
Document Number: MD00090
Revision 2.00
June 9, 2003

MIPS Technologies, Inc.
1225 Charleston Road

Mountain View, CA 94043-1353

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MIPS32™ Architecture For Programmers
Volume III: The MIPS32™ Privileged Resource

Architecture

Copyright © 2001-2003 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) are reserved under the Copyright Laws of the United States of America.

If this document is provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format),
then its use and distribution is subject to a written agreement with MIPS Technologies, Inc. ("MIPS Technologies"). UNDER
NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY WITHOUT THE EXPRESS WRITTEN CONSENT OF MIPS TECHNOLOGIES.

This document contains information that is proprietary to MIPS Technologies. Any copying, reproducing, modifying, or use of
this information (in whole or in part) which is not expressly permitted in writing by MIPS Technologies or a
contractually-authorized third party is strictly prohibited. At a minimum, this information is protected under unfair competition
and copyright laws. Violations thereof may result in criminal penalties and fines.

MIPS Technologies or any contractually-authorized third party reserves the right to change the information contained in this
document to improve function, design or otherwise. MIPS Technologies does not assume any liability arising out of the
application or use of this information, or of any error of omission in such information. Any warranties, whether express,
statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular
purpose, are excluded. Any license under patent rights or any other intellectual property rights owned by MIPS Technologies
or third parties shall be conveyed by MIPS Technologies or any contractually-authorized third party in a separate license
agreement between the parties.

The information contained in this document shall not be exported or transferred for the purpose of reexporting in violation of
any U.S. or non-U.S. regulation, treaty, Executive Order, law, statute, amendment or supplement thereto.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government (“Government”), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or any contractually-authorized third party.

MIPS®, R3000®, R4000®, R5000® and R10000® are among the registered trademarks of MIPS Technologies, Inc. in the
United States and certain other countries, and MIPS16™, MIPS16e™, MIPS32™, MIPS64™, MIPS-3D™, MIPS-based™,
MIPS I™, MIPS II™, MIPS III™, MIPS IV™, MIPS V™, MDMX™, MIPSsim™, MIPSsimCA™, MIPSsimIA™,
QuickMIPS™, SmartMIPS™, MIPS Technologies logo, 4K™, 4Kc™, 4Km™, 4Kp™, 4KE™, 4KEc™, 4KEm™, 4KEp™,
4KS™, 4KSc™, M4K™, 5K™, 5Kc™, 5Kf™, 20K™, 20Kc™, 25Kf™, R4300™, ASMACRO™, ATLAS™, BusBridge™,
CoreFPGA™, CoreLV™, EC™, JALGO™, MALTA™, MGB™, PDtrace™, SEAD™, SEAD-2™, SOC-it™, The Pipeline™,
and YAMON™ are among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

Template: B1.06, Build with Conditional Tags: 2B ARCH MIPS32
MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

...........
Table of Contents

Chapter 1 About This Book ..1
1.1 Typographical Conventions ...1

1.1.1 Italic Text ...1
1.1.2 Bold Text ...1
1.1.3 Courier Text ...1

1.2 UNPREDICTABLE and UNDEFINED ..2
1.2.1 UNPREDICTABLE...2
1.2.2 UNDEFINED...2

1.3 Special Symbols in Pseudocode Notation..2
1.4 For More Information ..4

Chapter 2 The MIPS32 Privileged Resource Architecture ...7
2.1 Introduction..7
2.2 The MIPS Coprocessor Model...7

2.2.1 CP0 - The System Coprocessor ...7
2.2.2 CP0 Registers...7

Chapter 3 MIPS32 Operating Modes ..9
3.1 Debug Mode..9
3.2 Kernel Mode ..9
3.3 Supervisor Mode ..9
3.4 User Mode..10
3.5 Other Modes...10

3.5.1 64-bit Floating Point Operations Enable..10
3.5.2 64-bit FPR Enable..10

Chapter 4 Virtual Memory ..11
4.1 Support in Release 1 and Release 2 of the Architecture ..11

4.1.1 Virtual Memory ...11
4.2 Terminology...11

4.2.1 Address Space..11
4.2.2 Segment and Segment Size..11
4.2.3 Physical Address Size (PABITS)...11

4.3 Virtual Address Spaces ..12
4.4 Compliance ..14
4.5 Access Control as a Function of Address and Operating Mode ..14
4.6 Address Translation and Cache Coherency Attributes for the kseg0 and kseg1 Segments..............................15
4.7 Address Translation for the kuseg Segment when StatusERL = 1 ..16
4.8 Special Behavior for the kseg3 Segment when DebugDM = 1 ...16
4.9 TLB-Based Virtual Address Translation ...16

4.9.1 Address Space Identifiers (ASID) ...16
4.9.2 TLB Organization ..17
4.9.3 TLB Initialization...17
4.9.4 Address Translation ...19

Chapter 5 Interrupts and Exceptions ...23
5.1 Interrupts ..23

5.1.1 Interrupt Modes..24
5.1.2 Generation of Exception Vector Offsets for Vectored Interrupts..31

5.2 Exceptions..32
5.2.1 Exception Vector Locations...32
5.2.2 General Exception Processing ...34
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 i

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

5.2.3 EJTAG Debug Exception ..36
5.2.4 Reset Exception ...36
5.2.5 Soft Reset Exception..37
5.2.6 Non Maskable Interrupt (NMI) Exception ...38
5.2.7 Machine Check Exception ...39
5.2.8 Address Error Exception..39
5.2.9 TLB Refill Exception...40
5.2.10 TLB Invalid Exception ..40
5.2.11 TLB Modified Exception...41
5.2.12 Cache Error Exception...42
5.2.13 Bus Error Exception...42
5.2.14 Integer Overflow Exception...43
5.2.15 Trap Exception...43
5.2.16 System Call Exception...43
5.2.17 Breakpoint Exception...43
5.2.18 Reserved Instruction Exception ...44
5.2.19 Coprocessor Unusable Exception ..44
5.2.20 Floating Point Exception ...45
5.2.21 Coprocessor 2 Exception ...45
5.2.22 Watch Exception..45
5.2.23 Interrupt Exception ..46

Chapter 6 GPR Shadow Registers...47
6.1 Introduction to Shadow Sets ..47
6.2 Support Instructions ...48

Chapter 7 CP0 Hazards ...49
7.1 Introduction..49
7.2 Types of Hazards ...49

7.2.1 Execution Hazards ...49
7.2.2 Instruction Hazards ..50

7.3 Hazard Clearing Instructions ...51
7.3.1 Instruction Encoding..51

Chapter 8 Coprocessor 0 Registers ...53
8.1 Coprocessor 0 Register Summary..53
8.2 Notation..56
8.3 Index Register (CP0 Register 0, Select 0)..57
8.4 Random Register (CP0 Register 1, Select 0) ...58
8.5 EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0) ...59
8.6 Context Register (CP0 Register 4, Select 0) ..63
8.7 PageMask Register (CP0 Register 5, Select 0) ..64
8.8 PageGrain Register (CP0 Register 5, Select 1)..66
8.9 Wired Register (CP0 Register 6, Select 0)...68
8.10 HWREna Register (CP0 Register 7, Select 0) ...69
8.11 BadVAddr Register (CP0 Register 8, Select 0) ...70
8.12 Count Register (CP0 Register 9, Select 0) ...71
8.13 Reserved for Implementations (CP0 Register 9, Selects 6 and 7) ...71
8.14 EntryHi Register (CP0 Register 10, Select 0)..72
8.15 Compare Register (CP0 Register 11, Select 0) ..74
8.16 Reserved for Implementations (CP0 Register 11, Selects 6 and 7) ...74
8.17 Status Register (CP Register 12, Select 0) ...75
8.18 IntCtl Register (CP0 Register 12, Select 1) ...82
8.19 SRSCtl Register (CP0 Register 12, Select 2)...84
8.20 SRSMap Register (CP0 Register 12, Select 3) ..86
8.21 Cause Register (CP0 Register 13, Select 0) ...87
ii MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

........

......

......
8.22 Exception Program Counter (CP0 Register 14, Select 0) ..91
8.22.1 Special Handling of the EPC Register in Processors That Implement the MIPS16e ASE......................91

8.23 Processor Identification (CP0 Register 15, Select 0) ...92
8.24 EBase Register (CP0 Register 15, Select 1) ..93
8.25 Configuration Register (CP0 Register 16, Select 0) ..95
8.26 Configuration Register 1 (CP0 Register 16, Select 1) ...97
8.27 Configuration Register 2 (CP0 Register 16, Select 2) ...101
8.28 Configuration Register 3 (CP0 Register 16, Select 3) ...104
8.29 Reserved for Implementations (CP0 Register 16, Selects 6 and 7) ...106
8.30 Load Linked Address (CP0 Register 17, Select 0) ..107
8.31 WatchLo Register (CP0 Register 18)...108
8.32 WatchHi Register (CP0 Register 19) ...110
8.33 Reserved for Implementations (CP0 Register 22, all Select values) ...112
8.34 Debug Register (CP0 Register 23)...113
8.35 DEPC Register (CP0 Register 24) ...114

8.35.1 Special Handling of the DEPC Register in Processors That Implement the MIPS16e ASE...................114
8.36 Performance Counter Register (CP0 Register 25) ...115
8.37 ErrCtl Register (CP0 Register 26, Select 0)...118
8.38 CacheErr Register (CP0 Register 27, Select 0)..119
8.39 TagLo Register (CP0 Register 28, Select 0, 2) ..120
8.40 DataLo Register (CP0 Register 28, Select 1, 3)...121
8.41 TagHi Register (CP0 Register 29, Select 0, 2) ..122
8.42 DataHi Register (CP0 Register 29, Select 1, 3) ...123
8.43 ErrorEPC (CP0 Register 30, Select 0) ...124

8.43.1 Special Handling of the ErrorEPC Register in Processors That Implement the MIPS16e ASE124
8.44 DESAVE Register (CP0 Register 31)..125

Appendix A Alternative MMU Organizations..127
A.1 Fixed Mapping MMU ...127

A.1.1 Fixed Address Translation ..127
A.1.2 Cacheability Attributes ...130
A.1.3 Changes to the CP0 Register Interface ...131

A.2 Block Address Translation..131
A.2.1 BAT Organization...131
A.2.2 Address Translation ..132
A.2.3 Changes to the CP0 Register Interface ..133

Appendix B Revision History ...135
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 iii

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

iv MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

List of Figures

Figure 4-1: Virtual Address Space ...12
Figure 4-2: References as a Function of Operating Mode ...14
Figure 4-3: Contents of a TLB Entry ...17
Figure 5-1: Interrupt Generation for Vectored Interrupt Mode..28
Figure 5-2: Interrupt Generation for External Interrupt Controller Interrupt Mode ..30
Figure 8-1: Index Register Format ...57
Figure 8-2: Random Register Format...58
Figure 8-3: EntryLo0, EntryLo1 Register Format in Release 1 of the Architecture..59
Figure 8-4: EntryLo0, EntryLo1 Register Format in Release 2 of the Architecture..60
Figure 8-5: Context Register Format ...63
Figure 8-6: PageMask Register Format ...64
Figure 8-7: PageGrain Register Format ...66
Figure 8-8: Wired And Random Entries In The TLB ..68
Figure 8-9: Wired Register Format ..68
Figure 8-10: HWREna Register Format...69
Figure 8-11: BadVAddr Register Format...70
Figure 8-12: Count Register Format ..71
Figure 8-13: EntryHi Register Format ...72
Figure 8-14: Compare Register Format ...74
Figure 8-15: Status Register Format ..75
Figure 8-16: IntCtl Register Format...82
Figure 8-17: SRSCtl Register Format ..84
Figure 8-18: SRSMap Register Format..86
Figure 8-19: Cause Register Format ..87
Figure 8-20: EPC Register Format...91
Figure 8-21: PRId Register Format..92
Figure 8-22: EBase Register Format..93
Figure 8-23: Config Register Format ...95
Figure 8-24: Config1 Register Format ...97
Figure 8-25: Config2 Register Format ...101
Figure 8-26: Config3 Register Format ...104
Figure 8-27: LLAddr Register Format ...107
Figure 8-28: WatchLo Register Format ...108
Figure 8-29: WatchHi Register Format..110
Figure 8-30: Performance Counter Control Register Format...115
Figure 8-31: Performance Counter Counter Register Format..117
Figure 8-32: ErrorEPC Register Format ..124
Figure 8-33: Memory Mapping when ERL = 0 ...129
Figure 8-34: Memory Mapping when ERL = 1 ...130
Figure 8-35: Config Register Additions...131
Figure 8-36: Contents of a BAT Entry...132

.........

...

....

....
List of Tables

Table 1-1: Symbols Used in Instruction Operation Statements ..2
Table 4-1: Virtual Memory Address Spaces ...13
Table 4-2: Address Space Access as a Function of Operating Mode ...15
Table 4-3: Address Translation and Cache Coherency Attributes for the kseg0 and kseg1 Segments 16
Table 4-4: Physical Address Generation...22
Table 5-1: Interrupt Modes ...24
Table 5-2: Request for Interrupt Service in Interrupt Compatibility Mode ..25
Table 5-3: Relative Interrupt Priority for Vectored Interrupt Mode ...27
Table 5-4: Exception Vector Offsets for Vectored Interrupts...32
Table 5-5: Exception Vector Base Addresses ...33
Table 5-6: Exception Vector Offsets...33
Table 5-7: Exception Vectors..34
Table 5-8: Value Stored in EPC, ErrorEPC, or DEPC on an Exception...35
Table 6-1: Instructions Supporting Shadow Sets ..48
Table 7-1: Execution Hazards ...49
Table 7-2: Instruction Hazards..50
Table 7-3: Hazard Clearing Instructions ...51
Table 8-1: Coprocessor 0 Registers in Numerical Order ..53
Table 8-2: Read/Write Bit Field Notation...56
Table 8-3: Index Register Field Descriptions ...57
Table 8-4: Random Register Field Descriptions ...58
Table 8-5: EntryLo0, EntryLo1 Register Field Descriptions in Release 1 of the Architecture ...59
Table 8-6: EntryLo0, EntryLo1 Register Field Descriptions in Release 2 of the Architecture ...60
Table 8-7: EntryLo Field Widths as a Function ofPABITS...61
Table 8-8: Cache Coherency Attributes ..61
Table 8-9: Context Register Field Descriptions..63
Table 8-10: PageMask Register Field Descriptions..64
Table 8-11: Values for the Mask and MaskX1 Fields of the PageMask Register...64
Table 8-12: PageGrain Register Field Descriptions..66
Table 8-13: Wired Register Field Descriptions...68
Table 8-14: HWREna Register Field Descriptions ...69
Table 8-15: BadVAddr Register Field Descriptions ...70
Table 8-16: Count Register Field Descriptions...71
Table 8-17: EntryHi Register Field Descriptions..72
Table 8-18: Compare Register Field Descriptions..74
Table 8-19: Status Register Field Descriptions...75
Table 8-20: IntCtl Register Field Descriptions ...82
Table 8-21: SRSCtl Register Field Descriptions...84
Table 8-22: Sources for new SRSCtlCSS on an Exception or Interrupt ..85
Table 8-23: SRSMap Register Field Descriptions ..86
Table 8-24: Cause Register Field Descriptions...87
Table 8-25: Cause Register ExcCode Field ..90
Table 8-26: EPC Register Field Descriptions ...91
Table 8-27: PRId Register Field Descriptions ..92
Table 8-28: EBase Register Field Descriptions ..93
Table 8-29: Conditions Under Which EBase15..12 Must Be Zero...94
Table 8-30: Config Register Field Descriptions ...95
Table 8-31: Config1 Register Field Descriptions ...97
Table 8-32: Config2 Register Field Descriptions ...101
Table 8-33: Config3 Register Field Descriptions ...104
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 v

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Table 8-34: LLAddr Register Field Descriptions ...107
Table 8-35: WatchLo Register Field Descriptions..108
Table 8-36: WatchHi Register Field Descriptions ..110
Table 8-37: Example Performance Counter Usage of the PerfCnt CP0 Register ...115
Table 8-38: Performance Counter Control Register Field Descriptions ...116
Table 8-39: Performance Counter Counter Register Field Descriptions ..117
Table 8-40: ErrorEPC Register Field Descriptions...124
Table 8-41: Physical Address Generation from Virtual Addresses ..127
Table 8-42: Config Register Field Descriptions ...131
Table 8-43: BAT Entry Assignments..132
vi MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

32™

of the

t

by

ion
Chapter 1

About This Book

The MIPS32™ Architecture For Programmers Volume III comes as a multi-volume set.

• Volume I describes conventions used throughout the document set, and provides an introduction to the MIPS
Architecture

• Volume II provides detailed descriptions of each instruction in the MIPS32™ instruction set

• Volume III describes the MIPS32™ Privileged Resource Architecture which defines and governs the behavior
privileged resources included in a MIPS32™ processor implementation

• Volume IV-a describes the MIPS16e™ Application-Specific Extension to the MIPS32™ Architecture

• Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS32™ Architecture and is not
applicable to the MIPS32™ document set

• Volume IV-c describes the MIPS-3D™ Application-Specific Extension to the MIPS64™ Architecture and is no
applicable to the MIPS32™ document set

• Volume IV-d describes the SmartMIPS™Application-Specific Extension to the MIPS32™ Architecture

1.1 Typographical Conventions

This section describes the use ofitalic, bold andcourier fonts in this book.

1.1.1 Italic Text

• is used foremphasis

• is used forbits, fields, registers, that are important from a software perspective (for instance, address bits used
software, and programmable fields and registers), and variousfloating point instruction formats, such asS, D, andPS

• is used for the memory access types, such ascached anduncached

1.1.2 Bold Text

• represents a term that is beingdefined

• is used forbits andfields that are important from a hardware perspective (for instance,register bits, which are not
programmable but accessible only to hardware)

• is used for ranges of numbers; the range is indicated by an ellipsis. For instance,5..1 indicates numbers 5 through 1

• is used to emphasizeUNPREDICTABLE andUNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruct
pseudocode.
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 1

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

ions
.

, or

ated,

ry

 is

process

here is
ocessor

tation
1.2 UNPREDICTABLE and UNDEFINED

The termsUNPREDICTABLE andUNDEFINED are used throughout this book to describe the behavior of the
processor in certain cases.UNDEFINED behavior or operations can occur only as the result of executing instruct
in a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register)
Unprivileged software can never causeUNDEFINED behavior or operations. Conversely, both privileged and
unprivileged software can causeUNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction
as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE . UNPREDICTABLE operations may cause a result to be generated or not. If a result is gener
it is UNPREDICTABLE . UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

• Implementations of operations generatingUNPREDICTABLE results must not depend on any data source (memo
or internal state) which is inaccessible in the current processor mode

• UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
inaccessible in the current processor mode. For example,UNPREDICTABLE operations executed in user mode
must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in another

• UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instruction.UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue.UNDEFINED operations
or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

• UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which t
no exit other than powering down the processor). The assertion of any of the reset signals must restore the pr
to an operational state

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language no
resembling Pascal. Special symbols used in the pseudocode notation are listed inTable 1-1.

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol Meaning

← Assignment

=, ≠ Tests for equality and inequality

|| Bit string concatenation

xy A y-bit string formed byy copies of the single-bit valuex
2 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

1.3 Special Symbols in Pseudocode Notation

ary
 is

ted.

ness
b#n
A constant valuen in baseb. For instance 10#100 represents the decimal value 100, 2#100 represents the bin
value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#" prefix
omitted, the default base is 10.

xy..z
Selection of bitsy throughzof bit stringx. Little-endian bit notation (rightmost bit is 0) is used. Ify is less than
z, this expression is an empty (zero length) bit string.

+, − 2’s complement or floating point arithmetic: addition, subtraction

∗, × 2’s complement or floating point multiplication (both used for either)

div 2’s complement integer division

mod 2’s complement modulo

/ Floating point division

< 2’s complement less-than comparison

> 2’s complement greater-than comparison

≤ 2’s complement less-than or equal comparison

≥ 2’s complement greater-than or equal comparison

nor Bitwise logical NOR

xor Bitwise logical XOR

and Bitwise logical AND

or Bitwise logical OR

GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers

GPR[x] CPU general-purpose registerx. The content ofGPR[0] is always zero.

SGPR[s,x] In Release 2 of the Architecture, multiple copies of the CPU general-purpose registers may be implemen
SGPR[s,x] refers to GPR sets, registerx. GPR[x] is a short-hand notation forSGPR[SRSCtlCSS, x].

FPR[x] Floating Point operand registerx

FCC[CC] Floating Point condition code CC.FCC[0] has the same value asCOC[1].

FPR[x] Floating Point (Coprocessor unit 1), general registerx

CPR[z,x,s] Coprocessor unitz, general registerx, select s

CP2CPR[x] Coprocessor unit 2, general registerx

CCR[z,x] Coprocessor unitz, control registerx

CP2CCR[x] Coprocessor unit 2, control registerx

COC[z] Coprocessor unitz condition signal

Xlat[x] Translation of the MIPS16e GPR numberx into the corresponding 32-bit GPR number

BigEndianMem
Endian mode as configured at chip reset (0→Little-Endian, 1→ Big-Endian). Specifies the endianness of the
memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endian
of Kernel and Supervisor mode execution.

BigEndianCPU
The endianness for load and store instructions (0→ Little-Endian, 1→ Big-Endian). In User mode, this
endianness may be switched by setting theREbit in theStatusregister. Thus, BigEndianCPU may be computed
as (BigEndianMem XOR ReverseEndian).

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol Meaning
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 3

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

URL:

, and

turn

e

me

led

h an
n

t
icular

n
g a

tion)

sical

-bit
PRs

nch or

 not

ment
e

1.4 For More Information

Various MIPS RISC processor manuals and additional information about MIPS products can be found at the MIPS

http://www.mips.com

ReverseEndian
Signal to reverse the endianness of load and store instructions. This feature is available in User mode only
is implemented by setting theREbit of theStatusregister. Thus, ReverseEndian may be computed as (SRREand
User mode).

LLbit

Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write.LLbit is set
when a linked load occurs; it is tested and cleared by the conditional store. It is cleared, during other CPU
operation, when a store to the location would no longer be atomic. In particular, it is cleared by exception re
instructions.

I :,
I+n :,
I-n :

This occurs as a prefix toOperation description lines and functions as a label. It indicates the instruction tim
during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a ti
label ofI . Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections labe
with the instruction time, relative to the current instructionI , in which the effect of that pseudocode appears to
occur. For example, an instruction may have a result that is not available until after the next instruction. Suc
instruction has the portion of the instruction operation description that writes the result register in a sectio
labeledI+1.

The effect of pseudocode statements for the current instruction labelledI+1 appears to occur “at the same time”
as the effect of pseudocode statements labeledI for the following instruction. Within one pseudocode sequence,
the effects of the statements take place in order. However, between sequences of statements for differen
instructions that occur “at the same time,” there is no defined order. Programs must not depend on a part
order of evaluation between such sections.

