, or “Externally Set”, hardware
initializes this field to zero or to the appropria
state, respectively, on powerup. The term
e?s{gg‘lsi;hlgsut?\eede:gpsrlcj)%%gfé t:tgiéhsvﬁg?gggs hfardware behavior. Software reads of this figld

. term “Externally Set” is used to suggest that eturn the last value updated by hardware.
state is established via an external source (g Y the Reset State of this field is “Undefined”
personality pins or initialization bit stream). o fi ;
These terms are suggestions only, and are h o,\]]tl\:’,\'glrzeDﬁ%%f-j:BOJéh'\‘j‘a];fédefcseugtt |2ﬁaerr1 a
:nmtelr:adrﬁgr:&tziacc):]as arequirement on the hardware update done under the conditions
p ' specified in the description of the field.

A field to which the value written by software
is ignored by hardware. Software may write
any value to this field without affecting

If the Reset State of this field is “Undefined”,
hardware updates this field only under those
conditions specified in the description of the
field.

A field to which the value written by software

must be zero. Software writes of non-zero

values to this field may result iNDEFINED

behavior of the hardware. Software reads o

0 A field which hardware does not update, anl this field return zero as long as all previous
for which hardware can assume a zero valug.software writes are zero.

If the Reset State of this field is “Undefined”
software must write this field with zero before
it is guaranteed to read as zero.

D=

56 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.3 Index Register (CPO Register 0, Select 0)

8.3 Index Register (CPO Register 0, Select 0)

Compliance Level:Requiredfor TLB-based MMUsQOptional otherwise.

Thelndexregister is a 32-bit read/write register which contains the index used to access the TLB for TLBP, TLBR, and
TLBWI instructions. The width of the index field is implementation-dependent as a function of the number of TLB
entries that are implemented. The minimum value for TLB-based MMUs is Ceiling(Log2(TLBEntries)). For example,

six bits are required for a TLB with 48 entries).

The operation of the processotdSNDEFINED if a value greater than or equal to the number of TLB entries is written

to thelndexregister.

Figure 8-1shows the format of thedexregister;Table 8-3describes thindexregister fields.

31

Figure 8-1 Index Register Format

Index

Table 8-3 Index Register Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

31

Probe Failure. Hardware writes this bit during
execution of the TLBP instruction to indicate wheth
a TLB match occurred:

Encoding Meaning

A match occurred, and the Index field

0 contains the index of the matching entry|

No match occurred and the Index field ig
UNPREDICTABLE

4%

Undefined

Required

30..n

Must be written as zero; returns zero on read.

Reseny

Index

n-1..0

TLB index. Software writes this field to provide the
index to the TLB entry referenced by the TLBR and
TLBWI instructions.

Hardware writes this field with the index of the
matching TLB entry during execution of the TLBP
instruction. If the TLBP fails to find a match, the
contents of this field aldNPREDICTABLE .

R/W

Undefined

Required

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

57

8.4 Random Register (CPO Register 1, Select 0)

58

Compliance Level:Requiredfor TLB-based MMUsQOptional otherwise.

TheRandonregister is a read-only register whose value is used to index the TLB during a TLBWR instruction. The
width of the Random field is calculated in the same manner as that describedrideregister above.
The value of the register varies between an upper and lower bound as follow:

» A lower bound is set by the number of TLB entries reserved for exclusive use by the operating system (the contents
of theWiredregister). The entry indexed by tNdredregister is the first entry available to be written by a TLB Write
Random operation.

» An upper bound is set by the total number of TLB entries minus 1.

Within the required constraints of the upper and lower bounds, the manner in which the processor selects values for the
Random register is implementation-dependent.

The processor initializes tiandonregister to the upper bound on a Reset Exception, and whefirddregister is
written.

Figure 8-2shows the format of thRandonregister;Table 8-4describes th®andonregister fields.

Figure 8-2 Random Register Format

n n-1 0
0 Random
Table 8-4 Random Register Field Descriptions
Fields
Read/
Name Bits Description Write Reset State Compliance
0 31..n Must be written as zero; returns zero on read. (0 Reserved
Random n-1..0 TLB Random Index R TLB Entries -|1 Requireq

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.5 EntryLoO, EntryLol (CPO Registers 2 and 3, Select 0)

8.5 EntryLoO, EntryLol (CPO Registers 2 and 3, Select 0)

Compliance Level:EntryLo0O isRequiredfor a TLB-based MMUQptional otherwise.
Compliance Level:EntryLol isRequiredfor a TLB-based MMUQptional otherwise.

The pair ofEntryLoregisters act as the interface between the TLB and the TLBP, TLBR, TLBWI, and TLBWR
instructions EntryLoOholds the entries for even pages &miryLolholds the entries for odd pages.

Software may determine the value of PABITS by writing all ones td&heylLoOor EntryLolregisters and reading the
value back. Bits read as “1” from the PFN field allow software to determine the boundary between the PFNand Fill fields
to calculate the value of PABITS.

The contents of thEntryLoOandEntryLolregisters are not defined after an address error exception and some fields
may be modified by hardware during the address error exception sequence. Software writ€ntfthieegister (via
MTCO) do not cause the implicit update of address-related fields BettiiéAddror Contextregisters.

For Release 1 of the Architectufggure 8-3shows the format of thentryLoOandEntryLolregistersTable 8-5
describes th&ntryLoOandEntryLolregister fields. For Release 2 of the Architectiifigure 8-4shows the format of
the EntryLoOandEntryLolregistersiTable 8-6describes th&ntryLoOandEntryLolregister fields.

Figure 8-3 EntryLoO, EntryLol Register Format in Release 1 of the Architecture
31 30 29 6 5 3 2 10
| Fil | PFN | c |p|v|g]

Table 8-5 EntryLo0O, EntryLol Register Field Descriptions in Release 1 of the Architecture

Fields

Read/
Name Bits Description Write | Reset State | Compliance

These bits are ignored on write and return zero on refad.
Fill 31..30 The boundaries of this field change as a function of the R 0 Required
value of PABITS SeeTable 8-7for more information.

Page Frame Number. Corresponds toBPABITS1..12
of the physical address, whé?ABITSis the width of
PFN 29..6 the physical address in bits. The boundaries of this field R/W Undefined Required
change as a function of the valueRABITS SeeTable
8-7 for more information.

C 5.3 Coherency attribute of the page. $alele 8-8below. R/W Undefined Required

“Dirty” bit, indicating that the page is writable. If this
bit is a one, stores to the page are permitted. If thig| bit
is a zero, stores to the page cause a TLB Modified
exception.

Kernel software may use this bit to implement pagin ' .
algorithms that require knowing Whichppages hgvg 9 R Undefined Required
been written. If this bit is always zero when a page|is
initially mapped, the TLB Modified exception that
results on any store to the page can be used to update
kernel data structures that indicate that the page was
actually written.

Valid bit, indicating that the TLB entry, and thus the

virtual page mapping are valid. If this bit is a one, . ;
M : accesses to the page are permitted. If this bit is a zero,R/W Undefined Required
accesses to the page cause a TLB Invalid exceptioh.
MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 59

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Table 8-5 EntryLoO, EntryLol Register Field Descriptions in Release 1 of the Architecture

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

Global bit. On a TLB write, the logical AND of the G
bits from both EntryLo0O and EntryLol becomes the
bit in the TLB entry. If the TLB entry G bit is a one,

ASID comparisons are ignored during TLB matches.

On aread from a TLB entry, the G bits of both
EntryLoO and EntryLol reflect the state of the TLB
bit.

Undefined

Required
(TLB MMU)

Figure 8-4 EntryLoO, EntryLol Register Format in Release 2 of the Architecture

31 30 29

6 5

3 2 10

\ Fill \

PFN

\ C

o] v]]

Table 8-6 EntryLoO, EntryLol Register Field Descriptions in Release 2 of the Architecture

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

Fill

31..30

These bits are ignored on write and return zero on re
The boundaries of this field change as a function of {
value of PABITS. Se&able 8-7for more information.

ad.
he R

Required

PFN

29..6

Page Frame Number. This field contains the physiag
page number corresponding to the virtual page.

If the processor is enabled to support 1KB pages
(Configkp= 1 and PageGraigp= 1), the PFN field
corresponds to bits 33..10 of the physical address
field is shifted left by 2 bits relative to the Release 1
definition to make room for PA 9.

If the processor is not enabled to support 1KB page
(Config3p= 0 or PageGrajp= 0), the PFN field
corresponds to bits 35..12 of the physical address.

The boundaries of this field change as a function of {
value of PABITS. Se@&able 8-7for more information.

al

the
R/W

S

he

Undefined

Required

5.3

The definition of this field is unchanged from Relea]
1. SeeTable 8-5above andable 8-8below.

se R/W

Undefined

Required

The definition of this field is unchanged from Relea]
1. SeeTable 8-5above.

se R/W

Undefined

Required

The definition of this field is unchanged from Relea]
1. Se€Table 8-5above.

se R/W

Undefined

Required

G

The definition of this field is unchanged from Relea]
1. SeeTable 8-5above.

se R/W

Undefined

Required
(TLB MMU)

Table 8-7shows the movement of the Fill and PFN fields as a function of 1KB page support enabled, and the value of
PABITS Note that in implementations of Release 1 of the Architecture, there is no support for 1KB pages, so only the
first row of the table applies to Release 1.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.5 EntryLoO, EntryLol (CPO Registers 2 and 3, Select 0)

Table 8-7 EntryLo Field Widths as a Function ofPABITS

Corresponding EntryLo Field Bit
1KB Page Ranges
Support Release 2
Enabled? | PABITS Value Fill Field PFN Field Required?
31..(30-(36PABITg | (29-(36PABITS)..6
) Example:
ple:
No 362 PABITS > Example: 29..6 ifPABITS= 36 No
31.30fPABITS=36 | ©-6IfPABITS=13
BL.7IPABITS=13 | gpuvio = pay 1,
31..(30-(34PABITY | (29-(34PABITS)..6
) Example:
ple:
Yes 342 PABITS > Example: 29.6 ifPABITS= 34 Yes
31..30 ifPABITS=34 | 6.6 1fPABITS=11
BL.7IPABITS= 11 | Enuyio): = PAg 10

Programming Note:

In implementations of Release 2 of the Architecture, the PFN field of botRitryLoOandEntryLolregisters must

be written with zero and the TLB must be flushed before each instance in which the valu€afd@rainregister is
changed. This operation must be carried out while running in an unmapped address space. The operation of the pro-
cessor i2JNDEFINED if this sequence is not done.

Table 8-8lists the encoding of the C field of thentryLoOandEntryLolregisters and the KO field of ti@onfigregister.

An implementation may choose to implement a subset of the cache coherency attributes shown, but must implement at
least encodings 2 and 3 such that software can always depend on these encodings working appropriately. In other cases,
the operation of the processotBIDEFINED if software specifies an unimplemented encoding.

Table 8-8lists the required and optional encodings for the coherency attributes.
Table 8-8 Cache Coherency Attributes

Cache Coherency Attributes
C(5:3) Value With Historical Usage Compliance

Available for implementation dependent use

0 Optional
Available for implementation dependent use

1 Optional
Uncached

2 Required
Cacheable

3 Required
Available for implementation dependent use

4 Optional

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 61

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Table 8-8 Cache Coherency Attributes

Cache Coherency Attributes
C(5:3) Value With Historical Usage Compliance

Available for implementation dependent use
5 Optional

Available for implementation dependent use
6 Optional

Available for implementation dependent use
7 Optional

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.6 Context Register (CPO Register 4, Select 0)

8.6 Context Register (CPO Register 4, Select 0)

Compliance Level:Requiredfor TLB-based MMUsQOptional otherwise.

TheContextregister is a read/write register containing a pointer to an entry in the page table entry (PTE) array. This array
is an operating system data structure that stores virtual-to-physical translations. During a TLB miss, the operating system
loads the TLB with the missing translation from the PTE array. Chatextregister duplicates some of the information
provided in theBadVVAddrregister, but is organized in such a way that the operating system can directly reference a
16-byte structure in memory that describes the mapping.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits MA;30f the virtual address to be written
into theBadVPNZ2field of theContextregister. ThdTEBasdfield is written and used by the operating system.

The BadVPN2 field of th€ontextregister is not defined after an address error exception and this field may be modified
by hardware during the address error exception sequence.

Figure 8-5shows the format of théontextRegisterTable 8-9describes th€ontextregister fields.

Figure 8-5 Context Register Format
31 23 22 4 3 0

PTEBase BadVPN2 0

Table 8-9 Context Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State | Compliance

This field is for use by the operating system and|is
normally written with a value that allows the

PTEBase 31.23 operating system to use tB@entextRegister as a RIW

pointer into the current PTE array in memory.

Undefined Required

This field is written by hardware on a TLB
BadVPN2 22.4 exception. It contains bits VA 30f the virtual R Undefined Required
address that caused the exception.

0 3.0 Must be written as zero; returns zero on read. 0 0 Reserved

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 63

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.7 PageMask Register (CPO Register 5, Select 0)
Compliance Level:Requiredfor TLB-based MMUsQOptional otherwise.

ThePageMaskegister is a read/write register used for reading from and writing to the TLB. It holds a comparison mask
that sets the variable page size for each TLB entry, as shohabile 8-11Figure 8-6shows the format of theageMask
register;Table 8-10describes thPageMaskegister fields.

Figure 8-6 PageMask Register Format
31 29 28 13 12 11 0
‘ 0 ‘ Mask ‘ Mask* 0

Table 8-10 PageMask Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State | Compliance

The Mask field is a bit mask in which a “1” bit indicateps
Mask 28..13 | thatthe corresponding bit of the virtual address should R/W Undefined Required
not participate in the TLB match.

In Release 2 of the Architecture, the MaskX field is an
extension to the Mask field to support 1KB pages with
definition and action analogous to that of the Mask
field, defined above.

If 1KB pages are enabled (Config3= 1 and
PageGraipsp= 1), these bits are writable and readable,
and their values are copied to and from the TLB entry 0

MaskX 12.11 | onaTLB write or read, respectivly. RIW (See

If 1KB pages are not enabled (Config3: 0 or Description)
PageGraipsp= 0), these bits are not writable, retur
zero on read, and the effect on the TLB entry on a wrjte
is as if they were written with the value 2#11.

Required
(Release 2)

In Release 1 of the Architecture, these bits must be
written as zero, return zero on read, and have no effect
on the virtual address translation.