PC

TheProgram Countervalue. During the instruction time of an instruction, this is the address of the instructio
word. The address of the instruction that occurs during the next instruction time is determined by assignin
value toPC during an instruction time. If no value is assigned toPC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc
or 4 before the next instruction time. A taken branch assigns the target address to thePCduring the instruction
time of the instruction in the branch delay slot.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 phy
address bits were implemented, the size of the physical address space would be 2PABITS = 236 bytes.

FP32RegistersMode

Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). In MIPS32, the FPU has 32 32
FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, the FPU has 32 64-bit F
in which 64-bit data types are stored in any FPR.

In MIPS32 implementations,FP32RegistersModeis always a 0. MIPS64 implementations have a compatibility
mode in which the processor references the FPRs as if it were a MIPS32 implementation. In such a case
FP32RegisterModeis computed from the FR bit in theStatusregister. If this bit is a 0, the processor operates
as if it had 32 32-bit FPRs. If this bit is a 1, the processor operates with 32 64-bit FPRs.

The value ofFP32RegistersMode is computed from the FR bit in theStatus register.

InstructionInBranchD
elaySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a bra
jump. This condition reflects thedynamic state of the instruction, not thestatic state. That is, the value is false
if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which is
executed in the delay slot of a branch or jump.

SignalException(exce
ption, argument)

Causes an exception to be signaled, using the exception parameter as the type of exception and the argu
parameter as an exception-specific argument). Control does not return from this pseudocode function - th
exception is signaled at the point of the call.

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol Meaning
4 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

1.4 For More Information
Comments or questions on the MIPS32™ Architecture or this document should be directed to

Director of MIPS Architecture
MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043

or via E-mail to architecture@mips.com.
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 5

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book
6 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

uction
emory
e PRA
 and user

ile
rocessor
ts.
 ISA

emory
ncoded
hat

apter 8.
Chapter 2

The MIPS32 Privileged Resource Architecture

2.1 Introduction

The MIPS32 Privileged Resource Architecture (PRA) is a set of environments and capabilities on which the Instr
Set Architecture operates. The effects of some components of the PRA are user-visible, for instance, the virtual m
layout. Many other components are visible only to the operating system kernel and to systems programmers. Th
provides the mechanisms necessary to manage the resources of the CPU: virtual memory, caches, exceptions
contexts. This chapter describes these mechanisms.

2.2 The MIPS Coprocessor Model

The MIPS ISA provides for up to 4 coprocessors. A coprocessor extends the functionality of the MIPS ISA, wh
sharing the instruction fetch and execution control logic of the CPU. Some coprocessors, such as the system cop
and the floating point unit are standard parts of the ISA, and are specified as such in the architecture documen
Coprocessors are generally optional, with one exception: CP0, the system coprocessor, is required. CP0 is the
interface to the Privileged Resource Architecture and provides full control of the processor state and modes.

2.2.1 CP0 - The System Coprocessor

CP0 provides an abstraction of the functions necessary to support an operating system: exception handling, m
management, scheduling, and control of critical resources. The interface to CP0 is through various instructions e
with theCOP0 opcode, including the ability to move data to and from the CP0 registers, and specific functions t
modify CP0 state. The CP0 registers and the interaction with them make up much of the Privileged Resource
Architecture.

2.2.2 CP0 Registers

The CP0 registers provide the interface between the ISA and the PRA. The CP0 registers are described in Ch
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 7

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 The MIPS32 Privileged Resource Architecture
8 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

the
emory

the
switch

AG

t units)
on a

l Mode

s

r leaves
ually as

l of the
Chapter 3

MIPS32 Operating Modes

The MIPS32 PRA requires two operating mode: User Mode and Kernel Mode. When operating in User Mode,
programmer has access to the CPU and FPU registers that are provided by the ISA and to a flat, uniform virtual m
address space. When operating in Kernel Mode, the system programmer has access to the full capabilities of
processor, including the ability to change virtual memory mapping, control the system environment, and context
between processes.

 In addition, the MIPS32 PRA supports the implementation of two additional modes: Supervisor Mode and EJT
Debug Mode. Refer to the EJTAG specification for a description of Debug Mode.

In Release 2 of the Architecture, support was added for 64-bit coprocessors (and, in particular, 64-bit floating poin
with 32-bit CPUs. As such, certain floating point instructions which were previously enabled by 64-bit operations
MIPS64 processor are now enabled by a new 64-bit floating point operations enabled.

3.1 Debug Mode

For processors that implement EJTAG, the processor is operating in Debug Mode if the DM bit in the CP0Debugregister
is a one. If the processor is running in Debug Mode, it has full access to all resources that are available to Kerne
operation.

3.2 Kernel Mode

The processor is operating in Kernel Mode when the DM bit in theDebugregister is a zero (if the processor implement
Debug Mode), and any of the following three conditions is true:

• The KSU field in the CP0Status register contains 2#00

• The EXL bit in theStatus register is one

• The ERL bit in theStatus register is one

The processor enters Kernel Mode at power-up, or as the result of an interrupt, exception, or error. The processo
Kernel Mode and enters User Mode or Supervisor Mode when all of the previous three conditions are false, us
the result of an ERET instruction.

3.3 Supervisor Mode

The processor is operating in Supervisor Mode (if that optional mode is implemented by the processor) when al
following conditions are true:

• The DM bit in theDebug register is a zero (if the processor implements Debug Mode)

• The KSU field in theStatus register contains 2#01

• The EXL and ERL bits in theStatus register are both zero
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 9

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 MIPS32 Operating Modes

IPS32

in the

as
egisters,
airs of

it, for

is L or
3.4 User Mode

The processor is operating in User Mode when all of the following conditions are true:

• The DM bit in theDebug register is a zero (if the processor implements Debug Mode)

• The KSU field in theStatus register contains 2#10

• The EXL and ERL bits in theStatus register are both zero

3.5 Other Modes

3.5.1 64-bit Floating Point Operations Enable

Instructions that are implemented by a 64-bit floating point unit are legal under any of the following conditions:

• In an implementation of Release 1 of the Architecture, 64-bit floating point operations are never enabled in a M
processor.

• If an implementation of Release 2 of the Architecture, 64-bit floating point operations are enabled if the F64 bit
FIR register is a one. The processor must also implement the floating point data type.

3.5.2 64-bit FPR Enable

Access to 64-bit FPRs is controlled by the FR bit in theStatusregister. If the FR bit is one, the FPRs are interpreted
32 64-bit registers that may contain any data type. If the FR bit is zero, the FPRs are interpreted as 32 32-bit r
any of which may contain a 32-bit data type (W, S). In this case, 64-bit data types are contained in even-odd p
registers.

64-bit FPRs are supported in a MIPS64 processor in Release 1 of the Architecture, or in a 64-bit floating point un
both MIPS32 and MIPS64 processors, in Release 2 of the Architecture.

The operation of the processor isUNPREDICTABLE under the following conditions:

• The FR bit is a zero, 64-bit operations are enabled, and a floating point instruction is executed whose datatype
PS.

• The FR bit is a zero and an odd register is referenced by an instruction whose datatype is 64-bits
10 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

56MB.
ications
e size of

sed

e in the

ents are

he
ITS.
Chapter 4

Virtual Memory

4.1 Support in Release 1 and Release 2 of the Architecture

4.1.1 Virtual Memory

In Release 1 of the Architecture, the minimum page size was 4KB, with optional support for pages as large as 2
In Release 2 of the Architecture, optional support for 1KB pages was added for use in specific embedded appl
that require access to pages smaller than 4KB. Such usage is expected to be in conjunction with a default pag
4KB and is not intended or suggested to replace the default 4KB page size but, rather, to augment it.

Support for 1KB pages involves the following changes:

• Addition of thePageGrain register. This register is also used by the SmartMIPS™ ASE specification, but bits u
by Release 2 of the Architecture and the SmartMIPS ASE specification do not overlap.

• Modification of theEntryHi register to enable writes to, and use of, bits 12..11 (VPN2X).

• Modification of thePageMask register to enable writes to, and use of, bits 12..11 (MaskX).

• Modification of theEntryLo0 andEntryLo1 registers to shift the PFN field to the left by 2 bits, when 1KB page
support is enabled, to create space for two lower-order physical address bits.

Support for 1KB pages is denoted by the Config3SP bit and enabled by the PageGrainESP bit.

4.2 Terminology

4.2.1 Address Space

An Address Spaceis the range of all possible addresses that can be generated. There is one 32-bit Address Spac
MIPS32 Architecture.

4.2.2 Segment and Segment Size

A Segmentis a defined subset of an Address Space that has self-consistent reference and access behavior. Segm
either 229 or 231 bytes in size, depending on the specific Segment.

4.2.3 Physical Address Size (PABITS)

The number of physical address bits implemented is represented by the symbolPABITS. As such, if 36 physical address
bits were implemented, the size of the physical address space would be 2PABITS= 236 bytes. The format of theEntryLo0
andEntryLo1 registers implicitly limits the physical address size to 236 bytes. Software may determine the value of
PABITS by writing all ones to theEntryLo0or EntryLo1registers and reading the value back. Bits read as “1” from t
PFN field allow software to determine the boundary between the PFN and 0 fields to calculate the value of PAB
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 11

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Virtual Memory

t is
lated
ysical

e cache
4.3 Virtual Address Spaces

The MIPS32 virtual address space is divided into five segments as shown in Figure 4-1.

Each Segment of an Address Space is classified as “Mapped” or “Unmapped”. A “Mapped” address is one tha
translated through the TLB or other address translation unit. An “Unmapped” address is one which is not trans
through the TLB and which provides a window into the lowest portion of the physical address space, starting at ph
address zero, and with a size corresponding to the size of the unmapped Segment.

Additionally, the kseg1 Segment is classified as “Uncached”. References to this Segment bypass all levels of th
hierarchy and allow direct access to memory without any interference from the caches.

Table 4-1 lists the same information in tabular form.

Figure 4-1 Virtual Address Space

16#FFFF FFFF

Kernel Mappedkseg3

16#E000 0000

16#DFFF FFFF

Supervisor Mappedksseg

16#C000 0000

16#BFFF FFFF

Kernel Unmapped Uncachedkseg1

16#A000 0000

16#9FFF FFFF

Kernel Unmappedkseg0

16#8000 0000

16#7FFF FFFF

User Mapped
useg

16#0000 0000
12 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.3 Virtual Address Spaces

rvisor, or
 a more
in User,
an that
n the
e Legal

example,
rence to
Each Segment of an Address Space is associated with one of the three processor operating modes (User, Supe
Kernel). A Segment that is associated with a particular mode is accessible if the processor is running in that or
privileged mode. For example, a Segment associated with User Mode is accessible when the processor is running
Supervisor, or Kernel Modes. A Segment is not accessible if the processor is running in a less privileged mode th
associated with the Segment. For example, a Segment associated with Supervisor Mode is not accessible whe
processor is running in User Mode and such a reference results in an Address Error Exception. The “Referenc
from Mode(s)” column in Table 4-2 lists the modes from which each Segment may be legally referenced.

If a Segment has more than one name, each name denotes the mode from which the Segment is referenced. For
the Segment name “useg” denotes a reference from user mode, while the Segment name “kuseg” denotes a refe
the same Segment from kernel mode.

Figure 4-2 shows the Address Space as seen when the processor is operating in each of the operating modes.

Table 4-1 Virtual Memory Address Spaces

VA31..29

Segment
Name(s) Address Range

Associated
with Mode

Reference
Legal from

Mode(s)

Actual
Segment

Size

2#111 kseg3
16#FFFF FFFF

through
16#E000 0000

Kernel Kernel 229 bytes

2#110 sseg
ksseg

16#DFFF FFFF
through

16#C000 0000
Supervisor Supervisor

Kernel 229 bytes

2#101 kseg1
16#BFFF FFFF

through
16#A000 0000

Kernel Kernel 229 bytes

2#100 kseg0
16#9FFF FFFF

through
16#8000 0000

Kernel Kernel 229 bytes

2#0xx
useg
suseg
kuseg

16#7FFF FFFF
through

16#0000 0000
User

User
Supervisor

Kernel
231 bytes
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 13

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Virtual Memory

lement

n of the
ted for
4.4 Compliance

A MIPS32 compliant processor must implement the following Segments:

• useg/kuseg

• kseg0

• kseg1

In addition, a MIPS32 compliant processor using the TLB-based address translation mechanism must also imp
the kseg3 Segment.

4.5 Access Control as a Function of Address and Operating Mode

Table 4-2enumerates the action taken by the processor for each section of the 32-bit Address Space as a functio
operating mode of the processor. The selection of TLB Refill vector and other special-cased behavior is also lis
each reference.

Figure 4-2 References as a Function of Operating Mode

User Mode References Supervisor Mode References Kernel Mode References

16#FFFF FFFF

Address Error

16#FFFF FFFF

Address Error

16#FFFF FFFF

Kernel Mappedkseg3

16#E000 0000 16#E000 0000

16#DFFF FFFF

Supervisor Mapped

16#DFFF FFFF

Supervisor Mappedsseg ksseg

16#C000 0000 16#C000 0000

16#BFFF FFFF

Address Error

16#BFFF FFFF
Kernel Unmapped

Uncachedkseg1

16#A000 0000

16#9FFF FFFF

Kernel Unmappedkseg0

16#8000 0000 16#8000 0000 16#8000 0000

16#7FFF FFFF

User Mapped

16#7FFF FFFF

User Mapped

16#7FFF FFFF

User Mapped
useg suseg kuseg

16#0000 0000 16#0000 0000 16#0000 0000
14 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.6 Address Translation and Cache Coherency Attributes for the kseg0 and kseg1 Segments

 of the

ency
4.6 Address Translation and Cache Coherency Attributes for the kseg0 and kseg1 Segments

The kseg0 and kseg1 Unmapped Segments provide a window into the least significant 229 bytes of physical memory,
and, as such, are not translated using the TLB or other address translation unit. The cache coherency attribute
kseg0 Segment is supplied by the K0 field of the CP0Config register. The cache coherency attribute for the kseg1
Segment is always Uncached.Table 4-3describes how this transformation is done, and the source of the cache coher
attributes for each Segment.

Table 4-2 Address Space Access as a Function of Operating Mode

Virtual Address Range
Segment
Name(s)

Action when Referenced from Operating Mode

User Mode
Supervisor

Mode Kernel Mode

16#FFFF FFFF

through

16#E000 0000

kseg3 Address Error Address Error

Mapped

See4.8 on
page 16 for

specialbehavior
when DebugDM

= 1

16#DFFF FFFF

through

16#C000 0000

sseg

ksseg
Address Error Mapped Mapped

16#BFFF FFFF

through

16#A000 0000

kseg1 Address Error Address Error

Unmapped,
Uncached

See Section
4.6 on page 15

16#9FFF FFFF

through

16#8000 0000

kseg0 Address Error Address Error

Unmapped

See Section
4.6 on page 15

16#7FFF FFFF

through

16#0000 0000

useg
suseg
kuseg

Mapped Mapped

Unmapped if
StatusERL=1

See Section
4.7 on page 16

Mapped if
StatusERL=0
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 15

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Virtual Memory

nt, similar
ate

tails on

ust be

ddress
the ASID
e virtual
4.7 Address Translation for the kuseg Segment when StatusERL = 1

To provide support for the cache error handler, the kuseg Segment becomes an unmapped, uncached Segme
to the kseg1 Segment, if the ERL bit is set in theStatus register. This allows the cache error exception code to oper
uncached using GPR R0 as a base register to save other GPRs before use.

4.8 Special Behavior for the kseg3 Segment when DebugDM = 1

If EJTAG is implemented on the processor, the EJTAG block must treat the virtual address range 16#FF20 0000
through16#FF3F FFFF , inclusive, as a special memory-mapped region in Debug Mode. A MIPS32 compliant
implementation that also implements EJTAG must:

• explicitly range check the address range as given and not assume that the entire region between16#FF20 0000
and16#FFFF FFFF is included in the special memory-mapped region.

• not enable the special EJTAG mapping for this region in any mode other than in EJTAG Debug mode.

Even in Debug mode, normal memory rules may apply in some cases. Refer to the EJTAG specification for de
this mapping.

4.9 TLB-Based Virtual Address Translation1

This section describes the TLB-based virtual address translation mechanism. Note that sufficient TLB entries m
implemented to avoid a TLB exception loop on load and store instructions.

4.9.1 Address Space Identifiers (ASID)

The TLB-based translation mechanism supports Address Space Identifiers to uniquely identify the same virtual a
across different processes. The operating system assigns ASIDs to each process and the TLB keeps track of
when doing address translation. In certain circumstances, the operating system may wish to associate the sam

Table 4-3 Address Translation and Cache Coherency Attributes for the kseg0 and kseg1 Segments

Segment
Name Virtual Address Range Generates Physical Address Cache Attribute

kseg1

16#BFFF FFFF

through

16#A000 0000

16#1FFF FFFF

through

16#0000 0000

Uncached

kseg0

16#9FFF FFFF

through

16#8000 0000

16#1FFF FFFF

through

16#0000 0000

From K0 field of
Config Register

1 Refer toSection A.1, "Fixed Mapping MMU" on page 127andSection A.2, "Block Address Translation" on page 131for descriptions
of alternative MMU organizations
16 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.9 TLB-Based Virtual Address Translation

gical
al page
pages)
page
hysical
gs are
LB

 and odd

he
page

rs that
dle such

er on a
2
this
address with all processes. To address this need, the TLB includes a global (G) bit which over-rides the ASID
comparison during translation.

4.9.2 TLB Organization

The TLB is a fully-associative structure which is used to translate virtual addresses. Each entry contains two lo
components: a comparison section and a physical translation section. The comparison section includes the virtu
number (VPN2 and, in Release 2, VPNX) (actually, the virtual page number/2 since each entry maps two physical
of the entry, the ASID, the G(lobal) bit and a recommended mask field which provides the ability to map different
sizes with a single entry. The physical translation section contains a pair of entries, each of which contains the p
page frame number (PFN), a valid (V) bit, a dirty (D) bit, and a cache coherency field (C), whose valid encodin
given inTable 8-8 on page 61. There are two entries in the translation section for each TLB entry because each T
entry maps an aligned pair of virtual pages and the pair of physical translation entries corresponds to the even
pages of the pair.

Figure 4-3 shows the logical arrangement of a TLB entry, including the optional support added in Release 2 of t
Architecture for 1KB page sizes. Light grey fields denote extensions to the right that are required to support 1KB
sizes. This extension is not present in an implementation of Release 1 of the Architecture.

The fields of the TLB entry correspond exactly to the fields in the CP0PageMask, EntryHi, EntryLo0 andEntryLo1
registers. The even page entries in the TLB (e.g., PFN0) come fromEntryLo0. Similarly, odd page entries come from
EntryLo1.

4.9.3 TLB Initialization

In many processor implementations, software must initialize the TLB during the power-up process. In processo
detect multiple TLB matches and signal this via a machine check assumption, software must be prepared to han
an exception or use a TLB initialization algorithm that minimizes or eliminates the possibility of the exception.

In Release 1 of the Architecture, processor implementations could detect and report multiple TLB matches eith
TLB write (TLBWI or TLBWR instructions) or a TLB read (TLB access or TLBR or TLBP instructions). In Release
of the Architecture, processor implentations are limited to reporting multiple TLB matches only on TLB write, and
is also true of most implementations of Release 1 of the Architecture.

Figure 4-3 Contents of a TLB Entry

Mask MaskX

VPN2 VPN2X G ASID

PFN0 C0 D0 V0

PFN1 C1 D1 V1

 Fields marked with this color are optional Release 2 features required to support 1KB pages
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 17

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Virtual Memory

on a
The following code example shows a TLB initialization routine which, on implementations of Release 2 of the
Architecture, eliminates the possibility of reporting a machine check during TLB initialization. This example has
equivalent effect on implementations of Release 1 of the Architecture which report multiple TLB exceptions only
TLB write, and minimizes the probability of such an exception occuring on other implementations.

/*
* InitTLB
*
* Initialize the TLB to a power-up state, guaranteeing that all entries
* are unique and invalid.
*
* Arguments:
* a0 = Maximum TLB index (from MMUSize field of C0_Config1)
*
* Returns:
* No value
*
* Restrictions:
* This routine must be called in unmapped space
*
* Algorithm:
* va = kseg0_base;
* for (entry = max_TLB_index; entry >= 0, entry--) {
* while (TLB_Probe_Hit(va)) {
* va += Page_Size;
* }
* TLB_Write(entry, va, 0, 0, 0);
* }
*
* Notes:
* - The Hazard macros used in the code below expand to the appropriate
* number of SSNOPs in an implementation of Release 2 of the
* Architecture, and to an ehb in an implementation of Release 2 of
* the Architecture. See Chapter 7, “CP0 Hazards,” on page 49 for
* more additional information.
*/

InitTLB:
/*

* Clear PageMask, EntryLo0 and EntryLo1 so that valid bits are off, PFN values
* are zero, and the default page size is used.
*/

mtc0 zero, C0_EntryLo0 /* Clear out PFN and valid bits */
mtc0 zero, C0_EntryLo1
mtc0 zero, C0_PageMask /* Clear out mask register *

/* Start with the base address of kseg0 for the VA part of the TLB */
la t0, A_K0BASE /* A_K0BASE == 16#8000.0000 */
18 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.9 TLB-Based Virtual Address Translation

terms

d to the
true:
/*
* Write the VA candidate to EntryHi and probe the TLB to see if if is
* already there. If it is, a write to the TLB may cause a machine
* check, so just increment the VA candidate by one page and try again.
*/

10:
mtc0 t0, C0_EntryHi /* Write VA candidate */
TLBP_Write_Hazard() /* Clear EntryHi hazard (ssnop/ehb in R1/2) */
tlbp /* Probe the TLB to check for a match */
TLBP_Read_Hazard() /* Clear Index hazard (ssnop/ehb in R1/2) */
mfc0 t1, C0_Index /* Read back flag to check for match */
bgez t1, 10b /* Branch if about to duplicate an entry */
addiu t0, (1<<S_EntryHiVPN2) /* Add 1 to VPN index in va */

/*
* A write of the VPN candidate will be unique, so write this entry
* into the next index, decrement the index, and continue until the
* index goes negative (thereby writing all TLB entries)
*/

mtc0 a0, C0_Index /* Use this as next TLB index */
TLBW_Write_Hazard() /* Clear Index hazard (ssnop/ehb in R1/2) */
tlbwi /* Write the TLB entry */
bne a0, zero, 10b /* Branch if more TLB entries to do */
addiu a0, -1 /* Decrement the TLB index

/*
* Clear Index and EntryHi simply to leave the state constant for all
* returns
*/

mtc0 zero, C0_Index
mtc0 zero, C0_EntryHi
jr ra /* Return to caller */
nop

4.9.4 Address Translation

Release 2 of the Architecture introduced support for 1KB pages. For clarity in the discussion below, the following
should be taken in the general sense to include the new Release 2 features:

When an address translation is requested, the virtual page number and the current process ASID are presente
TLB. All entries are checked simultaneously for a match, which occurs when all of the following conditions are

• The current process ASID (as obtained from theEntryHi register) matches the ASID field in the TLB entry, or the G
bit is set in the TLB entry.

Term Used Below Release 2 Substitution Comment

VPN2 VPN2|| VPN2X

Release 2 implementations
that support 1KB pages
concatenate the VPN2 and
VPN2X fields to form the
virtual page number for a
1KB page

Mask Mask|| MaskX

Release 2 implementations
that support 1KB pages
concatenate the Mask and
MaskX fields to form the
don’t care mask for 1KB
pages
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 19

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Virtual Memory

 the
bit in
his

e

m the

and a
ised.
pended

his
• The appropriate bits of the virtual page number match the corresponding bits of the VPN2 field stored within
TLB entry. The “appropriate” number of bits is determined by the Mask fields in each entry by ignoring each
the virtual page number and the TLB VPN2 field corresponding to those bits that are set in the Mask fields. T
allows each entry of the TLB to support a different page size, as determined by thePageMaskregister at the time that
the TLB entry was written. If the recommendedPageMaskregister is not implemented, the TLB operation is as if th
PageMask register was written with the encoding for a 4KB page.

If a TLB entry matches the address and ASID presented, the corresponding PFN, C, V, and D bits are read fro
translation section of the TLB entry. Which of the two PFN entries is read is a function of the virtual address bit
immediately to the right of the section masked with the Mask entry.

The valid and dirty bits determine the final success of the translation. If the valid bit is off, the entry is not valid
TLB Invalid exception is raised. If the dirty bit is off and the reference was a store, a TLB Modified exception is ra
If there is an address match with a valid entry and no dirty exception, the PFN and the cache coherency bits are ap
to the offset-within-page bits of the address to form the final physical address with attributes.

For clarity, the TLB lookup processes have been separated into two sets of pseudo code:

1. One used by an implementation of Release 1 of the Architecture, or an implementation of Release 2 of the
Architecture which does not include 1KB page support (as denoted by Config3SP). This instance is called the
“4KB TLB Lookup”.

2. One used by an implementation of Release 2 of the Architecture which does include 1KB page support. T
instance is called the “1KB TLB Lookup”.

The 4KB TLB Lookup pseudo code is as follows:

found ← 0
for i in 0...TLBEntries-1

if ((TLB[i] VPN2 and not (TLB[i] Mask)) = (va 31..13 and not (TLB[i] Mask))) and
 (TLB[i] G or (TLB[i] ASID = EntryHi ASID)) then

EvenOddBit selects between even and odd halves of the TLB as a function of
the page size in the matching TLB entry. Not all page sizes need
be implemented on all processors, so the case below uses an ‘x’ to
denote don’t-care cases. The actual implementation would select
the even-odd bit in a way that is compatible with the page sizes
actually implemented.
case TLB[i] Mask

2#0000 0000 0000 0000: EvenOddBit ← 12 /* 4KB page */
2#0000 0000 0000 0011: EvenOddBit ← 14 /* 16KB page */
2#0000 0000 0000 11xx: EvenOddBit ← 16 /* 64KB page */
2#0000 0000 0011 xxxx: EvenOddBit ← 18 /* 256KB page */
2#0000 0000 11xx xxxx: EvenOddBit ← 20 /* 1MB page */
2#0000 0011 xxxx xxxx: EvenOddBit ← 22 /* 4MB page */
2#0000 11xx xxxx xxxx: EvenOddBit ← 24 /* 16MB page */
2#0011 xxxx xxxx xxxx: EvenOddBit ← 26 /* 64MB page */
2#11xx xxxx xxxx xxxx: EvenOddBit ← 28 /* 256MB page */
otherwise: UNDEFINED

endcase
if va EvenOddBit = 0 then

pfn ← TLB[i] PFN0
v ← TLB[i] V0
c ← TLB[i] C0
d ← TLB[i] D0

else
pfn ← TLB[i] PFN1
v ← TLB[i] V1
c ← TLB[i] C1
d ← TLB[i] D1
20 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

4.9 TLB-Based Virtual Address Translation
endif
if v = 0 then

SignalException(TLBInvalid, reftype)
endif
if (d = 0) and (reftype = store) then

SignalException(TLBModified)
endif
pfn PABITS-1-12..0 corresponds to pa PABITS-1..12
pa ← pfn PABITS-1-12..EvenOddBit-12 || va EvenOddBit-1..0
found ← 1
break

endif
endfor
if found = 0 then

SignalException(TLBMiss, reftype)
endif

The 1KB TLB Lookup pseudo code is as follows:

found ← 0
for i in 0...TLBEntries-1

if ((TLB[i] VPN2 and not (TLB[i] Mask)) = (va 31..13 and not (TLB[i] Mask))) and
 (TLB[i] G or (TLB[i] ASID = EntryHi ASID)) then

EvenOddBit selects between even and odd halves of the TLB as a function of
the page size in the matching TLB entry. Not all pages sizes need
be implemented on all processors, so the case below uses an ‘x’ to
denote don’t-care cases. The actual implementation would select
the even-odd bit in a way that is compatible with the page sizes
actually implemented.
case TLB[i] Mask

2#0000 0000 0000 0000 00: EvenOddBit ← 10 /* 1KB page */
2#0000 0000 0000 0000 11: EvenOddBit ← 12 /* 4KB page */
2#0000 0000 0000 0011 xx: EvenOddBit ← 14 /* 16KB page */
2#0000 0000 0000 11xx xx: EvenOddBit ← 16 /* 64KB page */
2#0000 0000 0011 xxxx xx: EvenOddBit ← 18 /* 256KB page */
2#0000 0000 11xx xxxx xx: EvenOddBit ← 20 /* 1MB page */
2#0000 0011 xxxx xxxx xx: EvenOddBit ← 22 /* 4MB page */
2#0000 11xx xxxx xxxx xx: EvenOddBit ← 24 /* 16MB page */
2#0011 xxxx xxxx xxxx xx: EvenOddBit ← 26 /* 64MB page */
2#11xx xxxx xxxx xxxx xx: EvenOddBit ← 28 /* 256MB page */
otherwise: UNDEFINED

endcase
if va EvenOddBit = 0 then

pfn ← TLB[i] PFN0
v ← TLB[i] V0
c ← TLB[i] C0
d ← TLB[i] D0

else
pfn ← TLB[i] PFN1
v ← TLB[i] V1
c ← TLB[i] C1
d ← TLB[i] D1

endif
if v = 0 then

SignalException(TLBInvalid, reftype)
endif
if (d = 0) and (reftype = store) then

SignalException(TLBModified)
endif
pfn PABITS-1-10..0 corresponds to pa PABITS-1..10
pa ← pfn PABITS-1-10..EvenOddBit-10 || va EvenOddBit-1..0
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 21

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Virtual Memory

atches

e virtual
found ← 1
break

endif
endfor
if found = 0 then

SignalException(TLBMiss, reftype)
endif

Table 4-4demonstrates how the physical address is generated as a function of the page size of the TLB entry that m
the virtual address. The “Even/Odd Select” column ofTable 4-4 indicates which virtual address bit is used to select
between the even (EntryLo0) or odd (EntryLo1) entry in the matching TLB entry. The “PA(PABITS-1)..0Generated From”
columns specify how the physical address is generated from the selected PFN and the offset-in-page bits in th
address. In this column, PFN is the physical page number as loaded into the TLB from theEntryLo0 or EntryLo1
registers, and has one of two bit ranges:

PFN Range PA Range Comment

PFN(PABITS-1)-12..0 PAPABITS-1..12
Release 1 implementation, or Release 2
implementation without support for 1KB pages

PFN(PABITS-1)-10..0 PAPABITS-1..10
Release 2 implementation with support for 1KB
pages enabled

Table 4-4 Physical Address Generation

Page Size
Even/Odd

Select

PA(PABITS-1)..0 Generated From:

Release 1 or Release 2 with
1KB Page Support Disabled

Release 2 with 1KB Page
Support Enabled

1K Bytes VA10 Not Applicable PFN(PABITS-1)-10..0 || VA9..0

4K Bytes VA12 PFN(PABITS-1)-12..0 || VA11..0 PFN(PABITS-1)-10..2 || VA11..0

16K Bytes VA14 PFN(PABITS-1)-12..2 || VA13..0 PFN(PABITS-1)-10..4 || VA13..0

64K Bytes VA16 PFN(PABITS-1)-12..4 ||VA15..0 PFN(PABITS-1)-10..6 ||VA15..0

256K Bytes VA18 PFN(PABITS-1)-12..6 || VA17..0 PFN(PABITS-1)-10..8 || VA17..0

1M Bytes VA20 PFN(PABITS-1)-12..8 || VA19..0 FN(PABITS-1)-10..10 || VA19..0

4M Bytes VA22 PFN(PABITS-1)-12..10 || VA21..0 PFN(PABITS-1)-10..12 || VA21..0

16M Bytes VA24 PFN(PABITS-1)-12..12 || VA23..0 PFN(PABITS-1)-10..14 || VA23..0

64MBytes VA26 PFN(PABITS-1)-12..14 || VA25..0 PFN(PABITS-1)-10..16 || VA25..0

256MBytes VA28 PFN(PABITS-1)-12..16 || VA27..0 PFN(PABITS-1)-10..18 || VA27..0
22 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ts:

for

nd

an

ciated
d

ed,

Both

ts.

ugh the

upports
rrupt

MI
Chapter 5

Interrupts and Exceptions

Release 2 of the Architecture added the following features related to the processing of Exceptions and Interrup

• The addition of the Coprocessor 0EBaseregister, which allows the exception vector base address to be modified
exceptions that occur when StatusBEV equals 0. TheEBase register is required.

• The extension of the Release 1 interrupt control mechanism to include two optional interrupt modes:

• Vectored Interrupt (VI) mode, in which the various sources of interrupts are prioritized by the processor a
each interrupt is vectored directly to a dedicated handler. When combined with GPR shadow registers,
introduced in the next chapter, this mode significantly reduces the number of cycles required to process
interrupt.

• External Interrupt Controller (EIC) mode, in which the definition of the coprocessor 0 register fields asso
with interrupts changes to support an external interrupt controller. This can support many more prioritize
interrupts, while still providing the ability to vector an interrupt directly to a dedicated handler and take
advantage of the GPR shadow registers.

• The ability to stop theCountregister for highly power-sensitive applications in which the Count register is not us
or for reduced power mode. This change is required.

• The addition of the DI and EI instructions which provide the ability to atomically disable or enable interrupts.
instructions are required.

• The addition of the TI and PCI bits in theCauseregister to denote pending timer and performance counter interrup
This change is required.

5.1 Interrupts

Release 1 of the Architecture included support for two software interrupts, six hardware interrupts, and two
special-purpose interrupts: timer and performance counter. The timer and performance counter interrupts were
combined with hardware interrupt 5 in an implementation-dependent manner. Interrupts were handled either thro
general exception vector (offset 16#180) or the special interrupt vector (16#200), based on the value of CauseIV.
Software was required to prioritize interrupts as a function of the CauseIP bits in the interrupt handler prologue.

Release 2 of the Architecture adds an upward-compatible extension to the Release 1 interrupt architecture that s
vectored interrupts. In addition, Release 2 adds a new interrupt mode that supports the use of an external inte
controller by changing the interrupt architecture.

Although a Non-Maskable Interrupt (NMI) includes “interrupt” in its name, it is more correctly described as an N
exception because it does not affect, nor is it controlled by the processor interrupt system.

An interrupt is only taken when all of the following are true:

• A specific request for interrupt service is made, as a function of the interrupt mode, described below.

• The IE bit in theStatus register is a one.

• The DM bit in theDebug register is a zero (for processors implementing EJTAG)

• The EXL and ERL bits in theStatus register are both zero.
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 23

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

ure.

to that
resence

full
ional

may
vely in
rocessor
elease

at can

or. This
ugh
Logically, the request for interrupt service is ANDed with the IE bit of theStatusregister. The final interrupt request is
then asserted only if both the EXL and ERL bits in theStatusregister are zero, and the DM bit in theDebugregister is
zero, corresponding to a non-exception, non-error, non-debug processing mode, respectively.

5.1.1 Interrupt Modes

An implementation of Release 1 of the Architecture only implements interrupt compatibility mode.

An implementation of Release 2 of the Architecture may implement up to three interrupt modes:

• Interrupt compatibility mode, which acts identically to that in an implementation of Release 1 of the Architect
This mode is required.

• Vectored Interrupt (VI) mode, which adds the ability to prioritize and vector interrupts to a handler dedicated
interrupt, and to assign a GPR shadow set for use during interrupt processing. This mode is optional and its p
is denoted by the VInt bit in theConfig3 register.

• External Interrupt Controller (EIC) mode, which redefines the way in which interrupts are handled to provide
support for an external interrupt controller handling prioritization and vectoring of interrupts. This mode is opt
and its presence is denoted by the VEIC bit in theConfig3 register.

A compatible implementation of Release 2 of the Architecture must implement interrupt compatibility mode, and
optionally implement one or both vectored interrupt modes. Inclusion of the optional modes may be done selecti
the implementation of the processor, or they may always be inculcated and be dynamically enabled based on cop
0 control bits. The reset state of the processor is to interrupt compatibility mode such that an implementation of R
2 of the Architecture is fully compatible with implementations of Release 1 of the Architecture.

Table 5-1 shows the current interrupt mode of the processor as a function of the coprocessor 0 register fields th
affect the mode.

5.1.1.1 Interrupt Compatibility Mode

This is the only interrupt mode for a Release 1 processor and the default interrupt mode for a Release 2 process
mode is entered when a Reset exception occurs. In this mode, interrupts are non-vectored and dispatched tho

Table 5-1 Interrupt Modes

S
ta

tu
s B

E
V

C
au

se
IV

In
tC

tl
V

S

C
on

fig
3 V

IN
T

C
on

fig
3 V

E
IC

Interrupt Mode

1 x x x x Compatibly

x 0 x x x Compatibility

x x =0 x x Compatibility

0 1 ≠0 1 0 Vectored Interrupt

0 1 ≠0 x 1 External Interrupt Controller

0 1 ≠0 0 0
Can’t happen - IntCtlVS can not be non-zero if neither
Vectored Interrupt nor External Interrupt Controller
mode is implemented.

“x” denotes don’t care
24 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

5.1 Interrupts

ust after
rocessor
r must

ice is
exception vector offset 16#180 (if CauseIV = 0) or vector offset 16#200 (if CauseIV = 1). This mode is in effect if any
of the following conditions are true:

• CauseIV = 0

• StatusBEV = 1

• IntCtlVS = 0, which would be the case if vectored interrupts are not implemented, or have been disabled.

The current interrupt requests are visible via the IP field in the Cause register on any read of the register (not j
an interrupt exception has occurred). Note that an interrupt request may be deasserted between the time the p
starts the interrupt exception and the time that the software interrupt handler runs. The software interrupt handle
be prepared to handle this condition by simply returning from the interrupt via ERET. A request for interrupt serv
generated as shown inTable 5-2.

A typical software handler for interrupt compatibility mode might look as follows:

/*
 * Assumptions:
 * - Cause IV = 1 (if it were zero, the interrupt exception would have to
 * be isolated from the general exception vector before getting
 * here)
 * - GPRs k0 and k1 are available (no shadow register switches invoked in
 * compatibility mode)
 * - The software priority is IP7..IP0 (HW5..HW0, SW1..SW0)
 *
 * Location: Offset 0x200 from exception base
 */

IVexception:
mfc0 k0, C0_Cause /* Read Cause register for IP bits */
mfc0 k1, C0_Status /* and Status register for IM bits */
andi k0, k0, M_CauseIM /* Keep only IP bits from Cause */
and k0, k0, k1 /* and mask with IM bits */
beq k0, zero, Dismiss /* no bits set - spurious interrupt */
clz k0, k0 /* Find first bit set, IP7..IP0; k0 = 16..23 */
xori k0, k0, 0x17 /* 16..23 => 7..0 */
sll k0, k0, VS /* Shift to emulate software IntCtl VS */
la k1, VectorBase /* Get base of 8 interrupt vectors */
addu k0, k0, k1 /* Compute target from base and offset */
jr k0 /* Jump to specific exception routine */

Table 5-2 Request for Interrupt Service in Interrupt Compatibility Mode

Interrupt Type
Interrupt

Source
Interrupt Request
Calculated From

Hardware Interrupt, Timer Interrupt,
or Performance Counter Interrupt HW5 CauseIP7and StatusIM7

Hardware Interrupt

HW4 CauseIP6 and StatusIM6

HW3 CauseIP5 and StatusIM5

HW2 CauseIP4 and StatusIM4

HW1 CauseIP3 and StatusIM3

HW0 CauseIP2 and StatusIM2

Software Interrupt
SW1 CauseIP1 and StatusIM1

SW0 CauseIP0 and StatusIM0
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 25

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions
nop

/*
 * Each interrupt processing routine processes a specific interrupt, analogous
 * to those reached in VI or EIC interrupt mode. Since each processing routine
 * is dedicated to a particular interrupt line, it has the context to know
 * which line was asserted. Each processing routine may need to look further
 * to determine the actual source of the interrupt if multiple interrupt requests
 * are ORed together on a single IP line. Once that task is performed, the
 * interrupt may be processed in one of two ways:
 *
 * - Completely at interrupt level (e.g., a simply UART interrupt). The
 * SimpleInterrupt routine below is an example of this type.
 * - By saving sufficient state and re-enabling other interrupts. In this
 * case the software model determines which interrupts are disabled during
 * the processing of this interrupt. Typically, this is either the single
 * StatusIM bit that corresponds to the interrupt being processed, or some
 * collection of other Status IM bits so that “lower” priority interrupts are
 * also disabled. The NestedInterrupt routine below is an example of this type.
 */

SimpleInterrupt:
/*
 * Process the device interrupt here and clear the interupt request
 * at the device. In order to do this, some registers may need to be
 * saved and restored. The coprocessor 0 state is such that an ERET
 * will simply return to the interrupted code.
 */

eret /* Return to interrupted code */

NestedException:
/*
 * Nested exceptions typically require saving the EPC and Status registers,
 * any GPRs that may be modified by the nested exception routine, disabling
 * the appropriate IM bits in Status to prevent an interrupt loop, putting
 * the processor in kernel mode, and re-enabling interrupts. The sample code
 * below can not cover all nuances of this processing and is intended only
 * to demonstrate the concepts.
 */

/* Save GPRs here, and setup software context */
mfc0 k0, C0_EPC /* Get restart address */
sw k0, EPCSave /* Save in memory */
mfc0 k0, C0_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
li k1, ~IMbitsToClear /* Get Im bits to clear for this interrupt */

/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */

and k0, k0, k1 /* Clear bits in copy of Status */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify mask, switch to kernel mode, */

/* re-enable interrupts */

/*
 * Process interrupt here, including clearing device interrupt.
 * In some environments this may be done with a thread running in
 * kernel or user mode. Such an environment is well beyond the scope of
 * this example.
26 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

5.1 Interrupts

ding
s mode
t mode

er and
ts (with

NDs
d
 the
 */

/*
 * To complete interrupt processing, the saved values must be restored
 * and the original interrupted code restarted.
 */

di /* Disable interrupts - may not be required */
lw k0, StatusSave /* Get saved Status (including EXL set) */
lw k1, EPCSave /* and EPC */
mtc0 k0, C0_Status /* Restore the original value */
mtc0 k1, C0_EPC /* and EPC */
/* Restore GPRs and software state */
eret /* Dismiss the interrupt */

5.1.1.2 Vectored Interrupt Mode

Vectored Interrupt mode builds on the interrupt compatibility mode by adding a priority encoder to prioritize pen
interrupts and to generate a vector with which each interrupt can be directed to a dedicated handler routine. Thi
also allows each interrupt to be mapped to a GPR shadow set for use by the interrupt handler. Vectored Interrup
is in effect if all of the following conditions are true:

• Config3VInt = 1

• Config3VEIC = 0

• IntCtlVS ≠ 0

• CauseIV = 1

• StatusBEV = 0

In VI interrupt mode, the six hardware interrupts are interpreted as individual hardware interrupt requests. The tim
performance counter interrupts are combined in an implementation-dependent way with the hardware interrup
the interrupt with which they are combined indicated by IntCtlIPTI and IntCtlIPPCI, respectively) to provide the
appropriate relative priority of these interrupts with that of the hardware interrupts. The processor interrupt logic A
each of the CauseIP bits with the corresponding StatusIM bits. If any of these values is 1, and if interrupts are enable
(StatusIE = 1, StatusEXL = 0, and StatusERL = 0), an interrupt is signaled and a priority encoder scans the values in
order shown inTable 5-3.

Table 5-3 Relative Interrupt Priority for Vectored Interrupt Mode

Relative
Priority

Interrupt
Type

Interrupt
Source

Interrupt Request
Calculated From

Vector Number
Generated by

Priority Encoder

Highest Priority

Hardware

HW5 CauseIP7and StatusIM7 7

HW4 CauseIP6 and StatusIM6 6

HW3 CauseIP5 and StatusIM5 5

HW2 CauseIP4 and StatusIM4 4

HW1 CauseIP3 and StatusIM3 3

HW0 CauseIP2 and StatusIM2 2

Software
SW1 CauseIP1 and StatusIM1 1

Lowest Priority SW0 CauseIP0 and StatusIM0 0
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 27

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

riority
uts an
shown

d the time
on by

eption
ching
r may

de shown

ested
ht look
The priority order places a relative priority on each hardware interrupt and places the software interrupts at a p
lower than all hardware interrupts. When the priority encoder finds the highest priority pending interrupt, it outp
encoded vector number that is used in the calculation of the handler for that interrupt, as described below. This is
pictorially in Figure 5-1.

Note that an interrupt request may be deasserted between the time the processor detects the interrupt request an
that the software interrupt handler runs. The software interrupt handler must be prepared to handle this conditi
simply returning from the interrupt via ERET.

A typical software handler for vectored interrupt mode bypasses the entire sequence of code following the IVexc
label shown for the compatibility mode handler above. Instead, the hardware performs the prioritization, dispat
directly to the interrupt processing routine. Unlike the compatibility mode examples, a vectored interrupt handle
take advantage of a dedicated GPR shadow set to avoid saving any registers. As such, the SimpleInterrupt co
above need not save the GPRs.