0 311023 Ignored on write; returns zero on read. R 0 Required

Table 8-11 Values for the Mask and MaskX Fields of the PageMask Register

Bit

Page Size | 28| 27| 26| 25| 24/ 23 22 21 20 19 18 17 16 (15 p4 |13 L1211t

1 KByte 0| 0| O0f O o| of of o| 0o oOof O 0| O o O O 0 0

4 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

16 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
64 KBytes 0| 0| O0f O 0| of o o| o Oof O] O 1 1 1 1 1 1
256 KBytes 0| 0| O0f O o| of of 0| 0| O 1 1 1 1 1 1 1 1

1 MByte 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

4 MByte 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

64 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.7 PageMask Register (CPO Register 5, Select 0)

Table 8-11 Values for the Mask and MaskX Fields of the PageMask Register

Bit

Page Size | 28| 27| 26| 25| 24/ 23 22 21 20 10 18 17 16 15 4 [131iart

16 MByte 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

64 MByte 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

256 MByte 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1. PageMasly 1,= PaskMasjg,skx €Xists only on implementations of Release 2 of the architecture and are treated as if they had the value 2#11 if 1K
pages are not enabled (Config3- 0 or PageGragyp= 0).

It is implementation dependent how many of the encodings describEabie 8-1lare implemented. All processors

must implement the 4KB page size. If a particular page size encoding is not implemented by a processor, a read of the
PageMaskegister must return zeros in all bits that correspond to encodings that are not implemented, thereby poten-
tially returning a value different than that written by software.

Software may determine which page sizes are supported by writing all onesRPadb®askregister, then reading

the value back. If a pair of bits reads back as ones, the processor implements that page size. The operation of the pro-
cessor id)UNDEFINED if software loads the Mask field with a value other than one of those listdalite 8-11

even if the hardware returns a different value on read. Hardware may depend on this requirement in implementing
hardware structures

Programming Note:

In implementations of Release 2 of the Architecture, the MaskX field oPHgeMaskegister must be written with
2#11 and the TLB must be flushed before each instance in which the valueRedb&rainregister is changed. This
operation must be carried out while running in an unmapped address space. The operation of the praddBdor is
FINED if this sequence is not done.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 65

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.8 PageGrain Register (CPO Register 5, Select 1)

66

Compliance Level:Requiredor implementations of Release 2 of the Architecture that include TLB-based MMUs and

support 1KB page$)ptional otherwise.

The PageGrainregister is a read/write register used for enabling 1KB page suppoRagh6&rainregister is present

in both the SmartMIPS™ ASE, and in Release 2 of the Architecture, although there are no bits in common between the
two uses of this register. As such, the description below only describes the fields relevant to Release 2 of the Architecture.
In implementations of both Release 2 of the Architecture and the SmartMIPS™ ASE, the ASE definitions take
precedence and none of the Release 2 fields described below are gregent8-7shows the format of thBageMask

register;Table 8-12describes thPageMaskegister fields.

31 30 29 28 27

Figure 8-7 PageGrain Register Format

13 12

\ ASE \ ELP4 EsqD

Table 8-12 PageGrain Register Field Descriptions

Fields

Name

Bits

Description

Reset State

Compliance

ASE

31..30,1

2.8

These fields are control features of the SmartMIPS[™

ASE and are not used in implementations of Release 2
of the Architecture unless such an implementation also

implements the SmartMIPS™ ASE.

Required

ELPA

29

Used to enable support for large physical addresses in
MIPS64 processors; not used by MIPS32 processars.

This bit is ignored on write and returns zero on read.

Required

ESP

28

Enables support for 1KB pages.

Encoding Meaning

0 1KB page support is not enabled

1 1KB page support is enabled

If this bit is a 1, the following changes occur to
coprocessor 0 registers:
e The PFN field of th&ntryLoOandEntryLol

registers holds the physical address down to bit 10
(the field is shifted left by 2 bits from the Release 1
definition)

* The MaskX field of thdPageMaskegister is

writable and is concatenated to the right of the Mak

field to form the “don’t care” mask for the TLB
entry.

« The VPN2X field of theEntryHi register is writable
and bits 12..11 of the virtual address.

« The virtual address translation algorithm is modified
to reflect the smaller page size.

If Config3sp= 0, 1KB pages are notimplemented, and
this bit is ignored on write and returns zero on read|

Required

Must be written as zero; returns zero on read.

Reservi

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.8 PageGrain Register (CPO Register 5, Select 1)

Programming Note:

In implementations of Release 2 of the Architecture, the following fields must be written with the specified values,
and the TLB must be flushed before each instance in which the value of the PageGrain register is changed. This oper-
ation must be carried out while running in an unmapped address space. The operation of the protl¢éBai-is

FINED if this sequence is not done.

Field Required Value
EntryLoGsgpn, EntryLodpgy 0
EntryLoGpny EntryLolopnx 0
PageMasigaskx 2#11
EntryHivpnzx 0

Note also that if PageGrain is changed, a hazard may be created between the instruction that writes PageGrain and a
subsequent CACHE instruction. This hazard must be cleared using the EHB instruction.

MIPS32™ Architecture For Programmers Volume lll, Revision 2.00 67

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.9 Wired Register (CPO Register 6, Select 0)

Compliance Level:Requiredfor TLB-based MMUsQOptional otherwise.

TheWiredregister is a read/write register that specifies the boundary between the wired and random entries in the TLB
as shown irFigure 8-8

Figure 8-8 Wired And Random Entries In The TLB

Entry TLBSize-1 A
: S
X @)
' ©
' c
X ©
. e
Wired Register — Entry 10
: §®)
' Qo
=
Entlry 0

The width of the Wired field is calculated in the same manner as that described fodéxeegister. Wired entries are
fixed, non-replaceable entries which are not overwritten by a TLBWR instruction.Wired entries can be overwritten by a
TLBWI instruction.

TheWiredregister is set to zero by a Reset Exception. WritingwWhredregister causes tHiRandonregister to reset to
its upper bound.

The operation of the processotdNDEFINED if a value greater than or equal to the number of TLB entries is written
to theWiredregister.

Figure 8-8shows the format of thé/iredregister;Table 8-13describes th&Vired register fields.

Figure 8-9 Wired Register Format
31 n n-1 0
0 Wired

Table 8-13 Wired Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
0 31..n Must be written as zero; returns zero on read. (0 Resenrjed
Wired n-1..0 TLB wired boundary R/W 0 Required
68 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.10 HWREna Register (CPO Register 7, Select 0)

8.10 HWREnNa Register (CPO Register 7, Select 0)

Compliance Level:Required(Release 2).

TheHWREnaregister contains a bit mask that determines which hardware registers are accessible via the RDHWR

instruction.

Figure 8-10shows the format of thdWREnaRegisterTable 8-14describes thelWREnaregister fields.

Figure 8-10 HWREna Register Format

31 4 3 0
0 Mask
0000 0000 0000 0000 0000 0000 0000
Table 8-14 HWREnNa Register Field Descriptions
Fields
Read/
Name Bits Description Write | Reset State | Compliance
0 31..4 Must be written with zero; returns zero on read 0 Reserved
Each bit in this field enables access by the RDHWR
instruction to a particular hardware register (whi¢h
may not be an actual register). If bit ‘n’ in this fielg
is a 1, access is enabled to hardware register ‘n’. If :
Mask 3.0 bit ‘n’ of this field is a 0, access is disabled. RIW 0 Required
See the RDHWR instruction for a list of valid
hardware registers.

Privileged software may determine which of the hardware registers are accessible by the RDHWR instruction. In doing
S0, a register may be virtualized at the cost of handling a Reserved Instruction Exception, interpreting the instruction,

and returning the virtualized value. For example, if it is not desirable to provide direct acces€tititeegister, access
to that register may be individually disabled and the return value can be virtualized by the operating system.

MIPS32™ Architecture For Programmers Volume lll, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

69

8.11 BadVAddr Register (CPO Register 8, Select 0)

Compliance Level:Required

TheBadVAddrregister is a read-only register that captures the most recent virtual address that caused one of the
following exceptions:

» Address error (AdEL or AdES)

e TLB Refill

e TLB Invalid (TLBL, TLBS)

» TLB Modified

TheBadVAddregister does not capture address information for cache or bus errors, or for Watch exceptions, since none
is an addressing error.

Figure 8-11shows the format of thBadVAddrregister;Table 8-15describes the BadVAddr register fields.

Figure 8-11 BadVAddr Register Format
31 0
BadVAddr

Table 8-15 BadVAddr Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
BadVAddr 31..0 Bad virtual address R Undefined Requireqj

70

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.12 Count Register (CPO Register 9, Select 0)

8.12 Count Register (CPO Register 9, Select 0)

Compliance Level:Required

The Count register acts as a timer, incrementing at a constant rate, whether or not an instruction is executed, retired, or

any forward progress is made through the pipeline. The rate at which the counter increments is implementation
dependent, and is a function of the pipeline clock of the processor, not the issue width of the processor.

The Count register can be written for functional or diagnostic purposes, including at reset or to synchronize processors.

Figure 8-12shows the format of the Count registeaple 8-16describes the Count register fields.

Figure 8-12 Count Register Format

31 0
Count
Table 8-16 Count Register Field Descriptions
Fields
Read/
Name Bits Description Write | Reset State | Compliance
Count 31..0 Interval counter R/W Undefineq Required

8.13 Reserved for Implementations (CPO Register 9, Selects 6 and 7)

Compliance Level:Optional: Implementation Dependent.

CPO register 9, Selects 6 and 7 are reserved for implementation dependent use and are not defined by the architecture.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

71

8.14 EntryHi Register (CPO Register 10, Select 0)

72

Compliance Level:Requiredfor TLB-based MMU;Optional otherwise.
TheEntryHi register contains the virtual address match information used for TLB read, write, and access operations.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits MA;30f the virtual address to be written

into the VPN2 field of th&ntryHi register. An implementation of Release 2 of the Architecture which supports 1KB
pages also writes iy _;4into the VPN2X field of the EntryHi register. A TLBR instruction writes tEptryHi register

with the corresponding fields from the selected TLB entry. The ASID field is written by software with the current address
space identifier value and is used during the TLB comparison process to determine TLB match.

Because the ASID field is overwritten by a TLBR instruction, software must save and restore the value of ASID around
use of the TLBR. This is especially important in TLB Invalid and TLB Modified exceptions, and in other memory
management software.

The VPNX2 and VPNZ2 fields of thHentryHi register are not defined after an address error exception and these fields
may be modified by hardware during the address error exception sequence.Software writes of the EntryHi register (via
MTCO) do not cause the implicit write of address-related fields iBéu&/AddiContextregisters.

Figure 8-13shows the format of thentryHi register;Table 8-17describes th&ntryHi register fields.

Figure 8-13 EntryHi Register Format
31 13 12 11 10 8 7 0

VPN2 ‘VPNZ# 0 \ ASID

Table 8-17 EntryHi Register Field Descriptions

Fields
Read/
Name Bits Description Write | ResetState| Compliance
VA3, 130f the virtual address (virtual page number/).
This field is written by hardware on a TLB exception or s :
VPN2 31.13 on a TLB read, and is written by software before a TLB RIW Undefined Required

write.

In Release 2 of the Architecture, the VPN2X field is an

extension to the VPN2 field to support 1KB pages.

These bits are not writable by either hardware or

software unless Confi%az land PageGrag%Pz 1.10f
leld conta 10

enabled for write, this ins YA 1,0f the Required
VPN2X 12.11 virtual address and is written by hardware on a TLB R/W 0 (Release2and
" exception or on a TLB read, and is by software befor¢ a 1KB Page
TLB write. Support)

If writes are not enabled, and in implementations of
Release 1 of the Architecture, this field must be written
with zero and returns zeros on read.

0 10..8 Must be written as zero; returns zero on read. 0 0 Reserved

Address space identifier. This field is written by

hardware on a TLB read and by software to establish the . Required
ASID 7.0 current ASID value for TLB write and against which RIW Undefined (TLB MMU)
TLB references match each entry’s TLB ASID field.

Programming Note:

In implementations of Release 2 of the Architecture, the VPN2X field ofhieyHi register must be written with
zero and the TLB must be flushed before each instance in which the valueRddb&rainregister is changed. This

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.14 EntryHi Register (CPO Register 10, Select 0)

operation must be carried out while running in an unmapped address space. The operation of the praddBdoyr is
FINED if this sequence is not done.

MIPS32™ Architecture For Programmers Volume lll, Revision 2.00 73

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.15 Compare Register (CPO Register 11, Select 0)

Compliance Level:Required.

TheCompareregister acts in conjunction with tli@ountregister to implement a timer and timer interrupt function. The
Compareregister maintains a stable value and does not change on its own.

When the value of th€ountregister equals the value of tBempareregister, an interrupt request is combined in an
implementation-dependent way with hardware interrupt 5 to set interrupt bit IP(7) @ethgeregister. This causes an
interrupt as soon as the interrupt is enabled.

For diagnostic purposes, tRmmpareregister is a read/write register. In normal use howeveCdonepareregister is
write-only. Writing a value to th€ompareregister, as a side effect, clears the timer interkigtire 8-14shows the
format of theCompareregister;Table 8-18describes the Compare register fields.

Figure 8-14 Compare Register Format
31 0
Compare

Table 8-18 Compare Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
Compare 31..0 Interval count compare value R/W Undefined Required

8.16 Reserved for Implementations (CPO Register 11, Selects 6 and 7)

Compliance Level:Optional: Implementation Dependent.

CPO register 11, Selects 6 and 7 are reserved for implementation dependent use and are not defined by the architecture.

74 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.17 Status Register (CP Register 12, Select 0)

8.17 Status Register (CP Register 12, Select 0)

Compliance Level:Required.

The Statugregister is a read/write register that contains the operating mode, interrupt enabling, and the diagnostic states
of the processor. Fields of this register combine to create operating modes for the processorGRefigteio3, “MIPS32
Operating Modes,” on pagef6r a discussion of operating modes, and SecBention 5.1, "Interrupts" on page &%

a discussion of interrupt modes.

Figure 8-15shows the format of the Status registetle 8-19describes the Status register fields.

Figure 8-15 Status Register Format

31 282726 25 24 23 22 21 20 19 18 17 16 15 10 9 8 7 6 5 4 3 2 1 0
CU3.CUQ RP FR RE MX PX BEY T8 SRNMII 0 Impl IM7..IM2 IM1..IM0 KK SK UX UM RD ERL EXL IE
IPL KSU

Table 8-19 Status Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State | Compliance

Controls access to coprocessors 3, 2, 1, and 0,
respectively:

Encoding Meaning

0 Access not allowed

1 Access allowed

Coprocessor 0 is always usable when the processor i

Ccu running in Kernel Mode or Debug Mode, independent i
(CU3 31..28 the state of the qbn R/W Undefined

Cu0)

Required for
all

implemented

COprocessors

(el
=

In Release 2 of the Architecture, and for 64-bit
implementations of Release 1 of the Architecture,
execution of all floating point instructions, including
those encoded with the COP1X opcode, is controlled|by
the CU1 enable. CU3 is no longer used and is reserved for
future use by the Architecture.