A nested interrupt is similar to that shown for compatibility mode, but may also take advantage of running the n
exception routine in the GPR shadow set dedicated to the interrupt or in another shadow set. Such a routine mig
as follows:

NestedException:
/*
 * Nested exceptions typically require saving the EPC, Status and SRSCtl registers,
 * setting up the appropriate GPR shadow set for the routine, disabling
 * the appropriate IM bits in Status to prevent an interrupt loop, putting
 * the processor in kernel mode, and re-enabling interrupts. The sample code
 * below can not cover all nuances of this processing and is intended only
 * to demonstrate the concepts.
 */

/* Use the current GPR shadow set, and setup software context */
mfc0 k0, C0_EPC /* Get restart address */
sw k0, EPCSave /* Save in memory */

IP7

IP6

IP5

IP4

IP3

IP2

IP1

IP0

IM7

IM6

IM5

IM4

IM3

IM2

IM1

IM0

P
rio

rit
y

E
nc

od
e

HW5

HW4

HW3

HW2

HW1

HW0

C
om

bi
ne

CauseTI

CausePCI

StatusIE

Interrupt
Request

Vector
Number

Latch Mask Encode
Figure 5-1 Interrupt Generation for Vectored Interrupt Mode

Any
Request

O
ffs

et
G

en
er

at
or

IntCtlVS

Exception
Vector Offset

Generate

SRSMap

Shadow Set
Number

IntCtlIPPCI

IntCtlIPTI
28 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

5.1 Interrupts

pport

number

can be
pt

riority
oded
mfc0 k0, C0_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
mfc0 k0, C0_SRSCtl /* Save SRSCtl if changing shadow sets */
sw k0, SRSCtlSave
li k1, ~IMbitsToClear /* Get Im bits to clear for this interrupt */

/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */

and k0, k0, k1 /* Clear bits in copy of Status */
/* If switching shadow sets, write new value to SRSCtl PSS here */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify mask, switch to kernel mode, */

/* re-enable interrupts */
/*
 * If switching shadow sets, clear only KSU above, write target
 * address to EPC, and do execute an eret to clear EXL, switch
 * shadow sets, and jump to routine
 */

/* Process interrupt here, including clearing device interrupt */

/*
 * To complete interrupt processing, the saved values must be restored
 * and the original interrupted code restarted.
 */

di /* Disable interrupts - may not be required */
lw k0, StatusSave /* Get saved Status (including EXL set) */
lw k1, EPCSave /* and EPC */
mtc0 k0, C0_Status /* Restore the original value */
lw k0, SRSCtlSave /* Get saved SRSCtl */
mtc0 k1, C0_EPC /* and EPC */
mtc0 k0, C0_SRSCtl /* Restore shadow sets */
ehb /* Clear hazard */
eret /* Dismiss the interrupt */

5.1.1.3 External Interrupt Controller Mode

External Interrupt Controller Mode redefines the way that the processor interrupt logic is configured to provide su
for an external interrupt controller. The interrupt controller is responsible for prioritizing all interrupts, including
hardware, software, timer, and performance counter interrupts, and directly supplying to the processor the vector
of the highest priority interrupt. EIC interrupt mode is in effect if all of the following conditions are true:

• Config3VEIC = 1

• IntCtlVS ≠ 0

• CauseIV = 1

• StatusBEV = 0

In EIC interrupt mode, the processor sends the state of the software interrupt requests (CauseIP1..IP0), the timer interrupt
request (CauseTI), and the performance counter interrupt request (CausePCI) to the external interrupt controller, where
it prioritizes these interrupts in a system-dependent way with other hardware interrupts. The interrupt controller
a hard-wired logic block, or it can be configurable based on control and status registers. This allows the interru
controller to be more specific or more general as a function of the system environment and needs.

The external interrupt controller prioritizes its interrupt requests and produces the vector number of the highest p
interrupt to be serviced. The vector number, called the Requested Interrupt Priority Level (RIPL), is a 6-bit enc
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 29

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

63
s value

is
rupt

tarts

e to

ber to
ed
t GPR

ption

ching
y take
n above
value in the range 0..63, inclusive. A value of 0 indicates that no interrupt requests are pending. The values 1..
represent the lowest (1) to highest (63) RIPL for the interrupt to be serviced. The interrupt controller passes thi
on the 6 hardware interrupt line, which are treated as an encoded value in EIC interrupt mode.

StatusIPL (which overlays StatusIM7..IM2) is interpreted as the Interrupt Priority Level (IPL) at which the processor
currently operating (with a value of zero indicating that no interrupt is currently being serviced). When the inter
controller requests service for an interrupt, the processor compares RIPL with StatusIPL to determine if the requested
interrupt has higher priority than the current IPL. If RIPL is strictly greater than StatusIPL, and interrupts are enabled
(StatusIE = 1, StatusEXL = 0, and StatusERL = 0) an interrupt request is signaled to the pipeline. When the processor s
the interrupt exception, it loads RIPL into CauseRIPL (which overlays CauseIP7..IP2) and signals the external interrupt
controller to notify it that the request is being serviced. The interrupt exception uses the value of CauseRIPL as the vector
number. Because CauseRIPL is only loaded by the processor when an interrupt exception is signaled, it is availabl
software during interrupt processing.

In EIC interrupt mode, the external interrupt controller is also responsible for supplying the GPR shadow set num
use when servicing the interrupt. As such, theSRSMapregister is not used in this mode, and the mapping of the vector
interrupt to a GPR shadow set is done by programming (or designing) the interrupt controller to provide the correc
shadow set number when an interrupt is requested. When the processor loads an interrupt request into CauseRIPL, it also
loads the GPR shadow set number into SRSCtlEICSS, which is copied to SRSCtlCSS when the interrupt is serviced.

The operation of EIC interrupt mode is shown pictorially inFigure 5-2.

A typical software handler for EIC interrupt mode bypasses the entire sequence of code following the IVexce

label shown for the compatibility mode handler above. Instead, the hardware performs the prioritization, dispat
directly to the interrupt processing routine. Unlike the compatibility mode examples, an EIC interrupt handler ma
advantage of a dedicated GPR shadow set to avoid saving any registers. As such, the SimpleInterrupt code show
need not save the GPRs.

CauseTI
CausePCI

StatusIE

Interrupt
Request

Vector
Number

Latch CompareEncode
Figure 5-2 Interrupt Generation for External Interrupt Controller Interrupt Mode

Any
Request

O
ffs

et
G

en
er

at
or

IntCtlVS

Exception
Vector Offset

Generate

Shadow Set
Number

E
xt

er
na

l I
nt

er
ru

pt
 C

on
tr

ol
le

r

In
te

rr
up

t S
ou

rc
es

S
ha

do
w

 S
et

M
ap

pi
ng

StatusIP1
StatusIP0

Requested
IPL

C
au

se
R

IP
L

S
ta

tu
s IP

L

S
R

S
C

tl E
IC

S
S

RIPL
>

IPL?

Load
Fields

Interrupt
Exception

Interrupt Service
Started
30 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

5.1 Interrupts

ested
 copy
 as

logic.
ption
ector

r reverts
A nested interrupt is similar to that shown for compatibility mode, but may also take advantage of running the n
exception routine in the GPR shadow set dedicated to the interrupt or in another shadow set. It also need only
CauseRIPL to StatusIPL to prevent lower priority interrupts from interrupting the handler. Such a routine might look
follows:

NestedException:
/*
 * Nested exceptions typically require saving the EPC, Status,and SRSCtl registers,
 * setting up the appropriate GPR shadow set for the routine, disabling
 * the appropriate IM bits in Status to prevent an interrupt loop, putting
 * the processor in kernel mode, and re-enabling interrupts. The sample code
 * below can not cover all nuances of this processing and is intended only
 * to demonstrate the concepts.
 */

/* Use the current GPR shadow set, and setup software context */
mfc0 k1, C0_Cause /* Read Cause to get RIPL value */
mfc0 k0, C0_EPC /* Get restart address */
srl k1, k1, S_CauseRIPL /* Right justify RIPL field */
sw k0, EPCSave /* Save in memory */
mfc0 k0, C0_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
ins k0, k1, S_StatusIPL, 6 /* Set IPL to RIPL in copy of Status */
mfc0 k1, C0_SRSCtl /* Save SRSCtl if changing shadow sets */
sw k1, SRSCtlSave
/* If switching shadow sets, write new value to SRSCtl PSS here */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify IPL, switch to kernel mode, */

/* re-enable interrupts */
/*
 * If switching shadow sets, clear only KSU above, write target
 * address to EPC, and do execute an eret to clear EXL, switch
 * shadow sets, and jump to routine
 */

/* Process interrupt here, including clearing device interrupt */

/*
 * The interrupt completion code is identical to that shown for VI mode above.
 */

5.1.2 Generation of Exception Vector Offsets for Vectored Interrupts

For vectored interrupts (in either VI or EIC interrupt mode), a vector number is produced by the interrupt control
This number is combined with IntCtlVS to create the interrupt offset, which is added to 16#200 to create the exce
vector offset. For VI interrupt mode, the vector number is in the range 0..7, inclusive. For EIC interrupt mode, the v
number is in the range 1..63, inclusive (0 being the encoding for “no interrupt”). The IntCtlVS field specifies the spacing
between vector locations. If this value is zero (the default reset state), the vector spacing is zero and the processo
to Interrupt Compatibility Mode. A non-zero value enables vectored interrupts, andTable 5-4 shows the exception
vector offset for a representative subset of the vector numbers and values of the IntCtlVS field.
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 31

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

 as a
d by a
n
struction
oftware

1 of the
e vector
The general equation for the exception vector offset for a vectored interrupt is:

vectorOffset ← 16#200 + (vectorNumber × (IntCtl VS || 2#00000))

5.2 Exceptions

Normal execution of instructions may be interrupted when an exception occurs. Such events can be generated
by-product of instruction execution (e.g., an integer overflow caused by an add instruction or a TLB miss cause
load instruction), or by an event not directly related to instruction execution (e.g., an external interrupt). When a
exception occurs, the processor stops processing instructions, saves sufficient state to resume the interrupted in
stream, enters Kernel Mode, and starts a software exception handler. The saved state and the address of the s
exception handler are a function of both the type of exception, and the current state of the processor.

5.2.1 Exception Vector Locations

The Reset, Soft Reset, and NMI exceptions are always vectored to location16#BFC0.0000 . EJTAG Debug exceptions
are vectored to location16#BFC0.0480 , or to location16#FF20.0200 if the ProbTrap bit is zero or one,
respectively, in the EJTAG_Control_register.

Addresses for all other exceptions are a combination of a vector offset and a vector base address. In Release
architecture, the vector base address was fixed. In Release 2 of the architecture, software is allowed to specify th
base address via theEBase register for exceptions that occur when StatusBEV equals 0.Table 5-5 gives the vector base
address as a function of the exception and whether the BEV bit is set in theStatus register.Table 5-6 gives the offsets
from the vector base address as a function of the exception. Note that the IV bit in theCause register causes Interrupts

Table 5-4 Exception Vector Offsets for Vectored Interrupts

Vector Number

Value of IntCtl VS Field

2#00001 2#00010 2#00100 2#01000 2#10000

0 16#0200 16#0200 16#0200 16#0200 16#0200

1 16#0220 16#0240 16#0280 16#0300 16#0400

2 16#0240 16#0280 16#0300 16#0400 16#0600

3 16#0260 16#02C0 16#0380 16#0500 16#0800

4 16#0280 16#0300 16#0400 16#0600 16#0A00

5 16#02A0 16#0340 16#0480 16#0700 16#0C00

6 16#02C0 16#0380 16#0500 16#0800 16#0E00

7 16#02E0 16#03C0 16#0580 16#0900 16#1000

•
•
•

61 16#09A0 16#1140 16#2080 16#3F00 16#7C00

62 16#09C0 16#1180 16#2100 16#4000 16#7E00

63 16#09E0 16#11C0 16#2180 16#4100 16#8000
32 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

5.2 Exceptions

ase 2 of

that can

r
han
ssor is
to use a dedicated exception vector offset, rather than the general exception vector. For implementations of Rele
the Architecture,Table 5-4gives the offset from the base address in the case where StatusBEV = 0 and CauseIV = 1. For
implementations of Release 1 of the architecture in which CauseIV = 1, the vector offset is as if IntCtlVS were 0.

Table 5-7combines these two tables into one that contains all possible vector addresses as a function of the state
affect the vector selection. To avoid complexity in the table, the vector address value assumes that theEBaseregister, as
implemented in Release 2 devices, is not changed from its reset state and that IntCtlVS is 0.

In Release 2 of the Architecture, software must guarantee that EBase15..12contains zeros in all bit positions less than o
equal to the most significant bit in the vector offset. This situation can only occur when a vector offset greater t
16#FFF is generated when an interrupt occurs with VI or EIC interrupt mode enabled. The operation of the proce
UNDEFINED if this condition is not met.

Table 5-5 Exception Vector Base Addresses

Exception

StatusBEV

0 1

Reset, Soft Reset, NMI 16#BFC0.0000

EJTAG Debug (with ProbEn = 0 in
the EJTAG_Control_register) 16#BFC0.0480

EJTAG Debug (with ProbEn = 1 in
the EJTAG_Control_register) 16#FF20.0200

Cache Error

For Release 1 of the architecture:

16#A000.0000

For Release 2 of the architecture:

EBase31..30 || 1 ||
EBase28..12 || 16#000

Note that EBase31..30 have the
fixed value2#10

16#BFC0.0300

Other

For Release 1 of the architecture:

16#8000.0000

For Release 2 of the architecture:

EBase31..12 || 16#000

Note that EBase31..30 have the
fixed value2#10

16#BFC0.0200

Table 5-6 Exception Vector Offsets

Exception Vector Offset

TLB Refill, EXL = 0 16#000

Cache error 16#100

General Exception 16#180

Interrupt, CauseIV = 1

16#200 (In Release 2
implementations, this is the base of
the vectored interrupt table when

StatusBEV = 0)

Reset, Soft Reset, NMI None (Uses Reset Base Address)
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 33

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

pecial

ction is
5.2.2 General Exception Processing

With the exception of Reset, Soft Reset, NMI, cache error, and EJTAG Debug exceptions, which have their own s
processing as described below, exceptions have the same basic processing flow:

• If the EXL bit in theStatus register is zero, theEPC register is loaded with the PC at which execution will be
restarted and the BD bit is set appropriately in theCauseregister (seeTable 8-24 on page 87). The value loaded into
theEPCregister is dependent on whether the processor implements the MIPS16 ASE, and whether the instru
in the delay slot of a branch or jump which has delay slots.Table 5-8 shows the value stored in each of the CP0 PC
registers, includingEPC. For implementations of Release 2 of the Architecture if StatusBEV = 0, the CSS field in the
SRSCtl register is copied to the PSS field, and the CSS value is loaded from the appropriate source.

If the EXL bit in theStatus register is set, theEPC register is not loaded and the BD bit is not changed in theCause
register. For implementations of Release 2 of the Architecture, theSRSCtl register is not changed.

Table 5-7 Exception Vectors

Exception StatusBEV StatusEXL CauseIV

EJTAG
ProbEn

Vector

For Release 2
Implementations, assumes
that EBase retains its reset
state and that IntCtlVS = 0

Reset, Soft Reset, NMI x x x x 16#BFC0.0000

EJTAG Debug x x x 0 16#BFC0.0480

EJTAG Debug x x x 1 16#FF20.0200

TLB Refill 0 0 x x 16#8000.0000

TLB Refill 0 1 x x 16#8000.0180

TLB Refill 1 0 x x 16#BFC0.0200

TLB Refill 1 1 x x 16#BFC0.0380

Cache Error 0 x x x 16#A000.0100

Cache Error 1 x x x 16#BFC0.0300

Interrupt 0 0 0 x 16#8000.0180

Interrupt 0 0 1 x 16#8000.0200

Interrupt 1 0 0 x 16#BFC0.0380

Interrupt 1 0 1 x 16#BFC0.0400

All others 0 x x x 16#8000.0180

All others 1 x x x 16#BFC0.0380

‘x’ denotes don’t care
34 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

5.2 Exceptions

 CE

handler
tify the

iption
.

• The CE, and ExcCode fields of theCause registers are loaded with the values appropriate to the exception. The
field is loaded, but not defined, for any exception type other than a coprocessor unusable exception.

• The EXL bit is set in theStatus register.

• The processor is started at the exception vector.

The value loaded into EPC represents the restart address for the exception and need not be modified by exception
software in the normal case. Software need not look at the BD bit in the Cause register unless it wishes to iden
address of the instruction that actually caused the exception.

Note that individual exception types may load additional information into other registers. This is noted in the descr
of each exception type below.

Operation:

/* If Status EXL is 1, all exceptions go through the general exception vector */
/* and neither EPC nor Cause BD nor SRSCtl are modified */
if Status EXL = 1 then

vectorOffset ← 16#180
else

if InstructionInBranchDelaySlot then
EPC ← restartPC/* PC of branch/jump */
CauseBD ← 1

else
EPC ← restartPC /* PC of instruction */
CauseBD ← 0

endif

/* Compute vector offsets as a function of the type of exception */
NewShadowSet ← SRSCtl ESS /* Assume exception, Release 2 only */
if ExceptionType = TLBRefill then

vectorOffset ← 16#000
elseif (ExceptionType = Interrupt) then

if (Cause IV = 0) then
vectorOffset ← 16#180

else
if (Status BEV = 1) or (IntCtl VS = 0) then

vectorOffset ← 16#200
else

if Config3 VEIC = 1 then
VecNum ← Cause RIPL
NewShadowSet ← SRSCtl EICSS

else
VecNum ← VIntPriorityEncoder()

Table 5-8 Value Stored in EPC, ErrorEPC, or DEPC on an Exception

MIPS16
Implemented?

In Branch/Jump
Delay Slot? Value stored in EPC/ErrorEPC/DEPC

No No Address of the instruction

No Yes Address of the branch or jump instruction (PC-4)

Yes No Upper 31 bits of the address of the instruction, combined
with theISA Mode bit

Yes Yes
Upper 31 bits of the branch or jump instruction (PC-2 in
the MIPS16 ISA Mode and PC-4 in the 32-bit ISA
Mode), combined with theISA Mode bit
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 35

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

TAG

le. When

m

NewShadowSet ← SRSMapIPL ×4+3..IPL ×4
endif
vectorOffset ← 16#200 + (VecNum × (IntCtl VS || 2#00000))

endif /* if (Status BEV = 1) or (IntCtl VS = 0) then */
endif /* if (Cause IV = 0) then */

endif /* elseif (ExceptionType = Interrupt) then */

/* Update the shadow set information for an implementation of */
/* Release 2 of the architecture */
if (ArchitectureRevision ≥ 2) and (SRSCtl HSS > 0) and (Status BEV = 0) then

SRSCtl PSS ← SRSCtl CSS
SRSCtl CSS ← NewShadowSet

endif
endif /* if Status EXL = 1 then */

CauseCE ← FaultingCoprocessorNumber
CauseExcCode ← ExceptionType
Status EXL ← 1

/* Calculate the vector base address */
if Status BEV = 1 then

vectorBase ← 16#BFC0.0200
else

if ArchitectureRevision ≥ 2 then
/* The fixed value of EBase 31..30 forces the base to be in kseg0 or kseg1 */
vectorBase ← EBase31..12 || 16#000

else
vectorBase ← 16#8000.0000

endif
endif

/* Exception PC is the sum of vectorBase and vectorOffset. Vector */
/* offsets > 16#FFF (vectored or EIC interrupts only), require */
/* that EBase 15..12 have zeros in each bit position less than or */
/* equal to the most significant bit position of the vector offset */
PC ← vectorBase 31..30 || (vectorBase 29..0 + vectorOffset 29..0)

/* No carry between bits 29 and 30 */

5.2.3 EJTAG Debug Exception

An EJTAG Debug Exception occurs when one of a number of EJTAG-related conditions is met. Refer to the EJ
Specification for details of this exception.

Entry Vector Used

16#BFC0 0480 if the ProbTrap bit is zero in the EJTAG_Control_register;16#FF20 0200 if the ProbTrap bit is
one.

5.2.4 Reset Exception

A Reset Exception occurs when the Cold Reset signal is asserted to the processor. This exception is not maskab
a Reset Exception occurs, the processor performs a full reset initialization, including aborting state machines,
establishing critical state, and generally placing the processor in a state in which it can execute instructions fro
uncached, unmapped address space. On a Reset Exception, only the following registers have defined state:

• TheRandom register is initialized to the number of TLB entries - 1.
36 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

5.2 Exceptions

PC may

le. When
eset
 the

 cache, or
ent.
• TheWired register is initialized to zero.

• TheConfig, Config1, Config2,and Config3 registers are initialized with their boot state.

• The RP, BEV, TS, SR, NMI, and ERL fields of theStatus register are initialized to a specified state.

• Watch register enables and Performance Counter register interrupt enables are cleared.

• TheErrorEPC register is loaded with the restart PC, as described inTable 5-8. Note that this value may or may not
be predictable if the Reset Exception was taken as the result of power being applied to the processor because
not have a valid value in that case. In some implementations, the value loaded intoErrorEPC register may not be
predictable on either a Reset or Soft Reset Exception.

• PC is loaded with16#BFC0 0000 .

Cause Register ExcCode Value

None

Additional State Saved

None

Entry Vector Used

Reset (16#BFC0 0000)

Operation

Random ← TLBEntries - 1
Wired ← 0
Config ← ConfigurationState
Config K0 ← 2 # Suggested - see Config register description
Config1 ← ConfigurationState
Config2 ← ConfigurationState # if implemented
Config3 ← ConfigurationState # if implemented
Status RP ← 0
Status BEV ← 1
Status TS ← 0
Status SR ← 0
Status NMI ← 0
Status ERL ← 1
WatchLo[n] I ← 0 # For all implemented Watch registers
WatchLo[n] R ← 0 # For all implemented Watch registers
WatchLo[n] W ← 0 # For all implemented Watch registers
PerfCnt.Control[n] IE ← 0 # For all implemented PerfCnt registers
if InstructionInBranchDelaySlot then

ErrorEPC ← restartPC # PC of branch/jump
else

ErrorEPC ← restartPC # PC of instruction
endif
PC ← 16#BFC0 0000

5.2.5 Soft Reset Exception

A Soft Reset Exception occurs when the Reset signal is asserted to the processor. This exception is not maskab
a Soft Reset Exception occurs, the processor performs a subset of the full reset initialization. Although a Soft R
Exception does not unnecessarily change the state of the processor, it may be forced to do so in order to place
processor in a state in which it can execute instructions from uncached, unmapped address space. Since bus,
other operations may be interrupted, portions of the cache, memory, or other processor state may be inconsist
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 37

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

typically

cessor
e state

.

n NMI
 cache,
The primary difference between the Reset and Soft Reset Exceptions is in actual use. The Reset Exception is
used to initialize the processor on power-up, while the Soft Reset Exception is typically used to recover from a
non-responsive (hung) processor. The semantic difference is provided to allow boot software to save critical copro
0 or other register state to assist in debugging the potential problem. As such, the processor may reset the sam
when either reset signal is asserted, but the interpretation of any state saved by software may be very different

In addition to any hardware initialization required, the following state is established on a Soft Reset Exception:

• The RP, BEV, TS, SR, NMI, and ERL fields of theStatus register are initialized to a specified state.