If there is no provision for connecting a coprocessor, the
corresponding CU bit must be ignored on write and rgad
as zero.

Enables reduced power mode on some implementatipns.
The specific operation of this bit is implementation
dependent.

RP 27 | \fthis bitis not implemented, it must be ignored on wrife /W 0 Optional

and read as zero. If this bit is implemented, the reset sfate
must be zero so that the processor starts at full
performance.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 75

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Table 8-19 Status Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State | Compliance

In Release 1 of the Architecture, only MIPS64 processprs
could implement a 64-bit floating point unit. In Releasd 2
of the Architecture, both MIPS32 and MIPS64 processprs
can implement a 64-bit floating point unit. This bit is used
to control the floating point register mode for 64-bit
floating point units:

Encoding Meaning

Floating point registers can contain any
0 32-bit datatype. 64-bit datatypes are stofed
in even-odd pairs of registers.

Floating point registers can contain any
datatype

FR 26 R 0 Required
This bit must be ignored on write and read as zero under
the following conditions:

« No floating point unit is implemented

¢ In a MIPS32 implementation of Release 1 of the
Architecture

« In an implementation of Release 2 of the Architectyre
in which a 64-bit floating point unit is not
implemented

Certain combinations of the FR bit and other state or
operations can caus$NPREDICTABLE behavior. See
SectionSection 3.5.2, "64-bit FPR Enable" on pagdd0
a discussion of these combinations.

Used to enable reverse-endian memory references while
the processor is running in user mode:

Encoding Meaning

0 User mode uses configured endianfess

RE 25 1 User mode uses reversed endianness RIW Undefined Optional

Neither Debug Mode nor Kernel Mode nor Supervisor
Mode references are affected by the state of this bit.

If this bit is not implemented, it must be ignored on write
and read as zero.

Enables access to MDMX™ resources on MIPS64
MX 24 processors. Not used by MIPS32 processors. This bit must g 0 Optional
be ignored on write and read as zero.

Enables access to 64-bit operations on MIPS64
PX 23 processors. Not used by MIPS32 processors. This bit must g 0 Required
be ignored on write and read as zero.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.17 Status Register (CP Register 12, Select 0)

Table 8-19 Status Register Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

BEV

22

Controls the location of exception vectors:

Encoding Meaning

0 Normal

1 Bootstrap

See SectioBection 5.2.1, "Exception Vector Locations
on page 32or details.

R/W

Required

TS

21

Indicates that the TLB has detected a match on multi
entries. It is implementation dependent whether this
detection occurs at all, on a write to the TLB, or an accg
to the TLB.In Release 2 of the Architecture, multipl
TLB matches may only be reported on a TLB writ
When such a detection occurs, the processor initiates
machine check exception and sets this bit. It is
implementation dependent whether this condition can
corrected by software. If the condition can be correctg
this bit should be cleared by software before resumin
normal operation.

See Sectiod.9.3 on page 1for a discusssion of
software TLB initialization used to avoid a machine che
exeception during processor initialization.

If this bit is not implemented, it must be ignored on writ
and read as zero.

Software should not write a 1 to this bit when its value
a0, thereby causing a 0-to-1 transition. If such a transit
is caused by software, it SINPREDICTABLE whether
hardware ignores the write, accepts the write with no s
effects, or accepts the write and initiates a machine ch
exception.

ple

h

n
(7]

1%
o P

[©]

is
on

de
eck

Required if
TLB

Shutdown is

implemented

SR

20

Indicates that the entry through the reset exception ve
was due to a Soft Reset:

Encoding
0 Not Soft Reset (NMI or Reset)
1 Soft Reset

Meaning

If this bit is not implemented, it must be ignored on writ
and read as zero.

Software should not write a 1 to this bit when its value
a 0, thereby causing a 0-to-1 transition. If such a transit|
is caused by software, it SINPREDICTABLE whether

ctor

R/W

[¢]

is
on

hardware ignores or accepts the write.

1 for Soft
Reset; 0
otherwise

Required if
Soft Reset is
implemented

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

7

78

Table 8-19 Status Register Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

NMI

19

Indicates that the entry through the reset exception ve
was due to an NMI exception:

Encoding Meaning
0 Not NMI (Soft Reset or Reset)

1 NMI

If this bit is not implemented, it must be ignored on writ
and read as zero.

Software should not write a 1 to this bit when its value
a0, thereby causing a 0-to-1 transition. If such a transit
is caused by software, it SINPREDICTABLE whether
hardware ignores or accepts the write.

tor

R/W

is
on

1 for NMI; O
otherwise

Required if
NMI is
implemented

18

Must be written as zero; returns zero on read.

Resery

Impl

17..16

These bits are implementation dependent and are no

defined by the architecture. If they are not implemented,

they must be ignored on write and read as zero.

Undefined

Optional

IM7..IM2

15..10

Interrupt Mask: Controls the enabling of each of the
hardware interrupts. Refer to Secti®eaction 5.1,
"Interrupts" on page 2fr a complete discussion of
enabled interrupts.

Encoding Meaning

0 Interrupt request disabled

1 Interrupt request enabled

In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled (Confjgg = 1),
these bits take on a different meaning and are interpre
as the IPL field, described below.

R/W

ted

Undefined

Required

ed

IPL

15..10

Interrupt Priority Level.

In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled (Confjgg = 1),
this field is the encoded (0..63) value of the current IP
An interrupt will be signaled only if the requested IPL
higher than this value.

If EIC interrupt mode is not enabled (Confjgg: = 0),
these bits take on a different meaning and are interprg
as the IM7..IM2 bits, described above.

I

s RIW

ted

Undefined

Optional
(Release 2 and
EIC interrupt
mode only)

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.17 Status Register (CP Register 12, Select 0)

Table 8-19 Status Register Field Desc

riptions

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

IM1..IMO

9.8

Interrupt Mask: Controls the enabling of each of the
software interrupts. Refer to SectiSaction 5.1,
"Interrupts" on page 2fr a complete discussion of
enabled interrupts.

Encoding Meaning

0 Interrupt request disabled

1 Interrupt request enabled

In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled (Confjgg = 1),

R/W

these bits are writable, but have no effect on the interrupt

system.

Undefined

Required

KX

Enables access to 64-bit kernel address space on 64
MIPS processors. Not used by MIPS32 processors. T
bit must be ignored on write and read as zero.

bit
his

Reserved

SX

Enables access to 64-bit supervisor address space o
64-bit MIPS processors. Not used by MIPS32 process
This bit must be ignored on write and read as zero.

h
DIS.

Reserved

UXx

Enables access to 64-bit user address space on 64-b
MIPS processors Not used by MIPS32 processors. T
bit must be ignored on write and read as zero.

t
his

Reserved

KSU

4.3

If Supervisor Mode is implemented, the encoding of t
field denotes the base operating mode of the process
SeeChapter 3, “MIPS32 Operating Modes,” on page®
a full discussion of operating modes. The encoding of
field is:

Encoding Meaning
2#00
2#01

2#10

Base mode is Kernel Mode

Base mode is Supervisor Mode

Base mode is User Mode

is

=

Reserved. The operation of the processq
UNDEFINED if this value is written to the
KSU field

2#11

Note: This field overlaps the UM and RO fields, describ
below.

nis
or.

nIS

R/W

Undefined

Required if
Supervisor
Mode is
implemented,;
Optional
otherwise

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

80

Table 8-19 Status Register Field Descri

ptions

Fields

Name

Bits

Read/

Description Write

Reset State

Compliance

UM

If Supervisor Mode is not implemented, this bit denotes
the base operating mode of the processor.Sespter 3,
“MIPS32 Operating Modes,” on pagd@ a full

discussion of operating modes. The encoding of this bi

Encoding Meaning

0 Base mode is Kernel Mode

1 Base mode is User Mode

Note: This bit overlaps the KSU field, described abové.

S

R/W

Undefined

Required

RO

If Supervisor Mode is not implemented, this bit is
reserved. This bit must be ignored on write and read as
zero.

Note: This bit overlaps the KSU field, described above.

Reserved

ERL

Error Level; Set by the processor when a Reset, Soft
Reset, NMI or Cache Error exception are taken.

Encoding Meaning

0 Normal level

1 Error level

When ERL is set:
e The processor is running in kernel mode

« Hardware and software interrupts are disabled

¢ The ERET instruction will use the return address he
in ErrorEPC instead of EPC

« The lower 2° bytes of kuseg are treated as an
unmapped and uncached region. Seetion 4.7,
"Address Translation for the kuseg Segment when
StatusERL = 1" on page 1&his allows main memory
to be accessed in the presence of cache errors. The
operation of the processoriiNDEFINED if the ERL
bit is set while the processor is executing instructions
from kuseg.

d

R/W

Required

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.17 Status Register (CP Register 12, Select 0)

Table 8-19 Status Register Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

EXL

Exception Level; Set by the processor when any excep
other than Reset, Soft Reset, NMI| or Cache Error
exception are taken.

Encoding Meaning

0 Normal level

1 Exception level

When EXL is set:
e The processor is running in Kernel Mode

» Hardware and software interrupts are disabled.

« TLB Refill exceptions use the general exception vec
instead of the TLB Refill vector.

* EPC, Caussy and SRSCtl (implementations of
Release 2 of the Architecture only) will not be updats
if another exception is taken

ion

R/W

or

ed

Undefined

Required

Interrupt Enable: Acts as the master enable for software

and hardware interrupts:

Encoding Meaning

0 Interrupts are disabled

1 Interrupts are enabled

In Release 2 of the Architecture, this bit may be modifi
separately via the DI and El instructions.

R/W

Undefined

Required

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

81

8.18 IntCtl Register (CPO Register 12, Select 1)

Compliance Level:Required(Release 2)

The IntCtl register controls the expanded interrupt capability added in Release 2 of the Architecture, including vectored
interrupts and support for an external interrupt controller. This register does not exist in implementations of Release 1
of the Architecture.

Figure 8-16shows the format of the IntCtl regist@gble 8-20describes the IntCtl register fields.

Figure 8-16 IntCtl Register Format
31 29 28 26 25 10 9 5 4 0

0
IPTI IPPCI 00 0000 0000 0000 00 Vs 0

Table 8-20 IntCtl Register Field Descriptions

Fields
Read/ Reset

Name Bits Description Write State Compliance

For Interrupt Compatibility and Vectored Interrupt
modes, this field specifies the IP number to which the
Timer Interrupt request is merged, and allows
software to determine whether to consider Cause
for a potential interrupt.

Encoding| IP bit Hardware
Interrupt Source

HWO
HW1 Preset or)
HW2 R Extgrentally Required
HW3

HW4
HW5

IPTI 31..29

N|lo|lo|lbh|lw|N
N|lo|lo|lbh|lw|N

The value of this field i§NPREDICTABLE if
External Interrupt Controller Mode is both
implemented and enabled. The external interrupt
controller is expected to provide this information fd
that interrupt mode.

=

82 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.18 IntCtl Register (CP0O Register 12, Select 1)

Table 8-20 IntCtl Register Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset

State Compliance

IPPCI

28..26

For Interrupt Compatibility and Vectored Interrupt
modes, this field specifies the IP number to which t
Performance Counter Interrupt request is merged

and allows software to determine whether to consiger

Causec, for a potential interrupt.

IP bit Hardware

Interrupt Source
HWO
HW1
HW2
HW3
HW4
HW5

Encoding

N|lo|lo|lbh|lw|N
N|lo|lo|lbh|lw|N

The value of this field i§NPREDICTABLE if
External Interrupt Controller Mode is both
implemented and enabled. The external interrupt
controller is expected to provide this information fd
that interrupt mode.

If performance counters are not implemented
(Configlpc = 0), this field returns zero on read.

he

=

Preset or
Externally
Set

Optional
(Performance
Counters
Implemented)

25..10

Must be written as zero; returns zero on read.

Reser

VS

9.5

Vector Spacing. If vectored interrupts are
implemented (as denoted by Confjgg3 or
Config3/g|c), this field specifies the spacing
between vectored interrupts.

Encoding| Spacing Between

Vectors (hex)
16#000 0
16#020 32
16#040 64
16#080 128
16#100 256
16#200 512

Spacing Between
Vectors (decimal)

16#00
16#01
16#02
16#04
16#08
16#10

All other values are reserved. The operation of th
processor i&JNDEFINED if a reserved value is
written to this field.

If neither EIC interrupt mode nor VI mode are
implemented (Configg:,c = 0 and Configgnt =

0), this field is ignored on write and reads as zerq.

4%

R/W

Optional

4.0

Must be written as zero; returns zero on read.

Resery

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ed

83

8.19 SRSCtl Register (CPO Register 12, Select 2)

Compliance Level:Required(Release 2)

The SRSCtregister controls the operation of GPR shadow sets in the processor. This register does not exist in
implementations of the architecture prior to Release 2.

Figure 8-17shows the format of th8RSCtregister;Table 8-21describes th8RSCtlegister fields.

Figure 8-17 SRSCtl Register Format

31 30 29 26 25 22 21 18 17 16 15 12 11 10 9 6 5 4 3 0
0 0 0 0 0
00 HSS 0000 EICSS 00 ESS 00 PSS 00 CSS

Table 8-21 SRSCtl Register Field Descriptions

Fields
Read/ Reset

Name Bits Description Write State Compliance

0 31..30 Must be written as zeros; returns zero on read. D (0 Reseryed

Highest Shadow Set. This field contains the highest
shadow set number that is implemented by this
processor. A value of zero in this field indicates that
only the normal GPRs are implemented.

HSS 29..26 | The value in this field also represents the highest R Preset Required
value that can be written to the ESS, EICSS, PSS, and
CSS fields of this register, or to any of the fields gf
the SRSMapegister. The operation of the processpor
is UNDEFINED if a value larger than the one in this
field is written to any of these other values.

0 25..22 Must be written as zeros; returns zero on read. D (0 Reseryed

EIC interrupt mode shadow set. If Configg- is 1
(EIC interrupt mode is enabled), this field Is loade
from the external interrupt controller for each
interrupt request and is used in place of 8RSMap
register to select the current shadow set for the Required
EICSS 21..18 | interrupt. R Undefined| (EICinterrupt
mode only)

[=}

SeeSection 5.1.1.3, "External Interrupt Controller
Mode" on page 2%or a discussion of EIC interrupt
mode. If ConfigQg,c is 0, this field must be written
as zero, and returns zero on read.

0 17..16 Must be written as zeros; returns zero on read. D (0 Reseryed

Exception Shadow Set. This field specifies the
shadow set to use on entry to Kernel Mode caused by
any exception other than a vectored interrupt.

ESS 15..12 | The operation of the processotUBIDEFINED if R/W 0 Required
software writes a value into this field that is greater
than the value in the HSS field.

0 11..10 Must be written as zeros; returns zero on read. D (0 Reseryed

84 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.19 SRSCtl Register (CPO Register 12, Select 2)

Table 8-21 SRSCtl Register Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset

State Compliance

PSS

9..6

Previous Shadow Set. If GPR shadow registers al
implemented, and with the exclusions noted in th
next paragraph, this field is copied from the CSS fig
when an exception or interrupt occurs. An ERET
instruction copies this value back into the CSS fig
if Statuggy = 0.

This field is not updated on any exception which s
Statugg, to 1 (i.e., NMl or cache error), an entry int
EJTAG Debug mode, or any exception or interrup
that occurs with Statgg, = 1, or Statuggy = 1.

The operation of the processotUBIDEFINED if

software writes a value into this field that is greater

than the value in the HSS field.

re
d
Id

=D

its R/W 0

Required

5.4

Must be written as zeros; returns zero on read.

0 Reser

CSS

3.0

Current Shadow Set. If GPR shadow registers arg
implemented, this field is the number of the curre
GPR set. With the exclusions noted in the next

paragraph, this field is updated with a new value
any interrupt or exception, and restored from the P
field on an ERETTable 8-22describes the various
sources from which the CSS field is updated on g
exception or interrupt.

This field is not updated on any exception which s
Statugg, to 1 (i.e., NMl or cache error), an entry int
EJTAG Debug mode, or any exception or interrup
that occurs with Statgg, = 1, or Statuggy = 1.
Neither is it updated on an ERET with Status = 1
or Statuggy = 1.

The value of CSS can be changed directly by
software only by writing the PSS field and executir]
an ERET instruction.

=)
=

bn
5S

>

pts

—

0 Required

Table 8-22 Sources for new SRSGtkgon an Exception or Interrupt

Exception Type

Condition

SRSCtEggSource

Comment

Exception

All

SRSCss

Non-Vectored
Interrupt

Causg, =0

SRSCiss

Treat as exception

Vectored Interrupt

Causg, =1 and
Config3,g,c = 0 and
Config3/nt = 1

SRSMaRyectnum
x4+3.VectNum x4

Source is internal map
register

Vectored EIC
Interrupt

Causg, = 1 and
COﬂfigS’VE|C =1

Source is external
interrupt controller.

MIPS32™ Architecture For Programmers Volume lll, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ed

85

8.20

SRSMap Register (CPO Register 12, Select 3)

Compliance Level:Requiredn Release 2 of the Architecture if Additional Shadow Sets and Vectored Interrupt Mode
are Implemented

The SRSMapegister contains 8 4-bit fields that provide the mapping from an vector number to the shadow set number
to use when servicing such an interrupt. The values from this register are not used for a non-interrupt exception, or a
non-vectored interrupt (Cayge= 0 or IntCt{,g = 0). In such cases, the shadow set number comes from $RSCitl

If SRSCtlyssis zero, the results of a software read or write of this regist&iNMiRREDICTABLE .

The operation of the processotdBIDEFINED if a value is written to any field in this register that is greater than the
value of SRSCilgg

The SRSMapegister contains the shadow register set numbers for vector numbers 7..0. The same shadow set number
can be established for multiple interrupt vectors, creating a many-to-one mapping from a vector to a single shadow
register set number.

Figure 8-18shows the format of thBRSMapegister;Table 8-23describes th&€RSMapegister fields.

Figure 8-18 SRSMap Register Format
31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

SSVv7 SSV6 SSV5 SSv4 SSV3 SSVv2 SSv1 SSVO

Table 8-23 SRSMap Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State | Compliance

SSv7 31..28 Shadow register set number for Vector Number ¥ RIW 0 Required
SSV6 27.24 Shadow register set number for Vector Number 6 RIW 0 Required
SSV5 23..20 | Shadow register set number for Vector Number b RIW 0 Required
SSv4 19..16 | Shadow register set number for Vlector Number # RIW 0 Required
SSv3 15..12 Shadow register set number for Vector Number 3 RIW 0 Required
SSVv2 11..8 Shadow register set number for Vector Number 2 R{W 0 Required
SSV1 7.4 Shadow register set number for Vector Number 1 RiW 0 Required
SSV0 3.0 Shadow register set number for Vector Number RiW 0 Required

86

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.21 Cause Register (CPO Register 13, Select 0)

8.21 Cause Register (CPO Register 13, Select 0)

Compliance Level:Required.

The Causeregister primarily describes the cause of the most recent exception. In addition, fields also control software
interrupt requests and the vector through which interrupts are dispatched. With the exceptiom of, tBE|RV, and

WP fields, all fields in the Cause register are read-only. Release 2 of the Architecture added optional support for an
External Interrupt Controller (EIC) interrupt mode, in which Jare interpreted as the Requested Interrupt Priority
Level (RIPL).

Figure 8-19shows the format of the Cause registahle 8-24describes the Cause register fields.

Figure 8-19 Cause Register Format
3130 29 28 27 26 25 24 23 22 21 16 15 10 9 8 7 6 2 1 0
\BD\Tl\ CE \quc\l 0 \ IV‘ WP\ 0 IP7..1P2 |P1..|¢op Exc Code \ o\
RIPL

Table 8-24 Cause Register Field Descriptions

Fields
Read/

Name Bits Description Write Reset State | Compliance

Indicates whether the last exception taken occurred in

a branch delay slot:

Encoding Meaning

BD 31 O |Notin delay slot R Undefined Required
1 In delay slot

The processor updates BD only if Stagtys was zero
when the exception occurred.

Timer Interrupt. In an implementation of Release 2 of
the Architecture, this bit denotes whether a timer
interrupt is pending (analogous to the IP bits for other
interrupt types):

Encoding Meaning

Required

R Undefined (Release 2)

Tl 30 0 No timer interrupt is pending

1 Timer interrupt is pending

In an implementation of Release 1 of the
Architecture, this bit must be written as zero and
returns zero on read.

Coprocessor unit number referenced when a
Coprocessor Unusable exception is taken. This field
CE 29..28 | is loaded by hardware on every exception, but is R Undefined Required
UNPREDICTABLE for all exceptions except for
Coprocessor Unusable.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 87

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Table 8-24 Cause Register Field Descriptions

Fields
Read/

Name Bits Description Write Reset State | Compliance

DisableCountregister. In some power-sensitive
applications, th€ountregister is not used but may
still be the source of some noticeable power
dissipation. This bit allows th@ountregister to be
stopped in such situations.

Encoding Meaning ;
DC 27 : : R/W 0 Required
0 Enable counting aEountregister (Release 2)

1 Disable counting o€ountregister

In an implementation of Release 1 of the
Architecture, this bit must be written as zero, and
returns zero on read.

Performance Counter Interrupt. In an implementation
of Release 2 of the Architecture, this bit denotes
whether a performance counter interrupt is pending
(analogous to the IP bits for other interrupt types):

Required
(Release 2 and
PCI 26 0 No timer interrupt is pending R Undefined performance

counters
implemented)

Encoding Meaning

1 Timer interrupt is pending

In an implementation of Release 1 of the
Architecture, or if performance counters are not
implemented (Configde = 0), this bit must be
written as zero and returns zero on read.

Indicates whether an interrupt exception uses the
general exception vector or a special interrupt vector:

Encoding Meaning

0 Use the general exception vector (16#180)
\Y) 23 1 Use the special interrupt vector (164200 R/W Undefined Required

In implementations of Release 2 of the architecture,
if the Causgy is 1 and Statysgy, is O, the special
interrupt vector represents the base of the vectored
interrupt table.

D

Indicates that a watch exception was deferred

because Statpg, or Statugg, were a one at the
time the watch exception was detected. This bit both
indicates that the watch exception was deferred, and
causes the exception to be initiated once Stgjus
and Statusg, are both zero. As such, software mugst
clear this bit as part of the watch exception handlento
prevent a watch exception loop. Required if
watch

registers are
implemented

WP 22 Software should not write a 1 to this bit when its R/W Undefined
value is a 0, thereby causing a 0-to-1 transition. |
such a transition is caused by software, it is

UNPREDICTABLE whether hardware ignores the
write, accepts the write with no side effects, or
accepts the write and initiates a watch exception once
Statugy, and Statusg, are both zero.

If watch registers are not implemented, this bit myst
be ignored on write and read as zero.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.21 Cause Register (CPO Register 13, Select 0)

Table 8-24 Cause Register Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

IP7..1P2

15..10

Indicates an interrupt is pending:

Bit Name Meaning

15 IP7 | Hardware interrupt 5

14 IP6 | Hardware interrupt 4

13 IP5 | Hardware interrupt 3

12 IP4 | Hardware interrupt 2

11 IP3 | Hardware interrupt 1

10 IP2 | Hardware interrupt O

In implementations of Release 1 of the Architecture,

timer and performance counter interrupts are
combined in an implementation-dependent way w
hardware interrupt 5.

In implementations of Release 2 of the Architectu
in which EIC interrupt mode is not enabled
(Config3,g|c = 0), timer and performance counter|
interrupts are combined in an
implementation-dependent way with any hardwan
interrupt. If EIC interrupt mode is enabled
(Config3/g|c = 1), these bits take on a different
meaning and are interpreted as the RIPL field,
described below.

th

re

[¢]

Undefined

Required

RIPL

15..10

Requested Interrupt Priority Level.

In implementations of Release 2 of the Architectu
inwhich EIC interrupt mode is enabled (Config3c
= 1), this field is the encoded (0..63) value of the
requested interrupt. A value of zero indicates that
interrupt is requested.

If EIC interrupt mode is not enabled (Config3c =
0), these hits take on a different meaning and are
interpreted as the IP7..1P2 bits, described above.

re

no

Undefined

Optional
(Release2and
EIC interrupt
mode only)

IP1..1IPO

9..8

Controls the request for software interrupts:

Bit Name Meaning

9 IP1 | Request software interrupt 1

8 IPO | Request software interrupt 0

An implementation of Release 2 of the Architectu
which also implements EIC interrupt mode export
these bits to the external interrupt controller for
prioritization with other interrupt sources.

re

7]

R/W

Undefined

Required

ExcCode

6..2

Exception code - Skble 8-25

Undefined

Required

25..24,
21..16,
7,1.0

Must be written as zero; returns zero on read.

Reserved

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

89

90

Table 8-25 Cause Register ExcCode Field

Exception Code Value

\"RJ

Gis
his

Decimal Hexadecimal | Mnemonic Description
0 16#00 Int Interrupt
1 16#01 Mod TLB modification exception
2 16#02 TLBL TLB exception (load or instruction fetch)
3 16#03 TLBS TLB exception (store)
4 16#04 AdEL Address error exception (load or instruction fetch)
5 16#05 AdES Address error exception (store)
6 16#06 IBE Bus error exception (instruction fetch)
7 16#07 DBE Bus error exception (data reference: load or store)
8 16#08 Sys Syscall exception
Breakpoint exception. If EJTAG is implemented and an SDBB
: gp | oshucton s excauted whie the processor s unning i EJTA
denote an SDBBP in Debug Mode. Code
10 16#0a RI Reserved instruction exception
11 16#0b CpuU Coprocessor Unusable exception
12 16#0c Ov Arithmetic Overflow exception
13 16#0d Tr Trap exception
14 16#0e - Reserved
15 16#0f FPE Floating point exception
16-17 16#10-16#11 - Available for implementation dependent use
18 16#12 C2E Reserved for precise Coprocessor 2 exceptions
19-21 16#13-16#15 - Reserved
22 16#16 MDMX MDMX Unusable Exception.
23 16#17 WATCH Reference to WatchHi/WatchLo address
24 16#18 MCheck Machine check
25-29 16#19-16#1d - Reserved
Cache error. In normal mode, a cache error exception has a
dedicated vector and the Cause register is hot updated. If EJTA
30 16#1e CacheErr | implemented and a cache error occurs while in Debug Mode,
code is writen to the Debgg, cqgefield to indicate that re-entry
to Debug Mode was caused by a cache error.
31 16#1f - Reserved

MIPS32™ Architecture For Programmers Volume lll, Revisio

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

n 2.00

8.22 Exception Program Counter (CPO Register 14, Select 0)

8.22 Exception Program Counter (CPO Register 14, Select 0)

Compliance Level:Required.

The Exception Program Counter (EP@)a read/write register that contains the address at which processing resumes
after an exception has been serviced. All bits oBRE register are significant and must be writable.

For synchronous (precise) exceptioBBC contains either:
« the virtual address of the instruction that was the direct cause of the exception, or

« the virtual address of the immediately preceding branch or jump instruction, when the exception causing instruction
is in a branch delay slot, and tBeanch Delaybit in theCauseregister is set.

For asynchronous (imprecise) exceptidfiBC contains the address of the instruction at which to resume execution.
The processor does not write to EleCregister when the EXL bit in tHétatusregister is set to one.

Figure 8-20shows the format of thHePC register;Table 8-26describes thEPCregister fields.

Figure 8-20 EPC Register Format
31 0
EPC

Table 8-26 EPC Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
EPC 31..0 Exception Program Counter R/W Undefinad Requirgd

8.22.1 Special Handling of the EPC Register in Processors That Implement the MIPS16e ASE

In processors that implement the MIPS16e ASE, a read &Rkaegister (via MFCO) returns the following value in
the destination GPR:

GPR[rt] ~ RestartPC 37 ; || ISAMode
That is, the upper 31 bits of the restart PC are combined witB£h®odebit and written to the GPR.

Similarly, a write to theEPCregister (via MTCO) takes the value from the GPR and distributes that value to the restart
PC and théSA Modebit, as follows

RestartPC =~ —~ GPR[rt] 311 [|O
ISAMode ~ GPR[rt] ¢

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the restart PC, and the lower bit of the restart PC
is cleared. ThéSA Modebit is loaded from the lower bit of the GPR.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 91

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.23 Processor Identification (CPO Register 15, Select 0)

92

Compliance Level:Required.

TheProcessor Identification (PRIdggister is a 32 bit read-only register that contains information identifying the
manufacturer, manufacturer options, processor identification and revision level of the prdegsser8-21shows the
format of thePRIdregister;Table 8-27describes th@RIdregister fields.

31

Figure 8-21 PRId Register Format

24 23 16 15

Company Options

Company ID Processor ID

Revision

Table 8-27 PRId Register Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

Company
Options

31..24

Available to the designer or manufacturer of the
processor for company-dependent options. The
value in this field is not specified by the architectu

o

If this field is not implemented, it must read as zero.