• Watch register enables and Performance Counter register interrupt enables are cleared.

• TheErrorEPC register is loaded with the restart PC, as described inTable 5-8.

• PC is loaded with16#BFC0 0000 .

Cause Register ExcCode Value

None

Additional State Saved

None

Entry Vector Used

Reset (16#BFC0 0000)

Operation

Config K0 ← 2 # Suggested - see Config register description
Status RP ← 0
Status BEV ← 1
Status TS ← 0
Status SR ← 1
Status NMI ← 0
Status ERL ← 1
WatchLo[n] I ← 0 # For all implemented Watch registers
WatchLo[n] R ← 0 # For all implemented Watch registers
WatchLo[n] W ← 0 # For all implemented Watch registers
PerfCnt.Control[n] IE ← 0 # For all implemented PerfCnt registers
if InstructionInBranchDelaySlot then

ErrorEPC ← restartPC # PC of branch/jump
else

ErrorEPC ← restartPC # PC of instruction
endif
PC ← 16#BFC0 0000

5.2.6 Non Maskable Interrupt (NMI) Exception

A non maskable interrupt exception occurs when the NMI signal is asserted to the processor.

Although described as an interrupt, it is more correctly described as an exception because it is not maskable. A
occurs only at instruction boundaries, so does not do any reset or other hardware initialization. The state of the
memory, and other processor state is consistent and all registers are preserved, with the following exceptions:

• The BEV, TS, SR, NMI, and ERL fields of theStatus register are initialized to a specified state.

• TheErrorEPC register is loaded with restart PC, as described inTable 5-8.

• PC is loaded with16#BFC0 0000 .
38 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

5.2 Exceptions

ndition
Cause Register ExcCode Value

None

Additional State Saved

None

Entry Vector Used

Reset (16#BFC0 0000)

Operation

Status BEV ← 1
Status TS ← 0
Status SR ← 0
Status NMI ← 1
Status ERL ← 1
if InstructionInBranchDelaySlot then

ErrorEPC ← restartPC # PC of branch/jump
else

ErrorEPC ← restartPC # PC of instruction
endif
PC ← 16#BFC0 0000

5.2.7 Machine Check Exception

A machine check exception occurs when the processor detects an internal inconsistency.

The following conditions cause a machine check exception:

• Detection of multiple matching entries in the TLB in a TLB-based MMU.

Cause Register ExcCode Value

MCheck (SeeTable 8-25 on page 90)

Additional State Saved

Depends on the condition that caused the exception. See the descriptions above.

Entry Vector Used

General exception vector (offset 16#180)

5.2.8 Address Error Exception

An address error exception occurs under the following circumstances:

• An instruction is fetched from an address that is not aligned on a word boundary.

• A load or store word instruction is executed in which the address is not aligned on a word boundary.

• A load or store halfword instruction is executed in which the address is not aligned on a halfword boundary.

• A reference is made to a kernel address space from User Mode or Supervisor Mode.

• A reference is made to a supervisor address space from User Mode.

Note that in the case of an instruction fetch that is not aligned on a word boundary, the PC is updated before the co
is detected. Therefore, both EPC and BadVAddr point at the unaligned instruction address.
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 39

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

space
t has

ed entry
Cause Register ExcCode Value

AdEL: Reference was a load or an instruction fetch

AdES: Reference was a store

SeeTable 8-25 on page 90.

Additional State Saved

Entry Vector Used

General exception vector (offset 16#180)

5.2.9 TLB Refill Exception

A TLB Refill exception occurs in a TLB-based MMU when no TLB entry matches a reference to a mapped address
and the EXL bit is zero in theStatus register. Note that this is distinct from the case in which an entry matches bu
the valid bit off, in which case a TLB Invalid exception occurs.

Cause Register ExcCode Value

TLBL: Reference was a load or an instruction fetch

TLBS: Reference was a store

SeeTable 8-25 on page 90.

Additional State Saved

Entry Vector Used

• TLB Refill vector (offset 16#000) if StatusEXL = 0 at the time of exception.

• General exception vector (offset 16#180) if StatusEXL = 1 at the time of exception

5.2.10 TLB Invalid Exception

A TLB invalid exception occurs when a TLB entry matches a reference to a mapped address space, but the match
has the valid bit off.

Register State Value

BadVAddr failing address

ContextVPN2 UNPREDICTABLE

EntryHiVPN2 UNPREDICTABLE

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

Register State Value

BadVAddr failing address

Context The BadVPN2 field contains VA31..13 of the failing address

EntryHi The VPN2 field contains VA31..13of the failing address; the
ASID field contains the ASID of the reference that missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE
40 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

5.2 Exceptions

one in
ption
ing the

but
Note that the condition in which no TLB entry matches a reference to a mapped address space and the EXL bit is
theStatus register is indistinguishable from a TLB Invalid Exception in the sense that both use the general exce
vector and supply an ExcCode value of TLBL or TLBS. The only way to distinguish these two cases is by prob
TLB for a matching entry (using TLBP).

Cause Register ExcCode Value

TLBL: Reference was a load or an instruction fetch

TLBS: Reference was a store

SeeTable 8-24 on page 87.

Additional State Saved

Entry Vector Used

General exception vector (offset 16#180)

5.2.11 TLB Modified Exception

A TLB modified exception occurs on astorereference to a mapped address when the matching TLB entry is valid,
the entry’s D bit is zero, indicating that the page is not writable.

Cause Register ExcCode Value

Mod (SeeTable 8-24 on page 87)

Additional State Saved

Entry Vector Used

General exception vector (offset 16#180)

Register State Value

BadVAddr failing address

Context The BadVPN2 field contains VA31..13 of the failing address

EntryHi The VPN2 field contains VA31..13of the failing address; the
ASID field contains the ASID of the reference that missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

Register State Value

BadVAddr failing address

Context The BadVPN2 field contains VA31..13 of the failing address

EntryHi The VPN2 field contains VA31..13of the failing address; the
ASID field contains the ASID of the reference that missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 41

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

or ECC
or was in

 an
sactions
5.2.12 Cache Error Exception

A cache error exception occurs when an instruction or data reference detects a cache tag or data error, or a parity
error is detected on the system bus when a cache miss occurs. This exception is not maskable. Because the err
a cache, the exception vector is to an unmapped, uncached address.

Cause Register ExcCode Value

N/A

Additional State Saved

Entry Vector Used

Cache error vector (offset 16#100)

Operation

CacheErr ← ErrorState
Status ERL ← 1
if InstructionInBranchDelaySlot then

ErrorEPC ← restartPC # PC of branch/jump
else

ErrorEPC ← restartPC # PC of instruction
endif
if Status BEV = 1 then

PC ← 16#BFC0 0200 + 16#100
else

PC ← 16#A000 0000 + 16#100
endif

5.2.13 Bus Error Exception

A bus error occurs when an instruction, data, or prefetch access makes a bus request (due to a cache miss or
uncacheable reference) and that request is terminated in an error. Note that parity errors detected during bus tran
are reported as cache error exceptions, not bus error exceptions.

Cause Register ExcCode Value

IBE: Error on an instruction reference

DBE: Error on a data reference

SeeTable 8-25 on page 90.

Additional State Saved

None

Entry Vector Used

General exception vector (offset 16#180)

Register State Value

CacheErr Error state

ErrorEPC Restart PC
42 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

5.2 Exceptions
5.2.14 Integer Overflow Exception

An integer overflow exception occurs when selected integer instructions result in a 2’s complement overflow.

Cause Register ExcCode Value

Ov (SeeTable 8-25 on page 90)

Additional State Saved

None

Entry Vector Used

General exception vector (offset 16#180)

5.2.15 Trap Exception

A trap exception occurs when a trap instruction results in a TRUE value.

Cause Register ExcCode Value

Tr (SeeTable 8-25 on page 90)

Additional State Saved

None

Entry Vector Used

General exception vector (offset 16#180)

5.2.16 System Call Exception

A system call exception occurs when a SYSCALL instruction is executed.

Cause Register ExcCode Value

Sys (SeeTable 8-24 on page 87)

Additional State Saved

None

Entry Vector Used

General exception vector (offset 16#180)

5.2.17 Breakpoint Exception

A breakpoint exception occurs when a BREAK instruction is executed.

Cause Register ExcCode Value

Bp (SeeTable 8-25 on page 90)

Additional State Saved

None
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 43

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

ented

 is

e
ed

de or

uted
Entry Vector Used

General exception vector (offset 16#180)

5.2.18 Reserved Instruction Exception

A Reserved Instruction Exception occurs if any of the following conditions is true:

• An instruction was executed that specifies an encoding of the opcode field that is flagged with “∗” (reserved), “β”
(higher-order ISA), or an unimplemented “ε” (ASE).

• An instruction was executed that specifies aSPECIAL opcode encoding of the function field that is flagged with “∗”
(reserved), or “β” (higher-order ISA).

• An instruction was executed that specifies aREGIMM opcode encoding of the rt field that is flagged with “∗”
(reserved).

• An instruction was executed that specifies an unimplementedSPECIAL2 opcode encoding of the function field that
is flagged with an unimplemented “θ” (partner available), or an unimplemented “σ” (EJTAG).

• An instruction was executed that specifies aCOPzopcode encoding of the rs field that is flagged with “∗” (reserved),
“β” (higher-order ISA), or an unimplemented “ε” (ASE), assuming that access to the coprocessor is allowed. If
access to the coprocessor is not allowed, a Coprocessor Unusable Exception occurs instead. For theCOP1 opcode,
some implementations of previous ISAs reported this case as a Floating Point Exception, setting the Unimplem
Operation bit in the Cause field of theFCSR register.

• An instruction was executed that specifies an unimplementedCOP0opcode encoding of the function field when rs is
CO that is flagged with “∗” (reserved), or an unimplemented “σ” (EJTAG), assuming that access to coprocessor 0
allowed. If access to the coprocessor is not allowed, a Coprocessor Unusable Exception occurs instead.

• An instruction was executed that specifies aCOP1 opcode encoding of the function field that is flagged with “∗”
(reserved), “β” (higher-order ISA), or an unimplemented “ε” (ASE), assuming that access to coprocessor 1 is
allowed. If access to the coprocessor is not allowed, a Coprocessor Unusable Exception occurs instead. Som
implementations of previous ISAs reported this case as a Floating Point Exception, setting the Unimplement
Operation bit in the Cause field of theFCSR register.

Cause Register ExcCode Value

RI (SeeTable 8-25 on page 90)

Additional State Saved

None

Entry Vector Used

General exception vector (offset 16#180)

5.2.19 Coprocessor Unusable Exception

A coprocessor unusable exception occurs if any of the following conditions is true:

• A COP0 or Cache instruction was executed while the processor was running in a mode other than Debug Mo
Kernel Mode, and the CU0 bit in theStatus register was a zero

• A COP1, LWC1, SWC1, LDC1, SDC1 or MOVCI (Special opcode function field encoding) instruction was exec
and the CU1 bit in theStatus register was a zero.

• A COP2, LWC2, SWC2, LDC2, or SDC2 instruction was executed, and the CU2 bit in theStatusregister was a zero.

• A COP3 instruction was executed, and the CU3 bit in theStatus register was a zero.
44 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

5.2 Exceptions

 data

ch
he

ile in
Cause Register ExcCode Value

CpU (SeeTable 8-24 on page 87)

Additional State Saved

Entry Vector Used

General exception vector (offset 16#180)

5.2.20 Floating Point Exception

A floating point exception is initiated by the floating point coprocessor to signal a floating point exception.

Register ExcCode Value

FPE (SeeTable 8-24 on page 87)

Additional State Saved

Entry Vector Used

General exception vector (offset 16#180)

5.2.21 Coprocessor 2 Exception

A coprocessor 2 exception is initiated by coprocessor 2 to signal a precise coprocessor 2 exception.

Register ExcCode Value

C2E (SeeTable 8-24 on page 87)

Additional State Saved

Defined by the coprocessor

Entry Vector Used

General exception vector (offset 16#180)

5.2.22 Watch Exception

The watch facility provides a software debugging vehicle by initiating a watch exception when an instruction or
reference matches the address information stored in theWatchHi andWatchLo registers. A watch exception is taken
immediately if the EXL and ERL bits of theStatus register are both zero. If either bit is a one at the time that a wat
exception would normally be taken, the WP bit in theCause register is set, and the exception is deferred until both t
EXL and ERL bits in the Status register are zero. Software may use the WP bit in theCauseregister to determine if the
EPC register points at the instruction that caused the watch exception, or if the exception actually occurred wh
kernel mode.

Register State Value

CauseCE unit number of the coprocessor being referenced

Register State Value

FCSR indicates the cause of the floating point exception
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 45

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 Interrupts and Exceptions

h is
en.

hile the

whose
en if the
If the EXL or ERL bits are one in theStatusregister and a single instruction generates both a watch exception (whic
deferred by the state of the EXL and ERL bits) and a lower-priority exception, the lower priority exception is tak

Watch exceptions are never taken if the processor is executing in Debug Mode. Should a watch register match w
processor is in Debug Mode, the exception is inhibited and the WP bit is not changed.

It is implementation dependent whether a data watch exception is triggered by a prefetch or cache instruction
address matches the Watch register address match conditions. A watch triggered by a SC instruction does so ev
store would not complete because the LLbit is zero.

Register ExcCode Value

WATCH (SeeTable 8-24 on page 87)

Additional State Saved

Entry Vector Used

General exception vector (offset 16#180)

5.2.23 Interrupt Exception

The interrupt exception occurs when an enabled request for interrupt service is made. See Section5.1 on page 23 for
more information.

Register ExcCode Value

Int (SeeTable 8-25 on page 90)

Additional State Saved

Entry Vector Used

General exception vector (offset 16#180) if the IV bit in theCause register is zero.

Interrupt vector (offset 16#200) if the IV bit in theCause register is one.

Register State Value

CauseWP

indicates that the watch exception was deferred until after
both StatusEXL and StatusERL were zero. This bit directly
causes a watch exception, so software must clear this bit as
part of the exception handler to prevent a watch exception
loop at the end of the current handler execution.

Register State Value

CauseIP indicates the interrupts that are pending.
46 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ity
ducing
try
o.

 an

e via an
exactly
re may
 mode.

s

iting to
adow
ing of

 are

r a
Chapter 6

GPR Shadow Registers

The capability in this chapter is targeted at removing the need to save and restore GPRs on entry to high prior
interrupts or exceptions, and to provide specified processor modes with the same capability. This is done by intro
multiple copies of the GPRs, calledshadow sets, and allowing privileged software to associate a shadow set with en
to Kernel Mode via an interrupt vector or exception. The normal GPRs are logically considered shadow set zer

The number of GPR shadow sets is implementation dependent and may range from one (the normal GPRs) to
architectural maximum of 16. The highest number actually implemented is indicated by the SRSCtlHSSfield. If this field
is zero, only the normal GPRs are implemented.

6.1 Introduction to Shadow Sets

Shadow sets are new copies of the GPRs that can be substituted for the normal GPRs on entry to Kernel Mod
interrupt or exception. Once a shadow set is bound to a Kernel Mode entry condition, reference to GPRs work
as one would expect, but they are redirected to registers that are dedicated to that condition. Privileged softwa
need to reference all GPRs in the register file, even specific shadow registers that are not visible in the current
The RDPGPR and WRPGPR instructions are used for this purpose. The CSS field of theSRSCtl register provides the
number of the current shadow register set, and the PSS field of theSRSCtlregister provides the number of the previou
shadow register set (that which was current before the last exception or interrupt occurred).

If the processor is operating in VI interrupt mode, binding of a vectored interrupt to a shadow set is done by wr
theSRSMapregister. If the processor is operating in EIC interrupt mode, the binding of the interrupt to a specific sh
set is provided by the external interrupt controller, and is configured in an implementation-dependent way. Bind
an exception or non-vectored interrupt to a shadow set is done by writing to the ESS field of theSRSCtlregister. When
an exception or interrupt occurs, the value of SRSCtlCSSis copied to SRSCtlPSS, and SRSCtlCSSis set to the value taken
from the appropriate source. On an ERET, the value of SRSCtlPSSis copied back into SRSCtlCSSto restore the shadow
set of the mode to which control returns. More precisely, the rules for updating the fields in theSRSCtl register on an
interrupt or exception are as follows:

1. No field in theSRSCtl register is updated if any of the following conditions is true. In this case, steps 2 and 3
skipped.

• The exception is one that sets StatusERL: NMI or cache error.

• The exception causes entry into EJTAG Debug Mode

• StatusBEV = 1

• StatusEXL = 1

2. SRSCtlCSS is copied to SRSCtlPSS

3. SRSCtlCSS is updated from one of the following sources:

• The appropriate field of theSRSMap register, based on IPL, if the exception is an interrupt, CauseIV = 1,
Config3VEIC = 0, and Config3VInt = 1. These are the conditions for a vectored interrupt.

• The EICSS field of theSRSCtl register if the exception is an interrupt, CauseIV = 1 and Config3VEIC = 1. These
are the conditions for a vectored EIC interrupt.

• The ESS field of theSRSCtl register in any other case. This is the condition for a non-interrupt exception, o
non-vectored interrupt.
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 47

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 6 GPR Shadow Registers

llows:

ped.

fore
Similarly, the rules for updating the fields in the SRSCtl register at the end of an exception or interrupt are as fo

1. No field in theSRSCtl register is updated if any of the following conditions is true. In this case, step 2 is skip

• A DERET is executed

• An ERET is executed with StatusERL = 1 or StatusBEV = 1

2. SRSCtlPSS is copied to SRSCtlCSS

These rules have the effect of preserving theSRSCtlregister in any case of a nested exception or one which occurs be
the processor has been fully initialize (StatusBEV = 1).

Privileged software may switch the current shadow set by writing a new value into SRSCtlPSS, loading EPC with a target
address, and doing an ERET.

6.2 Support Instructions

Table 6-1 Instructions Supporting Shadow Sets

Mnemonic Function MIPS64 Only?

RDPGPR Read GPR From Previous Shadow Set No

WRPGPR Write GPR to Shadow Set No
48 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

rocessor,
number

ble to a

ased
nt and
w
s. To the

h are

alue
Release
cking)
1 of the
he new

n one,
eason
esign.

truction.
Chapter 7

CP0 Hazards

7.1 Introduction

Because resources controlled via Coprocessor 0 affect the operation of various pipeline stages of a MIPS32 p
manipulation of these resources may produce results that are not detectable by subsequent instructions for some
of execution cycles. When no hardware interlock exists between one instruction that causes an effect that is visi
second instruction, aCP0 hazard exists.

In Release 1 of the MIPS32™ Architecture, CP0 hazards were relegated to implementation-dependent cycle-b
solutions, primarily based on the SSNOP instruction. Since that time, it has become clear that this is an insufficie
error-prone practice that must be addressed with a firm compact between hardware and software. As such, ne
instructions have been added to Release 2 of the architecture which act as explicit barriers that eliminate hazard
extent that it was possible to do so, the new instructions have been added in such a way that they are
backward-compatible with existing MIPS processors.

7.2 Types of Hazards

In privileged software, there are two different types of hazards: execution hazards and instruction hazards. Bot
defined below. InTable 7-1 andTable 7-2 below, the final column lists the “typical” spacing required in
implementations of Release 1 of the Architecture to allow the consumer to eliminate the hazard. The “typical” v
shown in these tables represent spacing that is in common use by operating systems today. An implementation of
1 of the Architecture which requires less spacing to clear the hazard (including one which has full hardware interlo
should operate correctly with an operating system which uses this hazard table. An implementation of Release
Architecture which requires more spacing to clear the hazard incurs the burden of validating kernel code against t
hazard requirements.

Note that, for superscalar MIPS implementations, the number of instructions issued per cycle may be greater tha
and thus that the duration of the hazard in instructions may be greater than the duration in cycles. It is for this r
that MIPS32 Release 1 defines the SSNOP instruction to convert instruction issues to cycles in a superscalar d

7.2.1 Execution Hazards

Execution hazards are those created by the execution of one instruction, and seen by the execution of another ins
Table 7-1 lists execution hazards.

Table 7-1 Execution Hazards

Producer → Consumer Hazard On

“Typical”
Spacing
(Cycles)

TLBWR, TLBWI →
TLBP, TLBR TLB entry 3

Load/store using new TLB entry TLB entry 3

MTC0 → Load/store affected by new state
EntryHiASID

WatchHi
WatchLo

3

MIPS32™ Architecture For Programmers Volume III, Revision 2.00 49

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 7 CP0 Hazards

nother
7.2.2 Instruction Hazards

Instruction hazards are those created by the execution of one instruction, and seen by the instruction fetch of a
instruction.Table 7-2 lists instruction hazards.

MTC0 → Coprocessor instruction execution depends on
the new value of StatusCU

StatusCU 4

MTC0 → ERET

Status
EPC

DEPC
ErrorEPC

3

MTC0, EI, DI → Interrupted Instruction StatusIE 3

MTC0 → Interrupted Instruction CauseIP 3

MTC0 → Interrupted Instruction Compare 3

MTC0 → CACHE PageGrain 2

TLBR → MFC0

EntryHi,
EntryLo0,
EntryLo1,
PageMask

3

TLBP → MFC0 Index 2

MTC0 →
TLBR
TLBWI
TLBWR

EntryHi 2

MTC0 → TLBP
Load or Store Instruction EntryHiASID 3

MTC0 → TLBWI
TLBWR

Index
EntryLo0
EntryLo1

2

MTC0 → RDPGPR
WRPGPR SRSCtlPSS 2

LL → MFC0 LLAddr 2

Table 7-2 Instruction Hazards

Producer → Consumer
Hazard

On

“Typical”
Spacing
(Cycles)

TLBWR, TLBWI → Instruction fetch using new TLB entry TLB entry 5

MTC0 →
Instruction fetch seeing the new value
(including a change to ERL followed by an
instruction fetch from the useg segment)

Status 5

MTC0 → Instruction fetch seeing the new value
EntryHiASID

WatchHi
WatchLo

5

Table 7-1 Execution Hazards

Producer → Consumer Hazard On

“Typical”
Spacing
(Cycles)
50 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

7.3 Hazard Clearing Instructions

e with
.

e
 JR.HB
R.HB

ecause
 on
7.3 Hazard Clearing Instructions

Table 7-3 lists the instructions designed to eliminate hazards.

7.3.1 Instruction Encoding

The EHB instruction is encoded using a variant of the NOP/SSNOP encoding. This encoding was chosen for
compatibility with the Release 1 SSNOP instruction, such that existing software may be modified to be compatibl
both Release 1 and Release 2 implementations. See the EHB instruction description for additional information

The JALR.HB and JR.HB instructions are encoding using bit 10 of thehint field of the JALR and JR instructions. These
encodings were chosen for compatibility with existing MIPS implementations, including many which pre-date th
MIPS32 architecture. Because a pipeline flush clears hazards on most early implementations, the JALR.HB or
instructions can be included in existing software for backward and forward compatibility. See the JALR.HB and J
instructions for additional information.

The SYNCI instruction is encoded using a new encoding of the REGIMM opcode. This encoding was chosen b
it causes a Reserved Instruction exception on all Release 1 implementations. As such, kernel software running
processors that don’t implement Release 2 can emulate the function using the CACHE instruction.

Instructionstream
writes → Instruction fetch seeing the new instruction

stream
Cache
entries Unbounded

CACHE → Instruction fetch seeing the new instruction
stream

Cache
entries 5

Table 7-3 Hazard Clearing Instructions

Mnemonic Function

EHB Clear execution hazard

JALR.HB Clear both execution and instruction hazards

JR.HB Clear both execution and instruction hazards

SSNOP Superscalar No Operation

SYNCI Synchronize caches after instruction stream write

Table 7-2 Instruction Hazards

Producer → Consumer
Hazard

On

“Typical”
Spacing
(Cycles)
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 51

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 7 CP0 Hazards
52 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

d below,

If the
Chapter 8

Coprocessor 0 Registers

The Coprocessor 0 (CP0) registers provide the interface between the ISA and the PRA. Each register is discusse
with the registers presented in numerical order, first by register number, then by select field number.

8.1 Coprocessor 0 Register Summary

Table 8-1lists the CP0 registers in numerical order. The individual registers are described later in this document.
compliance level is qualified (e.g., “Required(TLB MMU)”), it applies only if the qualifying condition is true. The Sel
column indicates the value to be used in the field of the same name in the MFC0 and MTC0 instructions.

Table 8-1 Coprocessor 0 Registers in Numerical Order

Register
Number Sel1

Register
Name Function Reference

Compliance
Level

0 0 Index Index into the TLB array Section8.3 on
page 57

Required
(TLB MMU);

Optional
(others)

1 0 Random Randomly generated index into the TLB arraySection8.4 on
page 58

Required
(TLB MMU);

Optional
(others)

2 0 EntryLo0 Low-order portion of the TLB entry for
even-numbered virtual pages

Section8.5 on
page 59

Required
(TLB MMU);

Optional
(others)

3 0 EntryLo1 Low-order portion of the TLB entry for
odd-numbered virtual pages

Section8.5 on
page 59

Required (TLB
MMU);

Optional (others)

4 0 Context Pointer to page table entry in memory Section8.6 on
page 63

Required
(TLB MMU);

Optional
(others)

4 1 ContextConfig Context and XContext register configuration
 SmartMIPS

ASE
Specification

Required
(SmartMIPS ASE

Only)

5 0 PageMask Control for variable page size in TLB entriesSection8.7 on
page 64

Required
(TLB MMU);

Optional
(others)

5 1 PageGrain Control for small page support

Section8.8 on
page 66 and
SmartMIPS

ASE
Specification

Required
(SmartMIPS

ASE); Optional
(Release 2)

6 0 Wired Controls the number of fixed (“wired”) TLB
entries

Section8.9 on
page 68

Required
(TLB MMU);

Optional
(others)
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 53

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 8 Coprocessor 0 Registers
7 0 HWREna Enables access via the RDHWR instruction to
selected hardware registers

Section8.10 on
page 69

Required
(Release 2)

7 1-7 Reserved for future extensions Reserved

8 0 BadVAddr Reports the address for the most recent
address-related exception

Section8.11 on
page 70 Required

9 0 Count Processor cycle count Section8.12 on
page 71 Required

9 6-7 Available for implementation dependent user Section8.13 on
page 71

Implementation
Dependent

10 0 EntryHi High-order portion of the TLB entry Section8.14 on
page 72

Required
(TLB MMU);

Optional
(others)

11 0 Compare Timer interrupt control Section8.15 on
page 74 Required

11 6-7 Available for implementation dependent userSection8.16 on
page 74

Implementation
Dependent

12 0 Status Processor status and control Section8.17 on
page 75 Required

12 1 IntCtl Interrupt system status and control Section8.18 on
page 82

Required
(Release 2)

12 2 SRSCtl Shadow register set status and control Section8.19 on
page 84

Required
(Release 2)

12 3 SRSMap Shadow set IPL mapping Section8.20 on
page 86

Required
(Release 2 and
shadow sets

implemented)

13 0 Cause Cause of last general exception Section8.21 on
page 87 Required

14 0 EPC Program counter at last exception Section8.22 on
page 91 Required

15 0 PRId Processor identification and revision Section8.23 on
page 92 Required

15 1 EBase Exception vector base register Section8.24 on
page 93

Required
(Release 2)

16 0 Config Configuration register Section8.25 on
page 95 Required

16 1 Config1 Configuration register 1 Section8.26 on
page 97 Required

16 2 Config2 Configuration register 2 Section8.27 on
page 101 Optional

16 3 Config3 Configuration register 3 Section8.28 on
page 104 Optional

16 6-7 Available for implementation dependent userSection8.29 on
page 106

Implementation
Dependent

Table 8-1 Coprocessor 0 Registers in Numerical Order

Register
Number Sel1

Register
Name Function Reference

Compliance
Level
54 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.1 Coprocessor 0 Register Summary
17 0 LLAddr Load linked address Section8.30 on
page 107 Optional

18 0-n WatchLo Watchpoint address Section8.31 on
page 108 Optional

19 0-n WatchHi Watchpoint control Section8.32 on
page 110 Optional

20 0 XContext in 64-bit implementations Reserved

21 all Reserved for future extensions Reserved

22 all Available for implementation dependent use Section8.33 on
page 112

Implementation
Dependent

23 0 Debug EJTAG Debug register EJTAG
Specification Optional

23 1 TraceControl PDtrace control register PDtrace
Specification Optional

23 2 TraceControl2 PDtrace control register PDtrace
Specification Optional

23 3 UserTraceData PDtrace control register PDtrace
Specification Optional

23 4 TraceBPC PDtrace control register PDtrace
Specification Optional

24 0 DEPC Program counter at last EJTAG debug
exception

EJTAG
Specification Optional

25 0-n PerfCnt Performance counter interface Section8.36 on
page 115 Recommended

26 0 ErrCtl Parity/ECC error control and status Section8.37 on
page 118 Optional

27 0-3 CacheErr Cache parity error control and status Section8.38 on
page 119 Optional

28 even selects TagLo Low-order portion of cache tag interface Section8.39 on
page 120 Required (Cache)

28 odd selects DataLo Low-order portion of cache data interface Section8.40 on
page 121 Optional

29 even selects TagHi High-order portion of cache tag interface Section8.41 on
page 122 Required (Cache)

29 odd selects DataHi High-order portion of cache data interface Section8.42 on
page 123 Optional

30 0 ErrorEPC Program counter at last error Section8.43 on
page 124 Required

31 0 DESAVE EJTAG debug exception save register EJTAG
Specification Optional

1. Any select (Sel) value not explicitly noted as available for implementation-dependent use is reserved for future use by the Architecture.

Table 8-1 Coprocessor 0 Registers in Numerical Order

Register
Number Sel1

Register
Name Function Reference

Compliance
Level
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 55

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 8 Coprocessor 0 Registers

t state of
8.2 Notation

For each register described below, field descriptions include the read/write properties of the field, and the rese
the field. For the read/write properties of the field, the following notation is used:

Table 8-2 Read/Write Bit Field Notation

Read/Write
Notation Hardware Interpretation Software Interpretation

R/W

A field in which all bits are readable and writable by software and, potentially, by hardware.

Hardware updates of this field are visible by software read. Software updates of this field are
visible by hardware read.

If the Reset State of this field is “Undefined”, either software or hardware must initialize the value
before the first read will return a predictable value. This should not be confused with the formal
definition ofUNDEFINED behavior.

R

A field which is either static or is updated only
by hardware.

If the Reset State of this field is either “0”,
“Preset”, or “Externally Set”, hardware
initializes this field to zero or to the appropriate
state, respectively, on powerup. The term
“Preset” is used to suggest that the processor
establishes the appropriate state, whereas the
term “Externally Set” is used to suggest that the
state is established via an external source (e.g.,
personality pins or initialization bit stream).
These terms are suggestions only, and are not
intended to act as a requirement on the
implementation.

If the Reset State of this field is “Undefined”,
hardware updates this field only under those
conditions specified in the description of the
field.

A field to which the value written by software
is ignored by hardware. Software may write
any value to this field without affecting
hardware behavior. Software reads of this field
return the last value updated by hardware.

If the Reset State of this field is “Undefined”,
software reads of this field result in an
UNPREDICTABLE value except after a
hardware update done under the conditions
specified in the description of the field.

0 A field which hardware does not update, and
for which hardware can assume a zero value.

A field to which the value written by software
must be zero. Software writes of non-zero
values to this field may result inUNDEFINED
behavior of the hardware. Software reads of
this field return zero as long as all previous
software writes are zero.

If the Reset State of this field is “Undefined”,
software must write this field with zero before
it is guaranteed to read as zero.
56 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.3 Index Register (CP0 Register 0, Select 0)

MIPS32™ Architecture For Programmers Volume III, Revision 2.00 57

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.3 Index Register (CP0 Register 0, Select 0)

Compliance Level:Required for TLB-based MMUs;Optional otherwise.

TheIndexregister is a 32-bit read/write register which contains the index used to access the TLB for TLBP, TLBR, and
TLBWI instructions. The width of the index field is implementation-dependent as a function of the number of TLB
entries that are implemented. The minimum value for TLB-based MMUs is Ceiling(Log2(TLBEntries)). For example,
six bits are required for a TLB with 48 entries).

The operation of the processor isUNDEFINED if a value greater than or equal to the number of TLB entries is written
to theIndex register.

Figure 8-1 shows the format of theIndex register;Table 8-3 describes theIndex register fields.

Figure 8-1 Index Register Format

31 n n-1 0

P 0 Index

Table 8-3 Index Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

P 31

Probe Failure. Hardware writes this bit during
execution of the TLBP instruction to indicate whether
a TLB match occurred:

R Undefined Required

0 30..n Must be written as zero; returns zero on read. 0 0 Reserved

Index n-1..0

TLB index. Software writes this field to provide the
index to the TLB entry referenced by the TLBR and
TLBWI instructions.

Hardware writes this field with the index of the
matching TLB entry during execution of the TLBP
instruction. If the TLBP fails to find a match, the
contents of this field areUNPREDICTABLE .

R/W Undefined Required

Encoding Meaning

0
A match occurred, and the Index field
contains the index of the matching entry

1
No match occurred and the Index field is
UNPREDICTABLE

58 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.4 Random Register (CP0 Register 1, Select 0)

Compliance Level:Required for TLB-based MMUs;Optional otherwise.

TheRandom register is a read-only register whose value is used to index the TLB during a TLBWR instruction. The
width of the Random field is calculated in the same manner as that described for theIndex register above.

The value of the register varies between an upper and lower bound as follow:

• A lower bound is set by the number of TLB entries reserved for exclusive use by the operating system (the contents
of theWiredregister). The entry indexed by theWiredregister is the first entry available to be written by a TLB Write
Random operation.

• An upper bound is set by the total number of TLB entries minus 1.

Within the required constraints of the upper and lower bounds, the manner in which the processor selects values for the
Random register is implementation-dependent.

The processor initializes theRandom register to the upper bound on a Reset Exception, and when theWired register is
written.

Figure 8-2 shows the format of theRandom register;Table 8-4 describes theRandom register fields.

Figure 8-2 Random Register Format

31 n n-1 0

0 Random

Table 8-4 Random Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

0 31..n Must be written as zero; returns zero on read. 0 0 Reserved

Random n-1..0 TLB Random Index R TLB Entries - 1 Required

8.5 EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)

fields

lds
8.5 EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)

Compliance Level: EntryLo0 isRequired for a TLB-based MMU;Optional otherwise.

Compliance Level: EntryLo1 isRequired for a TLB-based MMU;Optional otherwise.

The pair ofEntryLo registers act as the interface between the TLB and the TLBP, TLBR, TLBWI, and TLBWR
instructions.EntryLo0 holds the entries for even pages andEntryLo1 holds the entries for odd pages.

Software may determine the value of PABITS by writing all ones to theEntryLo0or EntryLo1registers and reading the
value back. Bits read as “1” from the PFN field allow software to determine the boundary between the PFNand Fill
to calculate the value of PABITS.

The contents of theEntryLo0 andEntryLo1 registers are not defined after an address error exception and some fie
may be modified by hardware during the address error exception sequence. Software writes of theEntryHi register (via
MTC0) do not cause the implicit update of address-related fields in theBadVAddr or Context registers.

For Release 1 of the Architecture,Figure 8-3 shows the format of theEntryLo0 andEntryLo1 registers;Table 8-5
describes theEntryLo0andEntryLo1register fields. For Release 2 of the Architecture,Figure 8-4shows the format of
theEntryLo0 andEntryLo1 registers;Table 8-6 describes theEntryLo0 andEntryLo1 register fields.

Figure 8-3 EntryLo0, EntryLo1 Register Format in Release 1 of the Architecture

31 30 29 6 5 3 2 1 0

Fill PFN C D V G

Table 8-5 EntryLo0, EntryLo1 Register Field Descriptions in Release 1 of the Architecture

Fields

Description
Read/
Write Reset State ComplianceName Bits

Fill 31..30
These bits are ignored on write and return zero on read.
The boundaries of this field change as a function of the
value ofPABITS. SeeTable 8-7 for more information.

R 0 Required

PFN 29..6

Page Frame Number. Corresponds to bitsPABITS-1..12
of the physical address, wherePABITS is the width of
the physical address in bits. The boundaries of this field
change as a function of the value ofPABITS. SeeTable
8-7 for more information.

R/W Undefined Required

C 5..3 Coherency attribute of the page. SeeTable 8-8 below. R/W Undefined Required

D 2

“Dirty” bit, indicating that the page is writable. If this
bit is a one, stores to the page are permitted. If this bit
is a zero, stores to the page cause a TLB Modified
exception.

Kernel software may use this bit to implement paging
algorithms that require knowing which pages have
been written. If this bit is always zero when a page is
initially mapped, the TLB Modified exception that
results on any store to the page can be used to update
kernel data structures that indicate that the page was
actually written.

R/W Undefined Required

V 1

Valid bit, indicating that the TLB entry, and thus the
virtual page mapping are valid. If this bit is a one,
accesses to the page are permitted. If this bit is a zero,
accesses to the page cause a TLB Invalid exception.

R/W Undefined Required
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 59

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

alue of
nly the
Table 8-7 shows the movement of the Fill and PFN fields as a function of 1KB page support enabled, and the v
PABITS. Note that in implementations of Release 1 of the Architecture, there is no support for 1KB pages, so o
first row of the table applies to Release 1.

G 0

Global bit. On a TLB write, the logical AND of the G
bits from both EntryLo0 and EntryLo1 becomes the G
bit in the TLB entry. If the TLB entry G bit is a one,
ASID comparisons are ignored during TLB matches.
On a read from a TLB entry, the G bits of both
EntryLo0 and EntryLo1 reflect the state of the TLB G
bit.

R/W Undefined Required
(TLB MMU)

Figure 8-4 EntryLo0, EntryLo1 Register Format in Release 2 of the Architecture

31 30 29 6 5 3 2 1 0

Fill PFN C D V G

Table 8-6 EntryLo0, EntryLo1 Register Field Descriptions in Release 2 of the Architecture

Fields

Description
Read/
Write Reset State ComplianceName Bits

Fill 31..30
These bits are ignored on write and return zero on read.
The boundaries of this field change as a function of the
value of PABITS. SeeTable 8-7 for more information.

R 0 Required

PFN 29..6

Page Frame Number. This field contains the physical
page number corresponding to the virtual page.

If the processor is enabled to support 1KB pages
(Config3SP = 1 and PageGrainESP = 1), the PFN field
corresponds to bits 33..10 of the physical address (the
field is shifted left by 2 bits relative to the Release 1
definition to make room for PA11..10).

If the processor is not enabled to support 1KB pages
(Config3SP = 0 or PageGrainESP = 0), the PFN field
corresponds to bits 35..12 of the physical address.

The boundaries of this field change as a function of the
value of PABITS. SeeTable 8-7 for more information.

R/W Undefined Required

C 5..3 The definition of this field is unchanged from Release
1. SeeTable 8-5 above andTable 8-8 below. R/W Undefined Required

D 2 The definition of this field is unchanged from Release
1. SeeTable 8-5 above. R/W Undefined Required

V 1 The definition of this field is unchanged from Release
1. SeeTable 8-5 above. R/W Undefined Required

G 0 The definition of this field is unchanged from Release
1. SeeTable 8-5 above. R/W Undefined Required

(TLB MMU)

Table 8-5 EntryLo0, EntryLo1 Register Field Descriptions in Release 1 of the Architecture

Fields

Description
Read/
Write Reset State ComplianceName Bits
60 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.5 EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)

the pro-

ment at
er cases,
Programming Note:

In implementations of Release 2 of the Architecture, the PFN field of both theEntryLo0andEntryLo1registers must
be written with zero and the TLB must be flushed before each instance in which the value of thePageGrainregister is
changed. This operation must be carried out while running in an unmapped address space. The operation of
cessor isUNDEFINED if this sequence is not done.

Table 8-8lists the encoding of the C field of theEntryLo0andEntryLo1registers and the K0 field of theConfigregister.
An implementation may choose to implement a subset of the cache coherency attributes shown, but must imple
least encodings 2 and 3 such that software can always depend on these encodings working appropriately. In oth
the operation of the processor isUNDEFINED if software specifies an unimplemented encoding.

Table 8-8 lists the required and optional encodings for the coherency attributes.

Table 8-7 EntryLo Field Widths as a Function ofPABITS

1KB Page
Support

Enabled? PABITS Value

Corresponding EntryLo Field Bit
Ranges

Release 2
Required?Fill Field PFN Field

No 36 ≥ PABITS >
12

31..(30-(36-PABITS)
)

Example:
31..30 ifPABITS= 36
31..7 ifPABITS = 13

(29-(36-PABITS))..6

Example:
29..6 ifPABITS = 36
6..6 if PABITS = 13

EntryLo29..6 = PA35..12

No

Yes 34 ≥ PABITS >
10

31..(30-(34-PABITS)
)

Example:
31..30 ifPABITS= 34
31..7 ifPABITS = 11

(29-(34-PABITS))..6

Example:
29..6 ifPABITS = 34
6..6 if PABITS = 11

EntryLo29..6 = PA33..10

Yes

Table 8-8 Cache Coherency Attributes

C(5:3) Value
Cache Coherency Attributes

With Historical Usage Compliance

0
Available for implementation dependent use

Optional

1
Available for implementation dependent use

Optional

2
Uncached

Required

3
Cacheable

Required

4
Available for implementation dependent use

Optional
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 61

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

5
Available for implementation dependent use

Optional

6
Available for implementation dependent use

Optional

7
Available for implementation dependent use

Optional

Table 8-8 Cache Coherency Attributes

C(5:3) Value
Cache Coherency Attributes

With Historical Usage Compliance
62 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.6 Context Register (CP0 Register 4, Select 0)

MIPS32™ Architecture For Programmers Volume III, Revision 2.00 63

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.6 Context Register (CP0 Register 4, Select 0)

Compliance Level:Required for TLB-based MMUs;Optional otherwise.

TheContextregister is a read/write register containing a pointer to an entry in the page table entry (PTE) array. This array
is an operating system data structure that stores virtual-to-physical translations. During a TLB miss, the operating system
loads the TLB with the missing translation from the PTE array. TheContextregister duplicates some of the information
provided in theBadVAddr register, but is organized in such a way that the operating system can directly reference a
16-byte structure in memory that describes the mapping.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits VA31..13 of the virtual address to be written
into theBadVPN2 field of theContext register. ThePTEBase field is written and used by the operating system.

The BadVPN2 field of theContextregister is not defined after an address error exception and this field may be modified
by hardware during the address error exception sequence.

Figure 8-5 shows the format of theContext Register;Table 8-9 describes theContext register fields.

Figure 8-5 Context Register Format

31 23 22 4 3 0

PTEBase BadVPN2 0

Table 8-9 Context Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

PTEBase 31..23

This field is for use by the operating system and is
normally written with a value that allows the
operating system to use theContext Register as a
pointer into the current PTE array in memory.

R/W Undefined Required

BadVPN2 22..4
This field is written by hardware on a TLB
exception. It contains bits VA31..13 of the virtual
address that caused the exception.

R Undefined Required

0 3..0 Must be written as zero; returns zero on read. 0 0 Reserved

ask
8.7 PageMask Register (CP0 Register 5, Select 0)

Compliance Level:Required for TLB-based MMUs;Optional otherwise.

ThePageMaskregister is a read/write register used for reading from and writing to the TLB. It holds a comparison m
that sets the variable page size for each TLB entry, as shown inTable 8-11. Figure 8-6shows the format of thePageMask
register;Table 8-10 describes thePageMask register fields.

Figure 8-6 PageMask Register Format

31 29 28 13 12 11 0

0 Mask MaskX 0

Table 8-10 PageMask Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

Mask 28..13
The Mask field is a bit mask in which a “1” bit indicates
that the corresponding bit of the virtual address should
not participate in the TLB match.

R/W Undefined Required

MaskX 12..11

In Release 2 of the Architecture, the MaskX field is an
extension to the Mask field to support 1KB pages with
definition and action analogous to that of the Mask
field, defined above.

If 1KB pages are enabled (Config3SP = 1 and
PageGrainESP= 1), these bits are writable and readable,
and their values are copied to and from the TLB entry
on a TLB write or read, respectivly.

If 1KB pages are not enabled (Config3SP = 0 or
PageGrainESP = 0), these bits are not writable, return
zero on read, and the effect on the TLB entry on a write
is as if they were written with the value 2#11.

In Release 1 of the Architecture, these bits must be
written as zero, return zero on read, and have no effect
on the virtual address translation.

R/W
0

(See
Description)

Required
(Release 2)

0 31..29,
10..0 Ignored on write; returns zero on read. R 0 Required

Table 8-11 Values for the Mask and MaskX1 Fields of the PageMask Register

Page Size

Bit

28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 121 111

1 KByte 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

16 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

64 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

256 KBytes 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 MByte 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

4 MByte 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
64 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.7 PageMask Register (CP0 Register 5, Select 0)

d of the
poten-

f the pro-

enting

1K
It is implementation dependent how many of the encodings described inTable 8-11are implemented. All processors
must implement the 4KB page size. If a particular page size encoding is not implemented by a processor, a rea
PageMaskregister must return zeros in all bits that correspond to encodings that are not implemented, thereby
tially returning a value different than that written by software.