Preset

Optional

Company
ID

23..16

Identifies the company that designed or
manufactured the processor.

Software can distinguish a MIPS32 or MIPS64
processor from one implementing an earlier MIP
ISA by checking this field for zero. If it is non-zer
the processor implements the MIPS32 or MIPS6
Architecture.

Company IDs are assigned by MIPS Technologie

+— U7

when a MIPS32 or MIPS64 license is acquired. The

encodings in this field are:

Encoding Meaning
0 Not a MIPS32 or MIPS64 processor

1 MIPS Technologies, Inc.

Contact MIPS Technologies, Inc. for the list

2255 of Company ID assignments

Preset

Required

Processor
ID

15..8

Identifies the type of processor. This field allows
software to distinguish between various processd
implementations within a single company, and is

qualified by the CompanyID field, described aboye.

The combination of the CompanyID and
ProcessorlID fields creates a unique number assig
to each processor implementation.

=

ned

Preset

Required

Revision

7.0

Specifies the revision number of the processor. T
field allows software to distinguish between one
revision and another of the same processor type

this field is not implemented, it must read as zerqg.

is

f

Preset

Optional

Software should not use the fields of this register to infer configuration information about the processor. Rather, the
configuration registers should be used to determine the capabilities of the processor. Programmers who identify cases

in which the configuration registers are not sufficient, requiring them to revert to checkBR Itieegister value, should

send email tarchitecture@mips.com

, reporting the specific case.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.24 EBase Register (CP0O Register 15, Select 1)

8.24 EBase Register (CPO Register 15, Select 1)

Compliance Level:Required(Release 2).

TheEBaseregister is a read/write register containing the base address of the exception vectors used wigp Status
equals 0, and a read-only CPU number value that may be used by software to distinguish different processors in a
multi-processor system.

The EBaseregister provides the ability for software to identify the specific processor within a multi-processor system,
and allows the exception vectors for each processor to be different, especially in systems composed of heterogeneous
processors. Bits 31..12 of tiEBaseregister are concatenated with zeros to form the base of the exception vectors when
Statuggy is 0. The exception vector base address comes from the fixed defauisqger 5.2.1, "Exception Vector
Locations" on page 32vhen Statugey is 1, or for any EJTAG Debug exception. The reset state of bits 31..12 of the
EBaseregister initialize the exception base registet848000.0000 , providing backward compatibility with

Release 1 implementations.

Bits 31..30 of theEBaseRegister are fixed with the val@#10, and the addition of the base address and the exception

offset is done inhibiting a carry between bit 29 and bit 30 of the final exception address. The combination of these two
restrictions forces the final exception address to be in the kseg0 or kseg1 unmapped virtual address segments. For cache
error exceptions, bit 29 is forced to a 1 in the ultimate exception base address so that this exception always runs in the
ksegl unmapped, uncached virtual address segment.

If the value of the exception base register is to be changed, this must be done witgSfatgsal 1. The operation of
the processor IENDEFINED if the Exception Base field is written with a different value when Sfatuis 0.

Figure 8-22shows the format of tHeBaseRegister;Table 8-28describes th&Baseregister fields.

Figure 8-22 EBase Register Format

31 30 29 12 11 10 9 0
‘ 1 ‘ 0 ‘ Exception Base ‘ 0 0‘ CPUNum
Table 8-28 EBase Register Field Descriptions
Fields
Read/
Name Bits Description Write | Reset State | Compliance
1 31 This bit is ignored on write and returns one on read. R 1 Required
0 30 This bit is ignored on write and returns zero on repd. R 0 Required

Exception
Base 29..12

In conjunction with bits 31..30, this field specifieg
the base address of the exception vectors when| R/W 0 Required
Statuggy is zero.

0 11..10

Must be written as zero; returns zero on read. 0 0 Reseryed

CPUNum 9.0

This field specifies the number of the CPU in a
multi-processor system and can be used by software
to distinguish a particular processor from the others. Preset or
The value in this field is set by inputs to the R Externally Required
processor hardware when the processor is Set
implemented in the system environment. In a sing
processor system, this value should be set to zefo.

o

MIPS32™ Architecture For Programmers Volume lll, Revision 2.00 93

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

94

Programming Note:

Software must set EBage 1,to zero in all bit positions less than or equal to the most significant bit in the vector offset.
This situation can only occur when a vector offset greater than 16#FFF is generated when an interrupt occurs with VI or
EIC interrupt mode enabled. The operation of the proceseMBEFINED if this condition is not meflable 8-29

shows the conditions under which each EBase bit must be set to zero. VN represents the interrupt vector number as
described inrable 5-4 on page 32nd the bit must be set to zero if any of the relationships in the row are true. No EBase
bits must be set to zero if the interrupt vector spacing is 32 (or zero) bytes.

Table 8-29 Conditions Under Which EBase15..12 Must Be Zero

Interrupt Vector Spacing in Bytes (IntCtl vsl)
EBase bit 32 64 128 256 512
15 None None None VI 63
14 None Nove VN = 62 VN =231
None
13 Nove VN = 60 VN =30 VN =15
12 VN = 56 VN =28 VN =14 VN =7

1. SeeTable 8-20 on page 82

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.25 Configuration Register (CPO Register 16, Select 0)

8.25 Configuration Register (CPO Register 16, Select 0)

Compliance Level:Required.

TheConfigregister specifies various configuration and capabilities information. Most of the fieldsQottiigregister

are initialized by hardware during the Reset Exception process, or are constant. One field, KO, must be initialized by

software in the reset exception handler.

Figure 8-23shows the format of th@onfigregister;Table 8-30describes th€onfigregister fields.

Figure 8-23 Config Register Format

31 30 16 15 14 13 12 10 9 7 6 4 3 2 0
M| Impl BEf AT | AR | MT | 0o [vi] ko |
Table 8-30 Config Register Field Descriptions
Fields
Read/
Name Bits Description Write | Reset State | Compliance
Denotes that the Configl register is implemented at a ;
M sl select field value of 1. R 1 Required
This field is reserved for implementations. Refer to the
Impl 30:16 | processor specification for the format and definition [of Undefined Optional
this field
Indicates the endian mode in which the processor is
running:
- - Preset or
BE 15 Encoding Meaning R Externally Required
0 Little endian Set
1 Big endian
Architecture type implemented by the processor:
Encoding Meaning
0 MIPS32
AT 14:13 1 MIPS64 with access only to 32-bit R Preset Required
compatibility segments
MIPS64 with access to all address segmgnts
Reserved
Architecture revision level:
Encoding Meaning
AR 12:10 0 Release 1 R Preset Required
1 Release 2
2-7 Reserved
95

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Table 8-30 Config Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
MMU Type:
Encoding Meaning
0 None
1 Standard TLB
MT 9:7 2 Standard BAT (see Sectign2 on page R Preset Required

131)

3 Standard fixed mapping (see Sectfat
on page 12y

4-7 Reserved

0 6:4 Must be written as zero; returns zero on read. q 0 Reserved

Virtual instruction cache (using both virtual indexing
and virtual tags):

VI 3 Encoding Meaning R Preset Required

0 Instruction Cache is not virtual

1 Instruction Cache is virtual

. Kseg0 coherency algorithm. S&able 8-8 on page 61 " .
KO 20 for the encoding of this field. RIW Undefined Optional

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.26 Configuration Register 1 (CPO Register 16, Select 1)

8.26 Configuration Register 1 (CPO Register 16, Select 1)
Compliance Level:Required.

TheConfiglregister is an adjunct to ti@onfigregister and encodes additional capabilities information. All fields in the
Configlregister are read-only.

The Icache and Dcache configuration parameters include encodings for the number of sets per way, the line size, and the
associativity. The total cache size for a cache is therefore:

Cache Size = Associativity * Line Size * Sets Per Way
If the line size is zero, there is no cache implemented.

Figure 8-24shows the format of th@onfiglregister;Table 8-31describes th€onfiglregister fields.

Figure 8-24 Configl Register Format

31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6 5 4 3 2 10
M| mmusize-1 | 1s | L | 1A | ps | bL | DA [czMD|PG WR CAEP FP
Table 8-31 Configl Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
This bitis reserved to indicate thaCanfig2register is
present. If theConfig2register is not implemented, this .
M sl bit should read as a 0. If ti@onfig2register is R Preset Required
implemented, this bit should read as a 1.
Number of entries in the TLB minus one. The valueq 0
MMU through 63 is this field correspond to 1 to 64 TLB :
Size-1 30..25 entries. The value zero is implied by Conjfighaving R Preset Required
a value of ‘none’.
Icache sets per way:
Encoding Meaning
0 64
1 128
IS 24:22 2 256 R Preset Required
3 512
4 1024
5 2048
6 4096
7 Reserved
MIPS32™ Architecture For Programmers Volume lll, Revision 2.00 97

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Table 8-31 Configl Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State | Compliance

Icache line size:

Encoding Meaning

0 No Icache present
4 bytes

8 bytes
16 bytes
32 bytes
64 bytes
128 bytes

Reserved

IL 21:19 R Preset Required

N|lo|loa|lbh|lw|[N|F

Icache associativity:

Encoding Meaning

0 Direct mapped

2-way

3-way

1A 18:16 R Preset Required

4-way

5-way

6-way

7-way

N|o|loa|lbh|[lw|[N|F

8-way

Dcache sets per way:

Encoding Meaning
0 64

128

256

512

1024

2048

4096

Reserved

DS 15:13 R Preset Required

N|joloa|lbh|lW[N|RF

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.26 Configuration Register 1 (CPO Register 16, Select 1)

Table 8-31 Configl Register Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

DL

12:10

Dcache line size:

Encoding

Meaning

0

No Dcache present

4 bytes

8 bytes

16 bytes

32 bytes

64 bytes

128 bytes

N|lo|loa|lbh|lw|[N|F

Reserved

Preset

Required

DA

9:7

Dcache associativity:

Encoding

Meaning

0

Direct mapped

2-way

3-way

4-way

5-way

6-way

7-way

N|o|loa|lbh|[lw|[N|F

8-way

Preset

Required

Cc2

Coprocessor 2 implemented:

Encoding

Meaning

0

No coprocessor 2 implemented

1

Coprocessor 2 implements

This bit indicates not only that the processor contains

support for Coprocessor 2, but that such a coproceg

is attached.

Sor

MD

Used to denote MDMX ASE implemented on a

MIPS64 processor. Not used on a MIPS32 processor.

This bit indicates not only that the processor contains
support for MDMX, but that such a processing elemgnt
is attached.

Required

PC

Performance Counter registers implemented:

Encoding

Meaning

0

No performance counter registers

implemented

1

Performance counter registers implemented

Preset

Required

MIPS32™ Architecture For Programmers Volume lll, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

99

Table 8-31 Configl Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
Watch registers implemented:
Encoding Meaning]
WR 3 - - R Preset Required
0 No watch registers implemented
1 Watch registers implemented
Code compression (MIPS16e) implemented:
Encoding Meaning]
CA 2 0 MIPS16e not implemented R Preset Required
1 MIPS16e implemented
EJTAG implemented:
Encoding Meaning
EP 1 R Preset Required

0 No EJTAG implemented
1 EJTAG implemented

FPU implemented:

Encoding Meaning

0 No FPU implemented

1 FPU implemented

FP 0 R Preset Required

This bit indicates not only that the processor contains
support for a floating point unit, but that such a unit|is
attached.

If an FPU is implemented, the capabilities of the FRU
can be read from the capability bits in tH& CP1
register.

100 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.27 Configuration Register 2 (CPO Register 16, Select 2)

8.27 Configuration Register 2 (CPO Register 16, Select 2)

Compliance Level:Required if a level 2 or level 3 cache is implemented, or if the Config3 register is required; Optional
otherwise.

The Config2register encodes level 2 and level 3 cache configurations.
Figure 8-25shows the format of theonfig2register;Table 8-32describes th€onfig2register fields.

Figure 8-25 Config2 Register Format

31 30 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0
|M| TU TS TL TA su ss SL SA

Table 8-32 Config2 Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State| Compliance
This bitis reserved to indicate that a Config3 registef is
M 31 present. If the Config3 register is notimplemented, this R Preset Required

bit should read as a 0. If the Config3 register is
implemented, this bit should read as a 1.

c
7]

Implementation-specific tertiary cache control or staf
TU 30:28 | bits. If this field is not implemented it should read as R/W Preset Optional
zero and be ignored on write.

Tertiary cache sets per way:

Encoding| Sets Per Way
0 64
128

256
512 R Preset Required

TS 27:24

1024
2048
4096
8192

5 Reserved

BN~ wN]E-

[ee]

MIPS32™ Architecture For Programmers Volume lll, Revision 2.00 101

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Table 8-32 Config2 Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
Tertiary cache line size:
Encoding| Line Size
0 No cache
present
1 4
2 8
TL 23:20 R Preset Required
3 16
4 32
5 64
6 128
7 256
8-15 Reserved
Tertiary cache associativity:
Encoding| Associativity
0 Direct
Mapped
1 2
TA 19:16 z j R Preset Required
4 5
5 6
6 7
7 8
8-15 Reserved
Implementation-specific secondary cache control of
SuU 15:12 | status bits. If this field is not implemented it should| R/W Preset Optional
read as zero and be ignored on write.
Secondary cache sets per way:
Encoding| Sets Per Way
0 64
1 128
2 256
SS 11:8 3 512 R Preset Required
4 1024
5 2048
6 4096
7 8192
8-15 Reserved
102 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.27 Configuration Register 2 (CPO Register 16, Select 2)

Table 8-32 Config2 Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
Secondary cache line size:
Encoding| Line Size
0 No cache
present
1 4
2 8
SL 7:4 R Preset Required
3 16
4 32
5 64
6 128
7 256
8-15 Reserved
Secondary cache associativity:
Encoding| Associativity
0 Direct
Mapped
1 2
SA 3.0 2 3 R Preset Required
3 4
4 5
5 6
6 7
7 8
8-15 Reserved
MIPS32™ Architecture For Programmers Volume lll, Revision 2.00 103

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.28 Configuration Register 3 (CPO Register 16, Select 3)

Compliance Level:Required if any optional feature described by this register is implemented: Release 2 of the
Architecture, the SmartMIPS ASE, or trace logic; optional otherwise.

The Config3register encodes additional capabilities. All fields inGoafig3register are read-only.

Figure 8-26shows the format of theonfig3register;Table 8-33describes th€onfig3register fields.