Software may determine which page sizes are supported by writing all ones to thePageMaskregister, then reading
the value back. If a pair of bits reads back as ones, the processor implements that page size. The operation o
cessor isUNDEFINED if software loads the Mask field with a value other than one of those listed inTable 8-11,
even if the hardware returns a different value on read. Hardware may depend on this requirement in implem
hardware structures

Programming Note:

In implementations of Release 2 of the Architecture, the MaskX field of thePageMaskregister must be written with
2#11 and the TLB must be flushed before each instance in which the value of thePageGrainregister is changed. This
operation must be carried out while running in an unmapped address space. The operation of the processor isUNDE-
FINED if this sequence is not done.

16 MByte 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

64 MByte 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

256 MByte 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1. PageMask12..11= PaskMaskMaskX exists only on implementations of Release 2 of the architecture and are treated as if they had the value 2#11 if
pages are not enabled (Config3SP = 0 or PageGrainESP = 0).

Table 8-11 Values for the Mask and MaskX1 Fields of the PageMask Register

Page Size

Bit

28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 121 111
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 65

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

nd

en the
tecture.
8.8 PageGrain Register (CP0 Register 5, Select 1)

Compliance Level:Requiredfor implementations of Release 2 of the Architecture that include TLB-based MMUs a
support 1KB pages;Optional otherwise.

ThePageGrain register is a read/write register used for enabling 1KB page support. ThePageGrain register is present
in both the SmartMIPS™ ASE, and in Release 2 of the Architecture, although there are no bits in common betwe
two uses of this register. As such, the description below only describes the fields relevant to Release 2 of the Archi
In implementations of both Release 2 of the Architecture and the SmartMIPS™ ASE, the ASE definitions take
precedence and none of the Release 2 fields described below are present.Figure 8-7shows the format of thePageMask
register;Table 8-12 describes thePageMask register fields.

Figure 8-7 PageGrain Register Format

31 30 29 28 27 13 12 8 7 0

ASE ELPA ESP 0 ASE 0

Table 8-12 PageGrain Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

ASE 31..30,1
2..8

These fields are control features of the SmartMIPS™
ASE and are not used in implementations of Release 2
of the Architecture unless such an implementation also
implements the SmartMIPS™ ASE.

0 0 Required

ELPA 29
Used to enable support for large physical addresses in
MIPS64 processors; not used by MIPS32 processors.
This bit is ignored on write and returns zero on read.

R 0 Required

ESP 28

Enables support for 1KB pages.

If this bit is a 1, the following changes occur to
coprocessor 0 registers:
• The PFN field of theEntryLo0 andEntryLo1

registers holds the physical address down to bit 10
(the field is shifted left by 2 bits from the Release 1
definition)

• The MaskX field of thePageMask register is
writable and is concatenated to the right of the Mask
field to form the “don’t care” mask for the TLB
entry.

• The VPN2X field of theEntryHi register is writable
and bits 12..11 of the virtual address.

• The virtual address translation algorithm is modified
to reflect the smaller page size.

If Config3SP= 0, 1KB pages are not implemented, and
this bit is ignored on write and returns zero on read.

R/W 0 Required

0 27..13,
7..0 Must be written as zero; returns zero on read. 0 0 Reserved

Encoding Meaning

0 1KB page support is not enabled

1 1KB page support is enabled
66 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.8 PageGrain Register (CP0 Register 5, Select 1)

lues,
is oper-

n and a
Programming Note:

In implementations of Release 2 of the Architecture, the following fields must be written with the specified va
and the TLB must be flushed before each instance in which the value of the PageGrain register is changed. Th
ation must be carried out while running in an unmapped address space. The operation of the processor isUNDE-
FINED if this sequence is not done.

Note also that if PageGrain is changed, a hazard may be created between the instruction that writes PageGrai
subsequent CACHE instruction. This hazard must be cleared using the EHB instruction.

Field Required Value

EntryLo0PFN, EntryLo1PFN 0

EntryLo0PFNX, EntryLo1PFNX 0

PageMaskMaskX 2#11

EntryHiVPN2X 0
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 67

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

68 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.9 Wired Register (CP0 Register 6, Select 0)

Compliance Level:Required for TLB-based MMUs;Optional otherwise.

TheWiredregister is a read/write register that specifies the boundary between the wired and random entries in the TLB
as shown inFigure 8-8.

The width of the Wired field is calculated in the same manner as that described for theIndexregister. Wired entries are
fixed, non-replaceable entries which are not overwritten by a TLBWR instruction.Wired entries can be overwritten by a
TLBWI instruction.

TheWiredregister is set to zero by a Reset Exception. Writing theWiredregister causes theRandomregister to reset to
its upper bound.

The operation of the processor isUNDEFINED if a value greater than or equal to the number of TLB entries is written
to theWired register.

Figure 8-8 shows the format of theWired register;Table 8-13 describes theWired register fields.

Figure 8-9 Wired Register Format

31 n n-1 0

0 Wired

Table 8-13 Wired Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

0 31..n Must be written as zero; returns zero on read. 0 0 Reserved

Wired n-1..0 TLB wired boundary R/W 0 Required

R
an

do
m

W
ire

d

Entry 0

Entry 1010Wired Register

Figure 8-8 Wired And Random Entries In The TLB

Entry TLBSize-1

8.10 HWREna Register (CP0 Register 7, Select 0)

MIPS32™ Architecture For Programmers Volume III, Revision 2.00 69

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.10 HWREna Register (CP0 Register 7, Select 0)

Compliance Level:Required (Release 2).

TheHWREna register contains a bit mask that determines which hardware registers are accessible via the RDHWR
instruction.

Figure 8-10 shows the format of theHWREna Register;Table 8-14 describes theHWREna register fields.

Privileged software may determine which of the hardware registers are accessible by the RDHWR instruction. In doing
so, a register may be virtualized at the cost of handling a Reserved Instruction Exception, interpreting the instruction,
and returning the virtualized value. For example, if it is not desirable to provide direct access to theCountregister, access
to that register may be individually disabled and the return value can be virtualized by the operating system.

Figure 8-10 HWREna Register Format

31 4 3 0

0
0000 0000 0000 0000 0000 0000 0000 Mask

Table 8-14 HWREna Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

0 31..4 Must be written with zero; returns zero on read 0 0 Reserved

Mask 3..0

Each bit in this field enables access by the RDHWR
instruction to a particular hardware register (which
may not be an actual register). If bit ‘n’ in this field
is a 1, access is enabled to hardware register ‘n’. If
bit ‘n’ of this field is a 0, access is disabled.

See the RDHWR instruction for a list of valid
hardware registers.

R/W 0 Required

70 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.11 BadVAddr Register (CP0 Register 8, Select 0)

Compliance Level:Required.

TheBadVAddr register is a read-only register that captures the most recent virtual address that caused one of the
following exceptions:

• Address error (AdEL or AdES)

• TLB Refill

• TLB Invalid (TLBL, TLBS)

• TLB Modified

TheBadVAddrregister does not capture address information for cache or bus errors, or for Watch exceptions, since none
is an addressing error.

Figure 8-11 shows the format of theBadVAddr register;Table 8-15 describes the BadVAddr register fields.

Figure 8-11 BadVAddr Register Format

31 0

BadVAddr

Table 8-15 BadVAddr Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

BadVAddr 31..0 Bad virtual address R Undefined Required

8.12 Count Register (CP0 Register 9, Select 0)

MIPS32™ Architecture For Programmers Volume III, Revision 2.00 71

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.12 Count Register (CP0 Register 9, Select 0)

Compliance Level:Required.

The Count register acts as a timer, incrementing at a constant rate, whether or not an instruction is executed, retired, or
any forward progress is made through the pipeline. The rate at which the counter increments is implementation
dependent, and is a function of the pipeline clock of the processor, not the issue width of the processor.

The Count register can be written for functional or diagnostic purposes, including at reset or to synchronize processors.

Figure 8-12 shows the format of the Count register;Table 8-16 describes the Count register fields.

8.13 Reserved for Implementations (CP0 Register 9, Selects 6 and 7)

Compliance Level:Optional: Implementation Dependent.

CP0 register 9, Selects 6 and 7 are reserved for implementation dependent use and are not defined by the architecture.

Figure 8-12 Count Register Format

31 0

Count

Table 8-16 Count Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

Count 31..0 Interval counter R/W Undefined Required

tions.

B

dress

round
y

lds
ter (via
8.14 EntryHi Register (CP0 Register 10, Select 0)

Compliance Level:Requiredfor TLB-based MMU;Optional otherwise.

TheEntryHi register contains the virtual address match information used for TLB read, write, and access opera

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits VA31..13 of the virtual address to be written
into the VPN2 field of theEntryHi register. An implementation of Release 2 of the Architecture which supports 1K
pages also writes VA12..11into the VPN2X field of the EntryHi register. A TLBR instruction writes theEntryHi register
with the corresponding fields from the selected TLB entry. The ASID field is written by software with the current ad
space identifier value and is used during the TLB comparison process to determine TLB match.

Because the ASID field is overwritten by a TLBR instruction, software must save and restore the value of ASID a
use of the TLBR. This is especially important in TLB Invalid and TLB Modified exceptions, and in other memor
management software.

The VPNX2 and VPN2 fields of theEntryHi register are not defined after an address error exception and these fie
may be modified by hardware during the address error exception sequence.Software writes of the EntryHi regis
MTC0) do not cause the implicit write of address-related fields in theBadVAddr,Context registers.

Figure 8-13 shows the format of theEntryHi register;Table 8-17 describes theEntryHi register fields.

Programming Note:

In implementations of Release 2 of the Architecture, the VPN2X field of theEntryHi register must be written with
zero and the TLB must be flushed before each instance in which the value of thePageGrainregister is changed. This

Figure 8-13 EntryHi Register Format

31 13 12 11 10 8 7 0

VPN2 VPN2X 0 ASID

Table 8-17 EntryHi Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

VPN2 31..13

VA31..13of the virtual address (virtual page number / 2).
This field is written by hardware on a TLB exception or
on a TLB read, and is written by software before a TLB
write.

R/W Undefined Required

VPN2X 12..11

In Release 2 of the Architecture, the VPN2X field is an
extension to the VPN2 field to support 1KB pages.
These bits are not writable by either hardware or
software unless Config3SP= 1 and PageGrainESP= 1. If
enabled for write, this field contains VA12..11 of the
virtual address and is written by hardware on a TLB
exception or on a TLB read, and is by software before a
TLB write.

If writes are not enabled, and in implementations of
Release 1 of the Architecture, this field must be written
with zero and returns zeros on read.

R/W 0

Required
(Release2and

1KB Page
Support)

0 10..8 Must be written as zero; returns zero on read. 0 0 Reserved

ASID 7..0

Address space identifier. This field is written by
hardware on a TLB read and by software to establish the
current ASID value for TLB write and against which
TLB references match each entry’s TLB ASID field.

R/W Undefined Required
(TLB MMU)
72 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.14 EntryHi Register (CP0 Register 10, Select 0)
operation must be carried out while running in an unmapped address space. The operation of the processor isUNDE-
FINED if this sequence is not done.
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 73

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

74 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.15 Compare Register (CP0 Register 11, Select 0)

Compliance Level:Required.

TheCompareregister acts in conjunction with theCountregister to implement a timer and timer interrupt function. The
Compare register maintains a stable value and does not change on its own.

When the value of theCount register equals the value of theCompare register, an interrupt request is combined in an
implementation-dependent way with hardware interrupt 5 to set interrupt bit IP(7) in theCauseregister. This causes an
interrupt as soon as the interrupt is enabled.

For diagnostic purposes, theCompare register is a read/write register. In normal use however, theCompare register is
write-only. Writing a value to theCompare register, as a side effect, clears the timer interrupt.Figure 8-14 shows the
format of theCompare register;Table 8-18 describes the Compare register fields.

8.16 Reserved for Implementations (CP0 Register 11, Selects 6 and 7)

Compliance Level:Optional: Implementation Dependent.

CP0 register 11, Selects 6 and 7 are reserved for implementation dependent use and are not defined by the architecture.

Figure 8-14 Compare Register Format

31 0

Compare

Table 8-18 Compare Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

Compare 31..0 Interval count compare value R/W Undefined Required

8.17 Status Register (CP Register 12, Select 0)

states

0

8.17 Status Register (CP Register 12, Select 0)

Compliance Level:Required.

TheStatusregister is a read/write register that contains the operating mode, interrupt enabling, and the diagnostic
of the processor. Fields of this register combine to create operating modes for the processor. Refer toChapter 3, “MIPS32
Operating Modes,” on page 9for a discussion of operating modes, and SectionSection 5.1, "Interrupts" on page 23for
a discussion of interrupt modes.

Figure 8-15 shows the format of the Status register;Table 8-19 describes the Status register fields.

Figure 8-15 Status Register Format

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 10 9 8 7 6 5 4 3 2 1

CU3..CU0 RP FR RE MX PX BEV TS SR NMI 0 Impl IM7..IM2 IM1..IM0 KX SX UX UM R0 ERL EXL IE

IPL KSU

Table 8-19 Status Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

CU
(CU3..
CU0)

31..28

Controls access to coprocessors 3, 2, 1, and 0,
respectively:

Coprocessor 0 is always usable when the processor is
running in Kernel Mode or Debug Mode, independent of
the state of the CU0 bit.

In Release 2 of the Architecture, and for 64-bit
implementations of Release 1 of the Architecture,
execution of all floating point instructions, including
those encoded with the COP1X opcode, is controlled by
the CU1 enable. CU3 is no longer used and is reserved for
future use by the Architecture.

If there is no provision for connecting a coprocessor, the
corresponding CU bit must be ignored on write and read
as zero.

R/W Undefined

Required for
all

implemented
coprocessors

RP 27

Enables reduced power mode on some implementations.
The specific operation of this bit is implementation
dependent.

If this bit is not implemented, it must be ignored on write
and read as zero. If this bit is implemented, the reset state
must be zero so that the processor starts at full
performance.

R/W 0 Optional

Encoding Meaning

0 Access not allowed

1 Access allowed
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 75

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

FR 26

In Release 1 of the Architecture, only MIPS64 processors
could implement a 64-bit floating point unit. In Release 2
of the Architecture, both MIPS32 and MIPS64 processors
can implement a 64-bit floating point unit. This bit is used
to control the floating point register mode for 64-bit
floating point units:

This bit must be ignored on write and read as zero under
the following conditions:

• No floating point unit is implemented

• In a MIPS32 implementation of Release 1 of the
Architecture

• In an implementation of Release 2 of the Architecture
in which a 64-bit floating point unit is not
implemented

Certain combinations of the FR bit and other state or
operations can causeUNPREDICTABLE behavior. See
SectionSection 3.5.2, "64-bit FPR Enable" on page 10for
a discussion of these combinations.

R 0 Required

RE 25

Used to enable reverse-endian memory references while
the processor is running in user mode:

Neither Debug Mode nor Kernel Mode nor Supervisor
Mode references are affected by the state of this bit.

If this bit is not implemented, it must be ignored on write
and read as zero.

R/W Undefined Optional

MX 24
Enables access to MDMX™ resources on MIPS64
processors. Not used by MIPS32 processors. This bit must
be ignored on write and read as zero.

R 0 Optional

PX 23
Enables access to 64-bit operations on MIPS64
processors. Not used by MIPS32 processors. This bit must
be ignored on write and read as zero.

R 0 Required

Table 8-19 Status Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

Encoding Meaning

0
Floating point registers can contain any
32-bit datatype. 64-bit datatypes are stored
in even-odd pairs of registers.

1
Floating point registers can contain any
datatype

Encoding Meaning

0 User mode uses configured endianness

1 User mode uses reversed endianness
76 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.17 Status Register (CP Register 12, Select 0)
BEV 22

Controls the location of exception vectors:

See SectionSection 5.2.1, "Exception Vector Locations"
on page 32 for details.

R/W 1 Required

TS 21

Indicates that the TLB has detected a match on multiple
entries. It is implementation dependent whether this
detection occurs at all, on a write to the TLB, or an access
to the TLB.In Release 2 of the Architecture, multiple
TLB matches may only be reported on a TLB write.
When such a detection occurs, the processor initiates a
machine check exception and sets this bit. It is
implementation dependent whether this condition can be
corrected by software. If the condition can be corrected,
this bit should be cleared by software before resuming
normal operation.

See Section4.9.3 on page 17 for a discusssion of
software TLB initialization used to avoid a machine check
exeception during processor initialization.

If this bit is not implemented, it must be ignored on write
and read as zero.

Software should not write a 1 to this bit when its value is
a 0, thereby causing a 0-to-1 transition. If such a transition
is caused by software, it isUNPREDICTABLE whether
hardware ignores the write, accepts the write with no side
effects, or accepts the write and initiates a machine check
exception.

R/W 0

Required if
TLB

Shutdown is
implemented

SR 20

Indicates that the entry through the reset exception vector
was due to a Soft Reset:

If this bit is not implemented, it must be ignored on write
and read as zero.

Software should not write a 1 to this bit when its value is
a 0, thereby causing a 0-to-1 transition. If such a transition
is caused by software, it isUNPREDICTABLE whether
hardware ignores or accepts the write.

R/W
1 for Soft
Reset; 0

otherwise

Required if
Soft Reset is
implemented

Table 8-19 Status Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

Encoding Meaning

0 Normal

1 Bootstrap

Encoding Meaning

0 Not Soft Reset (NMI or Reset)

1 Soft Reset
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 77

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

NMI 19

Indicates that the entry through the reset exception vector
was due to an NMI exception:

If this bit is not implemented, it must be ignored on write
and read as zero.

Software should not write a 1 to this bit when its value is
a 0, thereby causing a 0-to-1 transition. If such a transition
is caused by software, it isUNPREDICTABLE whether
hardware ignores or accepts the write.

R/W 1 for NMI; 0
otherwise

Required if
NMI is

implemented

0 18 Must be written as zero; returns zero on read. 0 0 Reserved

Impl 17..16
These bits are implementation dependent and are not
defined by the architecture. If they are not implemented,
they must be ignored on write and read as zero.

Undefined Optional

IM7..IM2 15..10

Interrupt Mask: Controls the enabling of each of the
hardware interrupts. Refer to SectionSection 5.1,
"Interrupts" on page 23 for a complete discussion of
enabled interrupts.

In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled (Config3VEIC = 1),
these bits take on a different meaning and are interpreted
as the IPL field, described below.

R/W Undefined Required

IPL 15..10

Interrupt Priority Level.

In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled (Config3VEIC = 1),
this field is the encoded (0..63) value of the current IPL.
An interrupt will be signaled only if the requested IPL is
higher than this value.

If EIC interrupt mode is not enabled (Config3VEIC = 0),
these bits take on a different meaning and are interpreted
as the IM7..IM2 bits, described above.

R/W Undefined

Optional
(Release 2 and
EIC interrupt
mode only)

Table 8-19 Status Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

Encoding Meaning

0 Not NMI (Soft Reset or Reset)

1 NMI

Encoding Meaning

0 Interrupt request disabled

1 Interrupt request enabled
78 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.17 Status Register (CP Register 12, Select 0)
IM1..IM0 9..8

Interrupt Mask: Controls the enabling of each of the
software interrupts. Refer to SectionSection 5.1,
"Interrupts" on page 23 for a complete discussion of
enabled interrupts.

In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled (Config3VEIC = 1),
these bits are writable, but have no effect on the interrupt
system.

R/W Undefined Required

KX 7

Enables access to 64-bit kernel address space on 64-bit
MIPS processors. Not used by MIPS32 processors. This
bit must be ignored on write and read as zero. R 0 Reserved

SX 6

Enables access to 64-bit supervisor address space on
64-bit MIPS processors. Not used by MIPS32 processors.
This bit must be ignored on write and read as zero. R 0 Reserved

UX 5

Enables access to 64-bit user address space on 64-bit
MIPS processors Not used by MIPS32 processors. This
bit must be ignored on write and read as zero. R 0 Reserved

KSU 4..3

If Supervisor Mode is implemented, the encoding of this
field denotes the base operating mode of the processor.
SeeChapter 3, “MIPS32 Operating Modes,” on page 9for
a full discussion of operating modes. The encoding of this
field is:

Note: This field overlaps the UM and R0 fields, described
below.

R/W Undefined

Required if
Supervisor
Mode is

implemented;
Optional
otherwise

Table 8-19 Status Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

Encoding Meaning

0 Interrupt request disabled

1 Interrupt request enabled

Encoding Meaning

2#00 Base mode is Kernel Mode

2#01 Base mode is Supervisor Mode

2#10 Base mode is User Mode

2#11
Reserved. The operation of the processor is
UNDEFINED if this value is written to the
KSU field
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 79

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

UM 4

If Supervisor Mode is not implemented, this bit denotes
the base operating mode of the processor. SeeChapter 3,
“MIPS32 Operating Modes,” on page 9 for a full
discussion of operating modes. The encoding of this bit is:

Note: This bit overlaps the KSU field, described above.

R/W Undefined Required

R0 3

If Supervisor Mode is not implemented, this bit is
reserved. This bit must be ignored on write and read as
zero.

Note: This bit overlaps the KSU field, described above.

R 0 Reserved

ERL 2

Error Level; Set by the processor when a Reset, Soft
Reset, NMI or Cache Error exception are taken.

When ERL is set:
• The processor is running in kernel mode

• Hardware and software interrupts are disabled

• The ERET instruction will use the return address held
in ErrorEPC instead of EPC

• The lower 229 bytes of kuseg are treated as an
unmapped and uncached region. SeeSection 4.7,
"Address Translation for the kuseg Segment when
StatusERL = 1" on page 16. This allows main memory
to be accessed in the presence of cache errors. The
operation of the processor isUNDEFINED if the ERL
bit is set while the processor is executing instructions
from kuseg.

R/W 1 Required

Table 8-19 Status Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

Encoding Meaning

0 Base mode is Kernel Mode

1 Base mode is User Mode

Encoding Meaning

0 Normal level

1 Error level
80 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.17 Status Register (CP Register 12, Select 0)
EXL 1

Exception Level; Set by the processor when any exception
other than Reset, Soft Reset, NMI or Cache Error
exception are taken.

 When EXL is set:
• The processor is running in Kernel Mode

• Hardware and software interrupts are disabled.

• TLB Refill exceptions use the general exception vector
instead of the TLB Refill vector.

• EPC, CauseBD and SRSCtl (implementations of
Release 2 of the Architecture only) will not be updated
if another exception is taken

R/W Undefined Required

IE 0

Interrupt Enable: Acts as the master enable for software
and hardware interrupts:

In Release 2 of the Architecture, this bit may be modified
separately via the DI and EI instructions.