Figure 8-26 Config3 Register Format
31 30 7 6 5 4 3 2 1 0

0
M 000 0000 0000 0000 0000 0000 LPAVEIQVInt SP 0 | SM TL

Table 8-33 Config3 Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
This bitis reserved to indicate that a Config4 registef is
M 31 present. With the current architectural definition, this R Preset Required
bit should always read as a 0.
0 30:8,3:2| Must be written as zeros; returns zeros on read 0 0 Reserved
Denotes the presence of support for large physical
addresses on MIPS64 processors. Not used by MIP532 Required
LPA 7 processors and returns zero on read. R Preset (Release 2
For implementations of Release 1 of the Architectufe, Only)
this bit returns zero on read.
Support for an external interrupt controller is
implemented.
Encoding Meaning
0 Support for EIC interrupt mode is not
implemented)
VEIC 6 1 Support for EIC interrupt mode is R Preset (Egﬂeu;;%dz
implemented Only)
For implementations of Release 1 of the Architectufe,
this bit returns zero on read.
This bit indicates not only that the processor contains
support for an external interrupt controller, but that
such a controller is attached.
Vectored interrupts implemented. This bit indicates
whether vectored interrupts are implemented.
Encoding Meaning Required
Vint 5 0 Vector interrupts are not implemented R Preset (Release 2
1 Vectored interrupts are implemented Only)
For implementations of Release 1 of the Architectufe,
this bit returns zero on read.
104 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.28 Configuration Register 3 (CPO Register 16, Select 3)

Table 8-33 Config3 Register Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

SP

Small (1KByte) page support is implemented, and 1
PageGrainregister exists

Encoding Meaning

0 Small page support is not implementged

1 Small page support is implemented

For implementations of Release 1 of the Architectu
this bit returns zero on read.

he

Preset

Required
(Release 2
Only)

SM

SmartMIPS™ ASE implemented. This bit indicates
whether the SmartMIPS ASE is implemented.

Encoding Meaning

0 SmartMIPS ASE is not implementdgd
1 SmartMIPS ASE is implemented

Preset

Required

TL

Trace Logic implemented. This bit indicates whethg
PC or data trace is implemented.

Encoding Meaning

0 Trace logic is not implemented

1 Trace logic is implemented

=

Preset

Required

MIPS32™ Architecture For Programmers Volume lll, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

105

8.29 Reserved for Implementations (CPO Register 16, Selects 6 and 7)

Compliance Level:Optional: Implementation Dependent.

CPO register 16, Selects 6 and 7 are reserved for implementation dependent use and is not defined by the architecture.
In order to use CPO register 16, Selects 6 and 7, it is not necessary to implement CPO register 16, Selects 2 through 5
only to set the M bit in each of these registers. That is, i€tirdig2andConfig3registers are not needed for the
implementation, they need not be implemented just to provide the M bits.

106 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.30 Load Linked Address (CPO Register 17, Select 0)

8.30 Load Linked Address (CPO Register 17, Select 0)

Compliance Level:Optional.

TheLLAddrregister contains relevant bits of the physical address read by the most recent Load Linked instruction. This
register is implementation dependent and for diagnostic purposes only and serves no function during normal operation.

Figure 8-27shows the format of theL Addr register;Table 8-34describes theLAddr register fields.

Figure 8-27 LLAddr Register Format
31 0
PAddr

Table 8-34 LLAddr Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State | Compliance

This field encodes the physical address read by the
most recent Load Linked instruction. The format of this
PAddr 31..0 | register is implementation dependent, and an R Undefined Optional
implementation may implement as many of the bits jor
format the address in any way that it finds convenignt.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 107

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.31 WatchLo Register (CPO Register 18)

108

Compliance Level:Optional.

TheWatchLoandWatchHiregisters together provide the interface to a watchpoint debug facility which initiates a watch
exception if an instruction or data access matches the address specified in the registers. As such, they duplicate some
functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are zerStattise

register. If either bit is a one, the WP bit is set inGlaeseregister, and the watch exception is deferred until both the

EXL and ERL bits are zero.

An implementation may provide zero or more pairs of WatchLo and WatchHi registers, referencing them via the select
field of the MTCO/MFCO instructions, and each pair of Watch registers may be dedicated to a particular type of reference
(e.g., instruction or data). Software may determine if at least one palatthLoandWatchHiregisters are implemented

via the WR bit of theConfiglregister. See the discussion of the M bit in\WetchHiregister description below.

TheWatchLoregister specifies the base virtual address and the type of reference (instruction fetch, load, store) to match.
If a particular Watch register only supports a subset of the reference types, the unimplemented enables must be ignored
on write and return zero on read. Software may determine which enables are supported by a particular Watch register
pair by setting all three enables bits and reading them back to see which ones were actually set.

It is implementation dependent whether a data watch is triggered by a prefetch, CACHE, or SYNCI (Release 2 only)
instruction whose address matches the Watch register address match conditions.

Figure 8-28shows the format of thé/atchLoregister;Table 8-35describes th@atchLoregister fields.

Figure 8-28 WatchLo Register Format
31 3210
VAddr |1 [R|W|

Table 8-35 WatchLo Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State | Compliance

This field specifies the virtual address to match. Ngte
VAddr 31..3 that this is a doubleword address, since bits [2:0] afe R/W Undefined Required
used to control the type of match.

If this bit is one, watch exceptions are enabled for
instruction fetches that match the address and are
actually issued by the processor (speculative

2 instructions never cause Watch exceptions). R/W 0 Optional

If this bit is not implemented, writes to it must be
ignored, and reads must return zero.

If this bit is one, watch exceptions are enabled for logds
that match the address.

For the purposes of the MIPS16e PC-relative load
R 1 instructions, the PC-relative reference is considered to RIW 0

be a data, rather than an instruction reference. That is,
the watchpoint is triggered only if this bit is a 1.

Optional

If this bit is not implemented, writes to it must be
ignored, and reads must return zero.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.31 WatchLo Register (CPO Register 18)

Table 8-35 WatchLo Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
If this bit is one, watch exceptions are enabled for
stores that match the address.
W 0 R/W 0 Optional
If this bit is not implemented, writes to it must be
ignored, and reads must return zero.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

109

8.32 WatchHi Register (CPO Register 19)

110

Compliance Level:Optional.

TheWatchLoandWatchHiregisters together provide the interface to a watchpoint debug facility which initiates a watch
exception if an instruction or data access matches the address specified in the registers. As such, they duplicate some
functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are zerStattise

register. If either bit is a one, the WP bit is set inGlaeseregister, and the watch exception is deferred until both the

EXL and ERL bits are zero.

An implementation may provide zero or more pairs of WatchLo and WatchHi registers, referencing them via the select
field of the MTCO/MFCO instructions, and each pair of Watch registers may be dedicated to a particular type of reference
(e.g., instruction or data). Software may determine if at least one palatthLoandWatchHiregisters are implemented

via the WR bit of theConfiglregister. If the M bit is one in th&atchHiregister reference with a select field @f *

another WatchHi/WatchLo pair is implemented with a select fieldof':

TheWatchHiregister contains information that qualifies the virtual address specified WatehLoregister: an ASID,

a G(lobal) bit, an optional address mask, and three bits (I, R, and W) which denote the condition that caused the watch
register to match. If the G bit is one, any virtual address reference that matches the specified address will cause a watch
exception. If the G bit is a zero, only those virtual address references for which the ASID valud\atttieHiregister

matches the ASID value in thentryHi register cause a watch exception. The optional mask field provides address
masking to qualify the address specifiedatchLo

The I, R, and W bits are set by the processor when the corresponding watch register condition is satisfied and indicate
which watch register pair (if more than one is implemented) and which condition matched. When set by the processor,
each of these bits remain set until cleared by software. All three bits are “write one to clear”, such that software must
write a one to the bit in order to clear its value. The typical way to do this is to write the value read fidatctidi

register back t@VatchHi In doing so, only those bits which were set when the register was read are cleared when the
register is written back.

Figure 8-29shows the format of thé&/atchHiregister;Table 8-36describes th&VatchHiregister fields.

Figure 8-29 WatchHi Register Format
31 30 29 24 23 16 15 12 11 3 210
M[G| 0 ASID 0 Mask 1R W

Table 8-36 WatchHi Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State | Compliance

If this bit is one, another pair ¥¥atchHiWatchLo
M 31 registers is implemented at a MTCO or MFCO selegt R Preset Required
field value of h+1’

If this bit is one, any address that matches that specified
in theWatchLoregister will cause a watch exception. |f
G 30 this bit is zero, the ASID field of th&atchHiregister R/W Undefined Required
must match the ASID field of tHentryHi register to
cause a watch exception.

ASID value which is required to match that in the
ASID 23..16 | EntryHiregister if the G bit is zero in thWatchHi R/W Undefined Required
register.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.32 WatchHi Register (CPO Register 19)

Table 8-36 WatchHi Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State | Compliance

Optional bit mask that qualifies the address in the
WatchLaregister. If this field is implemented, any bit i
this field that is a one inhibits the corresponding

address bit from participating in the address match

Mask 11..3 | If this field is not implemented, writes to it must be R/W Undefined Optional
ignored, and reads must return zero.

Software may determine how many mask bits are
implemented by writing ones the this field and then
reading back the result.

This bit is set by hardware when an instruction fetch
condition matches the values in this watch register pair. . Required

2 When set, the bit remains set until cleared by software, wic Undefined (Release 2)

which is accomplished by writing a 1 to the bit.

This bit is set by hardware when a load condition
matches the values in this watch register pair. Wheh . Required

R 1 set, the bit remains set until cleared by software, which wic Undefined (Release 2)

is accomplished by writing a 1 to the bit.

This bit is set by hardware when a store condition
W 0 matches the values in this watch register pair. Whe

set, the bit remains set until cleared by software, wh
is accomplished by writing a 1 to the bit.

Required

n .
ch WicC Undefined (Release 2)

0 219521‘; Must be written as zero; returns zero on read. 0 0 Reserved

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 111

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.33 Reserved for Implementations (CPO Register 22, all Select values)

Compliance Level:Optional: Implementation Dependent.

CPO register 22 is reserved for implementation dependent use and is not defined by the architecture.

112 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.34 Debug Register (CP0O Register 23)

8.34 Debug Register (CPO Register 23)

Compliance Level:Optional.

TheDebugregister is part of the EJTAG specification. Refer to that specification for the format and description of this
register.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 113

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.35 DEPC Register (CPO Register 24)

Compliance Level:Optional.

TheDEPCregister is part of the EJTAG specification. Refer to that specification for the format and description of this
register.

All bits of theDEPCregister are significant and must be writable.

8.35.1 Special Handling of the DEPC Register in Processors That Implement the MIPS16e ASE

114

In processors that implement the MIPS16e ASE, a read dERCregister (via MFCO) returns the following value in
the destination GPR:

GPR[rt] ~ RestartPC 3; ; || ISAMode

That is, the upper 31 bits of the restart PC are combined witB#®Modebit and written to the GPR.

Similarly, a write to theDEPCregister (via MTCO) takes the value from the GPR and distributes that value to the restart
PC and théSA Modebit, as follows

RestartPC ~ — GPR[rt] 3,4 [0
ISAMode ~ GPRJrt] ¢

That s, the upper 31 bits of the GPR are written to the upper 31 bits of the restart PC, and the lower bit of the restart PC
is cleared. ThéSA Modebit is loaded from the lower bit of the GPR.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.36 Performance Counter Register (CPO Register 25)

8.36 Performance Counter Register (CPO Register 25)

Compliance Level:Recommended.

The MIPS32 Architecture supports implementation dependent performance counters that provide the capability to count
events or cycles for use in performance analysis. If performance counters are implemented, each performance counter
consists of a pair of registers: a 32-bit control register and a 32-bit counter register. To provide additional capability,
multiple performance counters may be implemented.

Performance counters can be configured to count implementation dependent events or cycles under a specified set of
conditions that are determined by the control register for the performance counter. The counter register increments once
for each enabled event. When the most significant bit of the counter register is a one (the counter overflows), the
performance counter optionally requests an interrupt. In implementations of Release 1 of the Architecture, this interrupt
is combined in a implementation-dependent way with hardware interrupt 5. In Release 2 of the Architecture, pending
interrupts from all performance counters are ORed together to become the PCI bit in the Cause register, and are
prioritized as appropriate to the interrupt mode of the processor. Counting continues after a counter register overflow
whether or not an interrupt is requested or taken.

Each performance counter is mapped into even-odd select valuesRerfi@amtregister: Even selects access the control
register and odd selects access the counter registde 8-37shows an example of two performance counters and how
they map into the select values of efCntregister.

Table 8-37 Example Performance Counter Usage of the PerfCnt CPO Register

PerfCnt
Performance | Register Select
Counter Value PerfCnt Register Usage

PerfCnt, Select 0 Control Register 0

0
PerfCnt, Select 1 Counter Register 0
PerfCnt, Select 2 Control Register 1

1
PerfCnt, Select 3 Counter Register 1

More or less than two performance counters are also possible, extending the select field in the obvious way to obtain the
desired number of performance counters. Software may determine if at least one pair of Performance Counter Control
and Counter registers is implemented via the PC bit in the Configl register. If the M bitis one in the Performance Counter
Control register referenced via a select fieldrf another pair of Performance Counter Control and Counter registers

is implemented at the select valuesrof2’ and ‘n+3'.

The Control Register associated with each performance counter controls the behavior of the performance counter.
Figure 8-30shows the format of the Performance Counter Control Redistiele 8-38describes the Performance
Counter Control Register fields.

Figure 8-30 Performance Counter Control Register Format

31 30 29 11 10 5 4 3 2 1 0
M[w] 0 Event | 1E[U] s| K Ext]
MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 115

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Table 8-38 Performance Counter Control Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State | Compliance

If this bit is a one, another pair of Performance Counter
M 31 Control and Counter registers is implemented at a R Preset Required
MTCO or MFCO select field value ofi+2’ and ‘n+3'.

Denotes that the corresponding Counter register is|64

w 30 bits wide on a MIPS64 processor. Unused ona MIPS32 R Preset Required
processor.
0 29..11 Must be written as zero; returns zero on read (0 Reserved

Selects the event to be counted by the corresponding
Counter Register. The list of events is implementation
dependent, but typical events include cycles,
instructions, memory reference instructions, branch

Event 10.5 instructions, cache and TLB misses, etc. RIW Undefined Required

Implementations that support multiple performance
counters allow ratios of events, e.g., cache miss ratigs if

cache miss and memory references are selected ag the
events in two counters

Interrupt Enable. Enables the interrupt request whe
the corresponding counter overflows (the most

significant bit of the counter is one. This is bit 31 for
32-bit wide counter or bit 63 of a 64-bit wide countg
denoted by the W bit in this register).

S

=

Note that this bit simply enables the interrupt request.
IE 4 The actual interrupt is still gated by the normal R/W 0 Required
interrupt masks and enable in B@tusregister.

Encoding Meaning
0 Performance counter interrupt disabled
1 Performance counter interrupt enabled

Enables event counting in User Mode. Refer to Section
Section 3.4, "User Mode" on page fdd the conditions
under which the processor is operating in User Modle.

U 3 Encoding Meaning R/W Undefined Required
0 Disable event counting in User Mode
1 Enable event counting in User Mode

Enables event counting in Supervisor Mode (for thqse
processors that implement Supervisor Mode). Refer to
SectionSection 3.3, "Supervisor Mode" on pagfop
the conditions under which the processor is operating
in Supervisor mode.

If the processor does not implement Supervisor Modle,

S 2 this bit must be ignored on write and return zero on R/W Undefined Required
read.
Encoding Meaning
0 Disable event counting in Supervisor Made
1 Enable event counting in Supervisor Mode
116 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.36 Performance Counter Register (CPO Register 25)

Table 8-38 Performance Counter Control Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State | Compliance

Enables event counting in Kernel Mode. Unlike the
usual definition of Kernel Mode as described in Sectipn
Section 3.2, "Kernel Mode" on pagetis bit enables
event counting only when the EXL and ERL bits in the
Statusregister are zero.
K 1 R/W Undefined Required

Encoding Meaning

0 Disable event counting in Kernel Mode

1 Enable event counting in Kernel Mode

Enables event counting when the EXL bit in thiatus
register is one and the ERL bit in tB&atusregister is
zero.

Encoding Meaning

0 Disable event counting while EXL = 1,
EXL 0 ERL=0 RIW Undefined Required

Enable event counting while EXL = 1,
ERL=0

Counting is never enabled when the ERL bit in the
Statusregister or the DM bit in thBebugregister is
one.

The Counter Register associated with each performance counter increments once for each enabligdiev8rg1
shows the format of the Performance Counter Counter Registble 8-33escribes the Performance Counter Counter
Register fields.

Figure 8-31 Performance Counter Counter Register Format
31 0
Event Count

Table 8-39 Performance Counter Counter Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State | Compliance
Increments once for each event that is enabled by the

Event corresponding Control Register. When the most

Count 31..0 significant bit is one, a pending interrupt requestis| R/W Undefined Required
ORed with those from other performance counters gnd
indicated by the PCI bit in th@auseregister.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 117

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.37 ErrCtl Register (CPO Register 26, Select 0)

Compliance Level:Optional.

TheErrCtl register provides an implementation dependent diagnostic interface with the error detection mechanisms
implemented by the processor. This register has been used in previous implementations to read and write parity or ECC
information to and from the primary or secondary cache data arrays in conjunction with specific encodings of the Cache
instruction or other implementation-dependent method. The exact format of the ErrCtl register is implementation
dependent and not specified by the architecture. Refer to the processor specification for the format of this register and a

description of the fields.

118 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.38 CacheErr Register (CPO Register 27, Select 0)

8.38 CacheErr Register (CPO Register 27, Select 0)
Compliance Level:Optional.
The CacheErr register provides an interface with the cache error detection logic that may be implemented by a processor.

The exact format of th€acheErrregister is implementation dependent and not specified by the architecture. Refer to
the processor specification for the format of this register and a description of the fields.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 119

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.39 TagLo Register (CPO Register 28, Select 0, 2)

120

Compliance Level:Requiredif a cache is implemente@®ptional otherwise

The TagLoandTagHiregisters are read/write registers that act as the interface to the cache tag array. The Index Store
Tag and Index Load Tag operations of the CACHE instruction useatiieandTagHiregisters as the source or sink
of tag information, respectively.

The exact format of th€agLoandTagHiregisters is implementation dependent. Refer to the processor specification for
the format of this register and a description of the fields.

However, software must be able to write zeros intofagLoandTagHiregisters and then use the Index Store Tag cache
operation to initialize the cache tags to a valid state at powerup.

It is implementation dependent whether there is a sifagieoregister that acts as the interface to all caches, or a
dedicatedraglLoregister for each cache. If multipleagLoregisters are implemented, they occupy the even select values

for this register encoding, with select 0 addressing the instruction cache and select 2 addressing the data cache. Whether
individual TagLoregisters are implemented or not for each cache, processors must accept a write of zero to select 0 and
select 2 offagLoas part of the software process of initializing the cache tags at powerup.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.40 DatalLo Register (CPO Register 28, Select 1, 3)

8.40 Datalo Register (CPO Register 28, Select 1, 3)

Compliance Level:Optional.

TheDatalLoandDataHiregisters are read-only registers that act as the interface to the cache data array and are intended
for diagnostic operation only. The Index Load Tag operation of the CACHE instruction reads the corresponding data
values into théatal. oandDataHi registers.

The exact format and operation of tBatalLoandDataHiregisters is implementation dependent. Refer to the processor
specification for the format of this register and a description of the fields.

It is implementation dependent whether there is a siDgtaLoregister that acts as the interface to all caches, or a
dedicatedDatalLoregister for each cache. If multifbataloregisters are implemented, they occupy the odd select
values for this register encoding, with select 1 addressing the instruction cache and select 3 addressing the data cache.

MIPS32™ Architecture For Programmers Volume lll, Revision 2.00 121

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.41 TagHi Register (CPO Register 29, Select 0, 2)

122

Compliance Level:Requiredif a cache is implemente@®ptional otherwise

The TagLoandTagHiregisters are read/write registers that act as the interface to the cache tag array. The Index Store
Tag and Index Load Tag operations of the CACHE instruction useatiieandTagHiregisters as the source or sink
of tag information, respectively.

The exact format of th€agLoandTagHiregisters is implementation dependent. Refer to the processor specification for
the format of this register and a description of the fields. However, software must be able to write zero$adgtmthe
andTagHiregisters and the use the Index Store Tag cache operation to initialize the cache tags to a valid state at powerup.

It is implementation dependent whether there is a sifagéli register that acts as the interface to all caches, or a
dedicatedragHiregister for each cache. If multiplagHiregisters are implemented, they occupy the even select values

for this register encoding, with select 0 addressing the instruction cache and select 2 addressing the data cache. Whether
individual TagHiregisters are implemented or not for each cache, processors must accept a write of zero to select 0 and
select 2 offagHi as part of the software process of initializing the cache tags at powerup.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.42 DataHi Register (CPO Register 29, Select 1, 3)

8.42 DataHi Register (CPO Register 29, Select 1, 3)

Compliance Level:Optional.

TheDatalLoandDataHiregisters are read-only registers that act as the interface to the cache data array and are intended
for diagnostic operation only. The Index Load Tag operation of the CACHE instruction reads the corresponding data

values into théatal. oandDataHi registers.

The exact format and operation of tBatalLoandDataHiregisters is implementation dependent. Refer to the processor
specification for the format of this register and a description of the fields.

MIPS32™ Architecture For Programmers Volume lll, Revision 2.00 123

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.43 ErrorEPC (CPO Register 30, Select 0)
Compliance Level:Required.

TheErrorEPC register is a read-write register, similar to BfeC register, except th&rrorEPC is used on error
exceptions. All bits of th&rrorEPC register are significant and must be writable. It is also used to store the program
counter on Reset, Soft Reset, Nonmaskable Interrupt (NMI), and Cache Error exceptions.

TheErrorEPC register contains the virtual address at which instruction processing can resume after servicing an error.

ErrorEPC contains either:

« the virtual address of the instruction that was the direct cause of the exception, or

« the virtual address of the immediately preceding branch or jump instruction when the error causing instruction is in a
branch delay slot.

Unlike theEPCregister, there is no corresponding branch delay slot indication farthe&EPC register.

Figure 8-32shows the format of therrorEPC register;Table 8-40describes th&rrorEPC register fields.

Figure 8-32 ErrorEPC Register Format
31 0
ErrorEPC

Table 8-40 ErrorEPC Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
ErrorEPC 31..0 Error Exception Program Counter R/W Undefined Required

8.43.1 Special Handling of the ErrorEPC Register in Processors That Implement the MIPS16e ASE

In processors thatimplement the MIPS16e ASE, a read dtlteEPCregister (via MFCO) returns the following value
in the destination GPR:

GPR[rt] ~ RestartPC 37 ; || ISAMode
That is, the upper 31 bits of the restart PC are combined witB£h®odebit and written to the GPR.

Similarly, a write to thé&errorEPC register (via MTCO) takes the value from the GPR and distributes that value to the
restart PC and th&A Modebit, as follows

RestartPC =~ —~ GPR[rt] 311 [|O
ISAMode ~ GPR[rt] ¢

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the restart PC, and the lower bit of the restart PC
is cleared. ThéSA Modebit is loaded from the lower bit of the GPR.

124 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.44 DESAVE Register (CP0O Register 31)

8.44 DESAVE Register (CPO Register 31)

Compliance Level:Optional.

TheDESAVHegister is part of the EJTAG specification. Refer to that specification for the format and description of this
register.

MIPS32™ Architecture For Programmers Volume lll, Revision 2.00 125

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

126 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Appendix A
Alternative MMU Organizations

The main body of this specification describes the TLB-based MMU organization. This appendix describes other
potential MMU organizations.

A.1 Fixed Mapping MMU

As an alternative to the full TLB-based MMU, the MIPS32 Architecture supports a lightweight memory management
mechanism with fixed virtual-to-physical address translation, and no memory protection beyond what is provided by the
address error checks required of all MMUs. This may be useful for those applications which do not require the
capabilities of a full TLB-based MMU.

A.1.1 Fixed Address Translation

Address translation using the Fixed Mapping MMU is done as follows:

* Kseg0 and Ksegl addresses are translated in an identical manner to the TLB-based MMU: they both map to the low
512MB of physical memory.

» Useg/Suseg/Kuseg addresses are mapped by adding 1GB to the virtual address when the ERL bit is zero in the Status
register, and are mapped using an identity mapping when the ERL bit is one in the Status register.

» Sseg/Ksseg/Kseg2/Kseg3 addresses are mapped using an identity mapping.
Supervisor Mode is not supported with a Fixed Mapping MMU.

Table 8-41lists all mappings from virtual to physical addresses. Note that address error checking is still done before the
translation process. Therefore, an attempt to reference kseg0 from User Mode still results in an address error exception,
just as it does with a TLB-based MMU.

Table 8-41 Physical Address Generation from Virtual Addresses

Generates Physical Address
Segment
Name Virtual Address Statuszg, =0 Statugg, =1
useg 16#0000 0000 16#4000 0000 16#0000 0000
suseg through through through
kuseg 16#7FFF FFFF 16#BFFF FFFF 16#7FFF FFFF
16#8000 0000 16#0000 0000
kseg0 through through
16#9FFF FFFF 16#1FFF FFFF
16#A000 0000 16#0000 0000
through through
ksegl
16#BFFF FFFF 16#16#1FFF FFFF
MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 127

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Appendix A Alternative MMU Organizations

Table 8-41 Physical Address Generation from Virtual Addresses

Segment Generates Physical Address
Name Virtual Address Statuszg, =0 Statugg, =1
sseg 16#C000 0000 16#C000 0000
ksseg through through
kseg2 16#DFFF FFFF 16#DFFF FFFF
16#E000 0000 16#E000 0000
kseg3 through through
16#FFFF FFFF 16#FFFF FFFF

Note that this mapping means that physical addres&22000 0000 throughl6#3FFF FFFF are inaccessible when
the ERL bit is off in theStatusregister, and physical addresdé#8000 0000 throughl6#BFFF FFFF are
inaccessible when the ERL bit is on in S@tusregister.

Figure 8-33%hows the memory mapping when the ERL bit in Btatusregister is zerof-igure 8-34shows the memory
mapping when the ERL bit is one.

128 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

A.1 Fixed Mapping MMU

Figure 8-33 Memory Mapping when ERL =0

16#FFFF FFFF

16#E000 0000

16#DFFF FFFH

16#C000 0000

16#BFFF FFFH

16#A000 0000

16#9FFF FFFF

16#8000 0000

16#7FFF FFFF

16#0000 0000

kseg3 kseg3 Mapped

kseg2 kseg2

ksseg ksseg

sseg sseg Mapped

ksegl

ksegO kuseg
suseg
useg
Mapped

kuseg

suseg

useg Unmapped
ksegO
ksegl
Mapped

16#FFFF FFFF

16#E000 0000
16#DFFF FFFF

16#C000 0000
16#BFFF FFFF

16#4000 0000
16#3FFF FFFF

16#2000 0000
16#1FFF FFFF

16#0000 0000

MIPS32™ Architecture For Programmers Volume lll, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

129

Appendix A Alternative MMU Organizations

Figure 8-34 Memory Mapping when ERL = 1

16#FFFF FFFF 16#FFFF FFFF
kseg3
kseg3 q
M
164E000 0000 appe 16#E000 0000
16#DFFF FFFH kseg2 16#DFFF FFFF
kseg2
ksseg
ksseg
sseg
16#C000 0000 sseg 16#C000 0000
- Mapped
16#BFFF FFFH 16#BFFF FFFF
ksegl
16#A000 0000
Unmapped
16#9FFF FFFF
kseg0
16#8000 0000 16#8000 0000
16#7FFF FFFF 16#7FFF FFFF
kuseg
kuseg
suseg
suseg
useg
useg
Mapped
ksegO
ksegl
16#0000 0000 Mapped 16#0000 0000

A.1.2 Cacheability Attributes

130

Because the TLB provided the cacheability attributes for the kuseg, kseg2, and kseg3 segments, some mechanism is
required to replace this capability when the fixed mapping MMU is used. Two additional fields are adde@aafige

register whose encoding is identical to that of the KO field. These additions are the K23 and KU fields which control the
cacheability of the kseg2/kseg3 and the kuseg segments, respectively. Note that when the ERL bit iStatus the

register, kuseg data references are always treated as uncacheable references, independent of the value of the KU field.
The operation of the processotdNDEFINED if the ERL bit is set while the processor is executing instructions from

kuseg.

The cacheability attributes for kseg0 and ksegl are provided in the same manner as for a TLB-based MMU: the
cacheability attribute for ksegO comes from the KO fielGaififig and references to ksegl are always uncached.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

A.2 Block Address Translation

Figure 8-35shows the format of the additions to tBenfigregister;Table 8-42describes the ne@onfigregister fields.

Figure 8-35 Config Register Additions
31 30 2827 25 24 16 15 141312 109 7 6 3 2 0
\M\ K23 \ KU \ 0 \BE\ AT \ AR \ MT \ 0 \ KO \

Table 8-42 Config Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State | Compliance
. Kseg2/Kseg3 coherency algorithm. Sedle 8-8 on " :
K23 30:28 page 61for the encoding of this field. RIW Undefined Optional
. Kuseg coherency algorithm when Staigisis zero.] :
KU 27:25 SeeTable 8-8 on page 6fbr the encoding of this field RIW Undefined Optional

A.1.3 Changes to the CPO Register Interface
Relative to the TLB-based address translation mechanism, the following changes are necessary to the CPO register
interface:

» The Index, Random, EntryLoO, EntryLol, Context, PageMask, Wired, and EntryHi registers are no longer required
and may be removed.

» The TLBWR, TLBWI, TLBP, and TLBR instructions are no longer required and should cause a Reserved Instruction
Exception.

A.2 Block Address Translation

This section describes the architecture for a block address translation (BAT) mechanism that reuses much of the
hardware and software interface that exists for a TLB-Based virtual address translation mechanism. This mechanism has
the following features:

* It preserves as much as possible of the TLB-Based interface, both in hardware and software.
* It provides independent base-and-bounds checking and relocation for instruction references and data references.

* It provides optional support for base-and-bounds relocation of kseg2 and kseg3 virtual address regions.

A.2.1 BAT Organization

The BAT is an indexed structure which is used to translate virtual addresses. It contains pairs of instruction/data entries
which provide the base-and-bounds checking and relocation for instruction references and data references, respectively.
Each entry contains a page-aligned bounds virtual page number, a base page frame number (whose width is
implementation dependent), a cache coherence field (C), a dirty (D) bit, and a valid (¥ybie 8-36shows the logical
arrangement of a BAT entry.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 131

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Appendix A Alternative MMU Organizations

Figure 8-36 Contents of a BAT Entry

BoundsVPN

BasePFN C D VM

The BAT is indexed by the reference type and the address region to be checked as $hbier8id3

Table 8-43 BAT Entry Assignments

Reference
Entry Index Type Address Region
0 Instruction
useg/kuseg
1 Data
2 Instruction kseg2
3 Data (or kseg2 and kseg3)
4 Instruction
kseg3

5 Data

Entries 0 and 1 are required. Entries 2, 3, 4 and 5 are optional and may be implemented as necessary to address the needs
of the particular implementation. If entries for kseg2 and kseg3 are not implemented, it is implementation-dependent
how, if at all, these address regions are translated. One alternative is to combine the mapping for kseg2 and kseg3 into a
single pair of instruction/data entries. Software may determine how many BAT entries are implemented by looking at

the MMU Size field of th&€onfiglregister.

A.2.2 Address Translation

When a virtual address translation is requested, the BAT entry that is appropriate to the reference type and address region
isread. If the virtual address is greater than the selected bounds address, or if the valid bit is off in the entry, a TLB Invalid
exception of the appropriate reference type is initiated. If the reference is a store and the D bit is off in the entry, a TLB
Modified exception is initiated. Otherwise, the base PFN from the selected entry, shifted to align with bit 12, is added to

the virtual address to form the physical address. The BAT process can be described as follows:
i~ Selectindex (reftype, va)
bounds « BAT[i] poundsven Il 1

pfn < BAT[]] gasePEN

12

c < BAT[] ¢
d < BAT[l o
vV < BAT[] v

if (va > bounds) or (v = 0) then
InitiateTLBInvalidException(reftype)

endif

if (d = 0) and (reftype = store) then
InitiateTLBModifiedException()

endif

132 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

A.2 Block Address Translation

pa —va+(pfn||0 12y

Making all addresses out-of-bounds can only be done by clearing the valid bit in the BAT entry. Setting the bounds value
to zero leaves the first virtual page mapped.

A.2.3 Changes to the CPO Register Interface
Relative to the TLB-based address translation mechanism, the following changes are necessary to the CPO register
interface:
» Thelndexregister is used to index the BAT entry to be read or written by the TLBWI and TLBR instructions.
» TheEntryHi register is the interface to the BoundsVPN field in the BAT entry.

» TheEntryLoOregister is the interface to the BasePFN and C, D, and V fields of the BAT entry. The register has the
same format as for a TLB-based MMU.

» TheRandomEntryLol, Contexf PageMaskandWiredregisters are eliminated. The effects of a read or write to
these registers IINDEFINED.

e The TLBP and TLBWR instructions are unnecessary. The TLBWI and TLBR instructions reference the BAT entry
whose index is contained in thedexregister. The effects of executing a TLBP or TLBWRGWNDEFINED, but
processors should prefer a Reserved Instruction Exception.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00 133

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Appendix A Alternative MMU Organizations

134 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Appendix B

Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant
changes to this document since its last release. Significant changes are defined as those which you should take note of
as you use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

Please note: Limitations on the authoring tools make it difficult to place change bars on changes to figures. Change bars
on figure titles are used to denote a potential change in the figure itself.

Revision Date Description
0.92 January 20, 2001 Internal review copy of reorganized and updated architecture documentation.
0.95 March 12, 2001 Clean up document for external review release

Update based on review feedback:

» Change ProbEn to ProbeTrap in the EJTAG Debug entry vector location
discussion.

» Add cache error and EJTAG Debug exceptions to the list of exceptions that
do not go through the general exception processing mechanism.

» Fix incorrect branch offset adjustment in general exception processing
pseudo code to deal with extended MIPS16e instructions.

» Add Config,, to denote an instruction cache with both virtual indexing and
virtual tags.

» Correct XContext register description to note that both BadVPN2 and R

1.00 August 29, 2002 fields are UNPREDICTABLE after an address error exception.

* Note that Supervisor Mode is not supported with a Fixed Mapping MMU.

» Define TagLo bits 4..3 as implementation dependent.

» Describe the intended usage model differences between Reset and Soft
Reset Exceptions.

» Correct the minimum number of TLB entries to be 3, not 2, and show an
example of the need for 3.

» Modify the description of PageMask and the TLB lookup process to
acknowledge the fact that not all implementations may support all page
sizes.

Update the specification with the changes introduced in Release 2 of the

Architecture. Changes in this revision include:

» The following new Coprocessor 0 registers were added: EBase, HWREna,
IntCtl, PageGrain, SRSCtl, SRSMap.

» The following Coprocessor 0 registers were modified: Cause, Config,
Config2, Config3, EntryHi, EntryLoO, EntryLol, PageMask, PerfCnt,

1.90 September 1, 2002 Status, WatchHi, WatchLo.

The descriptions of Virtual memory, exceptions, and hazards have been
updated to reflect the changes in Release 2.

A chapter on GPR shadow regsiters has been added.

The chapter on CPO hazards has been completely rewriten to reflect the
Release 2 changes.

MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

135

Appendix B Revision History

Revision Date Description
Complete the update to include Release 2 changes. These include:

» Make bits 12..11 of the PageMask register power up zero and be gated by
1K page enable. This eliminates the problem of having these bits set to 2#11
on a Release 2 chip in which kernel software has not enabled 1K page
support.

» Correct the address of the cache error vector when the BEV bit is 1. It
should be 16#BFC0.0300,. not 16#BFC0.0200.

» Correct the introduction to shadow registers to note that the SRSCtl register
is not updated at the end of an exception in which $§ajus 1.

 Clarify that a MIPS16e PC-relative load reference is a data reference for the

2.00 June 9, 2003 purposes of the Watch registers.

» Add note about a hardware interrupt being deasserted between the time that
the processor detects the interrupt request and the time that the software
interrupt handler runs. Software must be prepared for this case and simply
dismiss the interrupt via an ERET.

* Add restriction that software must set EBasg,to zero in all bit positions
less than or equal to the most significant bit in the vector offset. This is only

required in certain combinations of vector number and vector spacing when
using VI or EIC Interrupt modes.

» Add suggested software TLB init routine which reduced the probability of
triggering a machine check.

136 MIPS32™ Architecture For Programmers Volume Ill, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

	MIPS32™ Architecture For Programmers Volume III: The MIPS32™ Privileged Resource Architecture
	Table of Contents
	List of Figures
	List of Tables
	About This Book
	1.1� Typographical Conventions
	1.1.1� Italic Text
	1.1.2� Bold Text
	1.1.3� Courier Text

	1.2� UNPREDICTABLE and UNDEFINED
	1.2.1� UNPREDICTABLE
	1.2.2� UNDEFINED

	1.3� Special Symbols in Pseudocode Notation
	1.4� For More Information

	The MIPS32 Privileged Resource Architecture
	2.1� Introduction
	2.2� The MIPS Coprocessor Model
	2.2.1� CP0 - The System Coprocessor
	2.2.2� CP0 Registers

	MIPS32 Operating Modes
	3.1� Debug Mode
	3.2� Kernel Mode
	3.3� Supervisor Mode
	3.4� User Mode
	3.5� Other Modes
	3.5.1� 64-bit Floating Point Operations Enable
	3.5.2� 64-bit FPR Enable

	Virtual Memory
	4.1� Support in Release 1 and Release 2 of the Architecture
	4.1.1� Virtual Memory

	4.2� Terminology
	4.2.1� Address Space
	4.2.2� Segment and Segment Size
	4.2.3� Physical Address Size (PABITS)

	4.3� Virtual Address Spaces
	4.4� Compliance
	4.5� Access Control as a Function of Address and Operating Mode
	4.6� Address Translation and Cache Coherency Attributes for the kseg0 and kseg1 Segments
	4.7� Address Translation for the kuseg Segment when StatusERL = 1
	4.8� Special Behavior for the kseg3 Segment when DebugDM = 1
	4.9� TLB-Based Virtual Address Translation
	4.9.1� Address Space Identifiers (ASID)
	4.9.2� TLB Organization
	4.9.3� TLB Initialization
	4.9.4� Address Translation

	Interrupts and Exceptions
	5.1� Interrupts
	5.1.1� Interrupt Modes
	5.1.1.1� Interrupt Compatibility Mode
	5.1.1.2� Vectored Interrupt Mode
	5.1.1.3� External Interrupt Controller Mode

	5.1.2� Generation of Exception Vector Offsets for Vectored Interrupts

	5.2� Exceptions
	5.2.1� Exception Vector Locations
	5.2.2� General Exception Processing
	5.2.3� EJTAG Debug Exception
	5.2.4� Reset Exception
	5.2.5� Soft Reset Exception
	5.2.6� Non Maskable Interrupt (NMI) Exception
	5.2.7� Machine Check Exception
	5.2.8� Address Error Exception
	5.2.9� TLB Refill Exception
	5.2.10� TLB Invalid Exception
	5.2.11� TLB Modified Exception
	5.2.12� Cache Error Exception
	5.2.13� Bus Error Exception
	5.2.14� Integer Overflow Exception
	5.2.15� Trap Exception
	5.2.16� System Call Exception
	5.2.17� Breakpoint Exception
	5.2.18� Reserved Instruction Exception
	5.2.19� Coprocessor Unusable Exception
	5.2.20� Floating Point Exception
	5.2.21� Coprocessor 2 Exception
	5.2.22� Watch Exception
	5.2.23� Interrupt Exception

	GPR Shadow Registers
	6.1� Introduction to Shadow Sets
	6.2� Support Instructions

	CP0 Hazards
	7.1� Introduction
	7.2� Types of Hazards
	7.2.1� Execution Hazards
	7.2.2� Instruction Hazards

	7.3� Hazard Clearing Instructions
	7.3.1� Instruction Encoding

	Coprocessor 0 Registers
	8.1� Coprocessor 0 Register Summary
	8.2� Notation
	8.3� Index Register (CP0 Register 0, Select 0)
	8.4� Random Register (CP0 Register 1, Select 0)
	8.5� EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)
	8.6� Context Register (CP0 Register 4, Select 0)
	8.7� PageMask Register (CP0 Register 5, Select 0)
	8.8� PageGrain Register (CP0 Register 5, Select 1)
	8.9� Wired Register (CP0 Register 6, Select 0)
	8.10� HWREna Register (CP0 Register 7, Select 0)
	8.11� BadVAddr Register (CP0 Register 8, Select 0)
	8.12� Count Register (CP0 Register 9, Select 0)
	8.13� Reserved for Implementations (CP0 Register 9, Selects 6 and 7)
	8.14� EntryHi Register (CP0 Register 10, Select 0)
	8.15� Compare Register (CP0 Register 11, Select 0)
	8.16� Reserved for Implementations (CP0 Register 11, Selects 6 and 7)
	8.17� Status Register (CP Register 12, Select 0)
	8.18� IntCtl Register (CP0 Register 12, Select 1)
	8.19� SRSCtl Register (CP0 Register 12, Select 2)
	8.20� SRSMap Register (CP0 Register 12, Select 3)
	8.21� Cause Register (CP0 Register 13, Select 0)
	8.22� Exception Program Counter (CP0 Register 14, Select 0)
	8.22.1� Special Handling of the EPC Register in Processors That Implement the MIPS16e ASE

	8.23� Processor Identification (CP0 Register 15, Select 0)
	8.24� EBase Register (CP0 Register 15, Select 1)
	8.25� Configuration Register (CP0 Register 16, Select 0)
	8.26� Configuration Register 1 (CP0 Register 16, Select 1)
	8.27� Configuration Register 2 (CP0 Register 16, Select 2)
	8.28� Configuration Register 3 (CP0 Register 16, Select 3)
	8.29� Reserved for Implementations (CP0 Register 16, Selects 6 and 7)
	8.30� Load Linked Address (CP0 Register 17, Select 0)
	8.31� WatchLo Register (CP0 Register 18)
	8.32� WatchHi Register (CP0 Register 19)
	8.33� Reserved for Implementations (CP0 Register 22, all Select values)
	8.34� Debug Register (CP0 Register 23)
	8.35� DEPC Register (CP0 Register 24)
	8.35.1� Special Handling of the DEPC Register in Processors That Implement the MIPS16e ASE

	8.36� Performance Counter Register (CP0 Register 25)
	8.37� ErrCtl Register (CP0 Register 26, Select 0)
	8.38� CacheErr Register (CP0 Register 27, Select 0)
	8.39� TagLo Register (CP0 Register 28, Select 0, 2)
	8.40� DataLo Register (CP0 Register 28, Select 1, 3)
	8.41� TagHi Register (CP0 Register 29, Select 0, 2)
	8.42� DataHi Register (CP0 Register 29, Select 1, 3)
	8.43� ErrorEPC (CP0 Register 30, Select 0)
	8.43.1� Special Handling of the ErrorEPC Register in Processors That Implement the MIPS16e ASE

	8.44� DESAVE Register (CP0 Register 31)

	Alternative MMU Organizations
	A.1� Fixed Mapping MMU
	A.1.1� Fixed Address Translation
	A.1.2� Cacheability Attributes
	A.1.3� Changes to the CP0 Register Interface

	A.2� Block Address Translation
	A.2.1� BAT Organization
	A.2.2� Address Translation
	A.2.3� Changes to the CP0 Register Interface

	Revision History