R/W Undefined Required

Table 8-19 Status Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

Encoding Meaning

0 Normal level

1 Exception level

Encoding Meaning

0 Interrupts are disabled

1 Interrupts are enabled
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 81

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ctored
lease 1
8.18 IntCtl Register (CP0 Register 12, Select 1)

Compliance Level:Required (Release 2).

The IntCtl register controls the expanded interrupt capability added in Release 2 of the Architecture, including ve
interrupts and support for an external interrupt controller. This register does not exist in implementations of Re
of the Architecture.

Figure 8-16 shows the format of the IntCtl register;Table 8-20 describes the IntCtl register fields.

Figure 8-16 IntCtl Register Format

31 29 28 26 25 10 9 5 4 0

IPTI IPPCI 0
00 0000 0000 0000 00 VS 0

Table 8-20 IntCtl Register Field Descriptions

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

IPTI 31..29

For Interrupt Compatibility and Vectored Interrupt
modes, this field specifies the IP number to which the
Timer Interrupt request is merged, and allows
software to determine whether to consider CauseTI
for a potential interrupt.

The value of this field isUNPREDICTABLE if
External Interrupt Controller Mode is both
implemented and enabled. The external interrupt
controller is expected to provide this information for
that interrupt mode.

R
Preset or

Externally
Set

Required

Encoding IP bit Hardware
Interrupt Source

2 2 HW0

3 3 HW1

4 4 HW2

5 5 HW3

6 6 HW4

7 7 HW5
82 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.18 IntCtl Register (CP0 Register 12, Select 1)
IPPCI 28..26

For Interrupt Compatibility and Vectored Interrupt
modes, this field specifies the IP number to which the
Performance Counter Interrupt request is merged,
and allows software to determine whether to consider
CausePCI for a potential interrupt.

The value of this field isUNPREDICTABLE if
External Interrupt Controller Mode is both
implemented and enabled. The external interrupt
controller is expected to provide this information for
that interrupt mode.

If performance counters are not implemented
(Config1PC = 0), this field returns zero on read.

R
Preset or

Externally
Set

Optional
(Performance

Counters
Implemented)

0 25..10 Must be written as zero; returns zero on read. 0 0 Reserved

VS 9..5

Vector Spacing. If vectored interrupts are
implemented (as denoted by Config3VInt or
Config3VEIC), this field specifies the spacing
between vectored interrupts.

All other values are reserved. The operation of the
processor isUNDEFINED if a reserved value is
written to this field.

If neither EIC interrupt mode nor VI mode are
implemented (Config3VEIC = 0 and Config3VINT =
0), this field is ignored on write and reads as zero.

R/W 0 Optional

0 4..0 Must be written as zero; returns zero on read. 0 0 Reserved

Table 8-20 IntCtl Register Field Descriptions

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

Encoding IP bit Hardware
Interrupt Source

2 2 HW0

3 3 HW1

4 4 HW2

5 5 HW3

6 6 HW4

7 7 HW5

Encoding Spacing Between
Vectors (hex)

Spacing Between
Vectors (decimal)

16#00 16#000 0

16#01 16#020 32

16#02 16#040 64

16#04 16#080 128

16#08 16#100 256

16#10 16#200 512
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 83

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.19 SRSCtl Register (CP0 Register 12, Select 2)

Compliance Level:Required (Release 2).

TheSRSCtl register controls the operation of GPR shadow sets in the processor. This register does not exist in
implementations of the architecture prior to Release 2.

Figure 8-17 shows the format of theSRSCtl register;Table 8-21 describes theSRSCtl register fields.

Figure 8-17 SRSCtl Register Format

31 30 29 26 25 22 21 18 17 16 15 12 11 10 9 6 5 4 3 0

0
00 HSS 0

00 00 EICSS 0
00 ESS 0

00 PSS 0
00 CSS

Table 8-21 SRSCtl Register Field Descriptions

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

0 31..30 Must be written as zeros; returns zero on read. 0 0 Reserved

HSS 29..26

Highest Shadow Set. This field contains the highest
shadow set number that is implemented by this
processor. A value of zero in this field indicates that
only the normal GPRs are implemented.

The value in this field also represents the highest
value that can be written to the ESS, EICSS, PSS, and
CSS fields of this register, or to any of the fields of
theSRSMapregister. The operation of the processor
is UNDEFINED if a value larger than the one in this
field is written to any of these other values.

R Preset Required

0 25..22 Must be written as zeros; returns zero on read. 0 0 Reserved

EICSS 21..18

EIC interrupt mode shadow set. If Config3VEIC is 1
(EIC interrupt mode is enabled), this field is loaded
from the external interrupt controller for each
interrupt request and is used in place of theSRSMap
register to select the current shadow set for the
interrupt.

SeeSection 5.1.1.3, "External Interrupt Controller
Mode" on page 29 for a discussion of EIC interrupt
mode. If Config3VEIC is 0, this field must be written
as zero, and returns zero on read.

R Undefined
Required

(EIC interrupt
mode only)

0 17..16 Must be written as zeros; returns zero on read. 0 0 Reserved

ESS 15..12

Exception Shadow Set. This field specifies the
shadow set to use on entry to Kernel Mode caused by
any exception other than a vectored interrupt.

The operation of the processor isUNDEFINED if
software writes a value into this field that is greater
than the value in the HSS field.

R/W 0 Required

0 11..10 Must be written as zeros; returns zero on read. 0 0 Reserved
84 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.19 SRSCtl Register (CP0 Register 12, Select 2)
PSS 9..6

Previous Shadow Set. If GPR shadow registers are
implemented, and with the exclusions noted in the
next paragraph, this field is copied from the CSS field
when an exception or interrupt occurs. An ERET
instruction copies this value back into the CSS field
if StatusBEV = 0.

This field is not updated on any exception which sets
StatusERL to 1 (i.e., NMI or cache error), an entry into
EJTAG Debug mode, or any exception or interrupt
that occurs with StatusEXL = 1, or StatusBEV = 1.

The operation of the processor isUNDEFINED if
software writes a value into this field that is greater
than the value in the HSS field.

R/W 0 Required

0 5..4 Must be written as zeros; returns zero on read. 0 0 Reserved

CSS 3..0

Current Shadow Set. If GPR shadow registers are
implemented, this field is the number of the current
GPR set. With the exclusions noted in the next
paragraph, this field is updated with a new value on
any interrupt or exception, and restored from the PSS
field on an ERET.Table 8-22 describes the various
sources from which the CSS field is updated on an
exception or interrupt.

This field is not updated on any exception which sets
StatusERL to 1 (i.e., NMI or cache error), an entry into
EJTAG Debug mode, or any exception or interrupt
that occurs with StatusEXL = 1, or StatusBEV = 1.
Neither is it updated on an ERET with StatusERL = 1
or StatusBEV = 1.

The value of CSS can be changed directly by
software only by writing the PSS field and executing
an ERET instruction.

R 0 Required

Table 8-22 Sources for new SRSCtlCSS on an Exception or Interrupt

Exception Type Condition SRSCtlCSS Source Comment

Exception All SRSCtlESS

Non-Vectored
Interrupt CauseIV = 0 SRSCtlESS Treat as exception

Vectored Interrupt
CauseIV = 1 and

Config3VEIC = 0 and
Config3VInt = 1

SRSMapVectNum
×4+3..VectNum ×4

Source is internal map
register

Vectored EIC
Interrupt

CauseIV = 1 and
Config3VEIC = 1 SRSCtlEICSS

Source is external
interrupt controller.

Table 8-21 SRSCtl Register Field Descriptions

Fields

Description
Read/
Write

Reset
State ComplianceName Bits
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 85

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

86 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.20 SRSMap Register (CP0 Register 12, Select 3)

Compliance Level:Requiredin Release 2 of the Architecture if Additional Shadow Sets and Vectored Interrupt Mode
are Implemented

TheSRSMapregister contains 8 4-bit fields that provide the mapping from an vector number to the shadow set number
to use when servicing such an interrupt. The values from this register are not used for a non-interrupt exception, or a
non-vectored interrupt (CauseIV = 0 or IntCtlVS = 0). In such cases, the shadow set number comes from SRSCtlESS.

If SRSCtlHSS is zero, the results of a software read or write of this register areUNPREDICTABLE .

The operation of the processor isUNDEFINED if a value is written to any field in this register that is greater than the
value of SRSCtlHSS.

TheSRSMap register contains the shadow register set numbers for vector numbers 7..0. The same shadow set number
can be established for multiple interrupt vectors, creating a many-to-one mapping from a vector to a single shadow
register set number.

Figure 8-18 shows the format of theSRSMap register;Table 8-23 describes theSRSMap register fields.

Figure 8-18 SRSMap Register Format

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

SSV7 SSV6 SSV5 SSV4 SSV3 SSV2 SSV1 SSV0

Table 8-23 SRSMap Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

SSV7 31..28 Shadow register set number for Vector Number 7 R/W 0 Required

SSV6 27..24 Shadow register set number for Vector Number 6 R/W 0 Required

SSV5 23..20 Shadow register set number for Vector Number 5 R/W 0 Required

SSV4 19..16 Shadow register set number for Vector Number 4 R/W 0 Required

SSV3 15..12 Shadow register set number for Vector Number 3 R/W 0 Required

SSV2 11..8 Shadow register set number for Vector Number 2 R/W 0 Required

SSV1 7..4 Shadow register set number for Vector Number 1 R/W 0 Required

SSV0 3..0 Shadow register set number for Vector Number 0 R/W 0 Required

8.21 Cause Register (CP0 Register 13, Select 0)

ftware

or an
8.21 Cause Register (CP0 Register 13, Select 0)

Compliance Level:Required.

TheCause register primarily describes the cause of the most recent exception. In addition, fields also control so
interrupt requests and the vector through which interrupts are dispatched. With the exception of the IP1..0, DC, IV, and
WP fields, all fields in the Cause register are read-only. Release 2 of the Architecture added optional support f
External Interrupt Controller (EIC) interrupt mode, in which IP7..2 are interpreted as the Requested Interrupt Priority
Level (RIPL).

Figure 8-19 shows the format of the Cause register;Table 8-24 describes the Cause register fields.

Figure 8-19 Cause Register Format

31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 8 7 6 2 1 0

BD TI CE DC PCI 0 IV WP 0 IP7..IP2 IP1..IP0 0 Exc Code 0

RIPL

Table 8-24 Cause Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

BD 31

Indicates whether the last exception taken occurred in
a branch delay slot:

The processor updates BD only if StatusEXL was zero
when the exception occurred.

R Undefined Required

TI 30

Timer Interrupt. In an implementation of Release 2 of
the Architecture, this bit denotes whether a timer
interrupt is pending (analogous to the IP bits for other
interrupt types):

In an implementation of Release 1 of the
Architecture, this bit must be written as zero and
returns zero on read.

R Undefined Required
(Release 2)

CE 29..28

Coprocessor unit number referenced when a
Coprocessor Unusable exception is taken. This field
is loaded by hardware on every exception, but is
UNPREDICTABLE for all exceptions except for
Coprocessor Unusable.

R Undefined Required

Encoding Meaning

0 Not in delay slot

1 In delay slot

Encoding Meaning

0 No timer interrupt is pending

1 Timer interrupt is pending
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 87

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

DC 27

DisableCount register. In some power-sensitive
applications, theCount register is not used but may
still be the source of some noticeable power
dissipation. This bit allows theCount register to be
stopped in such situations.

In an implementation of Release 1 of the
Architecture, this bit must be written as zero, and
returns zero on read.

R/W 0 Required
(Release 2)

PCI 26

Performance Counter Interrupt. In an implementation
of Release 2 of the Architecture, this bit denotes
whether a performance counter interrupt is pending
(analogous to the IP bits for other interrupt types):

In an implementation of Release 1 of the
Architecture, or if performance counters are not
implemented (Config1PC = 0), this bit must be
written as zero and returns zero on read.

R Undefined

Required
(Release 2 and
performance

counters
implemented)

IV 23

Indicates whether an interrupt exception uses the
general exception vector or a special interrupt vector:

In implementations of Release 2 of the architecture,
if the CauseIV is 1 and StatusBEV is 0, the special
interrupt vector represents the base of the vectored
interrupt table.

R/W Undefined Required

WP 22

Indicates that a watch exception was deferred
because StatusEXL or StatusERL were a one at the
time the watch exception was detected. This bit both
indicates that the watch exception was deferred, and
causes the exception to be initiated once StatusEXL
and StatusERL are both zero. As such, software must
clear this bit as part of the watch exception handler to
prevent a watch exception loop.

Software should not write a 1 to this bit when its
value is a 0, thereby causing a 0-to-1 transition. If
such a transition is caused by software, it is
UNPREDICTABLE whether hardware ignores the
write, accepts the write with no side effects, or
accepts the write and initiates a watch exception once
StatusEXL and StatusERL are both zero.

If watch registers are not implemented, this bit must
be ignored on write and read as zero.

R/W Undefined

Required if
watch

registers are
implemented

Table 8-24 Cause Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

Encoding Meaning

0 Enable counting ofCount register

1 Disable counting ofCount register

Encoding Meaning

0 No timer interrupt is pending

1 Timer interrupt is pending

Encoding Meaning

0 Use the general exception vector (16#180)

1 Use the special interrupt vector (16#200)
88 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.21 Cause Register (CP0 Register 13, Select 0)
IP7..IP2 15..10

Indicates an interrupt is pending:

In implementations of Release 1 of the Architecture,
timer and performance counter interrupts are
combined in an implementation-dependent way with
hardware interrupt 5.

In implementations of Release 2 of the Architecture
in which EIC interrupt mode is not enabled
(Config3VEIC = 0), timer and performance counter
interrupts are combined in an
implementation-dependent way with any hardware
interrupt. If EIC interrupt mode is enabled
(Config3VEIC = 1), these bits take on a different
meaning and are interpreted as the RIPL field,
described below.

R Undefined Required

RIPL 15..10

Requested Interrupt Priority Level.

In implementations of Release 2 of the Architecture
in which EIC interrupt mode is enabled (Config3VEIC
= 1), this field is the encoded (0..63) value of the
requested interrupt. A value of zero indicates that no
interrupt is requested.

If EIC interrupt mode is not enabled (Config3VEIC =
0), these bits take on a different meaning and are
interpreted as the IP7..IP2 bits, described above.

R Undefined

Optional
(Release 2 and
EIC interrupt
mode only)

IP1..IP0 9..8

Controls the request for software interrupts:

An implementation of Release 2 of the Architecture
which also implements EIC interrupt mode exports
these bits to the external interrupt controller for
prioritization with other interrupt sources.

R/W Undefined Required

ExcCode 6..2 Exception code - seeTable 8-25 R Undefined Required

0
25..24,
21..16,
7, 1..0

Must be written as zero; returns zero on read. 0 0 Reserved

Table 8-24 Cause Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

Bit Name Meaning

15 IP7 Hardware interrupt 5

14 IP6 Hardware interrupt 4

13 IP5 Hardware interrupt 3

12 IP4 Hardware interrupt 2

11 IP3 Hardware interrupt 1

10 IP2 Hardware interrupt 0

Bit Name Meaning

9 IP1 Request software interrupt 1

8 IP0 Request software interrupt 0
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 89

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Table 8-25 Cause Register ExcCode Field

Exception Code Value

Mnemonic DescriptionDecimal Hexadecimal

0 16#00 Int Interrupt

1 16#01 Mod TLB modification exception

2 16#02 TLBL TLB exception (load or instruction fetch)

3 16#03 TLBS TLB exception (store)

4 16#04 AdEL Address error exception (load or instruction fetch)

5 16#05 AdES Address error exception (store)

6 16#06 IBE Bus error exception (instruction fetch)

7 16#07 DBE Bus error exception (data reference: load or store)

8 16#08 Sys Syscall exception

9 16#09 Bp

Breakpoint exception. If EJTAG is implemented and an SDBBP
instruction is executed while the processor is running in EJTAG
Debug Mode, this value is written to the DebugDExcCode field to
denote an SDBBP in Debug Mode.

10 16#0a RI Reserved instruction exception

11 16#0b CpU Coprocessor Unusable exception

12 16#0c Ov Arithmetic Overflow exception

13 16#0d Tr Trap exception

14 16#0e - Reserved

15 16#0f FPE Floating point exception

16-17 16#10-16#11 - Available for implementation dependent use

18 16#12 C2E Reserved for precise Coprocessor 2 exceptions

19-21 16#13-16#15 - Reserved

22 16#16 MDMX MDMX Unusable Exception.

23 16#17 WATCH Reference to WatchHi/WatchLo address

24 16#18 MCheck Machine check

25-29 16#19-16#1d - Reserved

30 16#1e CacheErr

Cache error. In normal mode, a cache error exception has a
dedicated vector and the Cause register is not updated. If EJTAG is
implemented and a cache error occurs while in Debug Mode, this
code is writen to the DebugDExcCode field to indicate that re-entry
to Debug Mode was caused by a cache error.

31 16#1f - Reserved
90 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.22 Exception Program Counter (CP0 Register 14, Select 0)

MIPS32™ Architecture For Programmers Volume III, Revision 2.00 91

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.22 Exception Program Counter (CP0 Register 14, Select 0)

Compliance Level:Required.

The Exception Program Counter (EPC)is a read/write register that contains the address at which processing resumes
after an exception has been serviced. All bits of theEPC register are significant and must be writable.

For synchronous (precise) exceptions,EPC contains either:

• the virtual address of the instruction that was the direct cause of the exception, or

• the virtual address of the immediately preceding branch or jump instruction, when the exception causing instruction
is in a branch delay slot, and theBranch Delay bit in theCause register is set.

For asynchronous (imprecise) exceptions,EPC contains the address of the instruction at which to resume execution.

The processor does not write to theEPC register when the EXL bit in theStatus register is set to one.

Figure 8-20 shows the format of theEPC register;Table 8-26 describes theEPC register fields.

8.22.1 Special Handling of the EPC Register in Processors That Implement the MIPS16e ASE

In processors that implement the MIPS16e ASE, a read of theEPC register (via MFC0) returns the following value in
the destination GPR:

GPR[rt] ← RestartPC 31..1 || ISAMode

That is, the upper 31 bits of the restart PC are combined with theISA Mode bit and written to the GPR.

Similarly, a write to theEPCregister (via MTC0) takes the value from the GPR and distributes that value to the restart
PC and theISA Mode bit, as follows

RestartPC ← GPR[rt] 31..1 || 0
ISAMode ← GPR[rt] 0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the restart PC, and the lower bit of the restart PC
is cleared. TheISA Mode bit is loaded from the lower bit of the GPR.

Figure 8-20 EPC Register Format

31 0

EPC

Table 8-26 EPC Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

EPC 31..0 Exception Program Counter R/W Undefined Required

92 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.23 Processor Identification (CP0 Register 15, Select 0)

Compliance Level:Required.

TheProcessor Identification (PRId) register is a 32 bit read-only register that contains information identifying the
manufacturer, manufacturer options, processor identification and revision level of the processor.Figure 8-21shows the
format of thePRId register;Table 8-27 describes thePRId register fields.

Software should not use the fields of this register to infer configuration information about the processor. Rather, the
configuration registers should be used to determine the capabilities of the processor. Programmers who identify cases
in which the configuration registers are not sufficient, requiring them to revert to check on thePRIdregister value, should
send email toarchitecture@mips.com , reporting the specific case.

Figure 8-21 PRId Register Format

31 24 23 16 15 8 7 0

Company Options Company ID Processor ID Revision

Table 8-27 PRId Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

Company
Options 31..24

Available to the designer or manufacturer of the
processor for company-dependent options. The
value in this field is not specified by the architecture.
If this field is not implemented, it must read as zero.

R Preset Optional

Company
ID 23..16

Identifies the company that designed or
manufactured the processor.

Software can distinguish a MIPS32 or MIPS64
processor from one implementing an earlier MIPS
ISA by checking this field for zero. If it is non-zero
the processor implements the MIPS32 or MIPS64
Architecture.

Company IDs are assigned by MIPS Technologies
when a MIPS32 or MIPS64 license is acquired. The
encodings in this field are:

R Preset Required

Processor
ID 15..8

Identifies the type of processor. This field allows
software to distinguish between various processor
implementations within a single company, and is
qualified by the CompanyID field, described above.
The combination of the CompanyID and
ProcessorID fields creates a unique number assigned
to each processor implementation.

R Preset Required

Revision 7..0

Specifies the revision number of the processor. This
field allows software to distinguish between one
revision and another of the same processor type. If
this field is not implemented, it must read as zero.

R Preset Optional

Encoding Meaning

0 Not a MIPS32 or MIPS64 processor

1 MIPS Technologies, Inc.

2-255
Contact MIPS Technologies, Inc. for the list
of Company ID assignments

8.24 EBase Register (CP0 Register 15, Select 1)

tus
 in a

stem,
eneous
hen

he

ion
e two
or cache

ns in the
8.24 EBase Register (CP0 Register 15, Select 1)

Compliance Level:Required (Release 2).

TheEBase register is a read/write register containing the base address of the exception vectors used when StaBEV
equals 0, and a read-only CPU number value that may be used by software to distinguish different processors
multi-processor system.

TheEBase register provides the ability for software to identify the specific processor within a multi-processor sy
and allows the exception vectors for each processor to be different, especially in systems composed of heterog
processors. Bits 31..12 of theEBaseregister are concatenated with zeros to form the base of the exception vectors w
StatusBEV is 0. The exception vector base address comes from the fixed defaults (seeSection 5.2.1, "Exception Vector
Locations" on page 32) when StatusBEV is 1, or for any EJTAG Debug exception. The reset state of bits 31..12 of t
EBase register initialize the exception base register to16#8000.0000 , providing backward compatibility with
Release 1 implementations.

Bits 31..30 of theEBaseRegister are fixed with the value2#10, and the addition of the base address and the except
offset is done inhibiting a carry between bit 29 and bit 30 of the final exception address. The combination of thes
restrictions forces the final exception address to be in the kseg0 or kseg1 unmapped virtual address segments. F
error exceptions, bit 29 is forced to a 1 in the ultimate exception base address so that this exception always ru
kseg1 unmapped, uncached virtual address segment.

If the value of the exception base register is to be changed, this must be done with StatusBEV equal 1. The operation of
the processor isUNDEFINED if the Exception Base field is written with a different value when StatusBEV is 0.

Figure 8-22 shows the format of theEBase Register;Table 8-28 describes theEBase register fields.

Figure 8-22 EBase Register Format

31 30 29 12 11 10 9 0

1 0 Exception Base 0 0 CPUNum

Table 8-28 EBase Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

1 31 This bit is ignored on write and returns one on read. R 1 Required

0 30 This bit is ignored on write and returns zero on read. R 0 Required

Exception
Base 29..12

In conjunction with bits 31..30, this field specifies
the base address of the exception vectors when
StatusBEV is zero.

R/W 0 Required

0 11..10 Must be written as zero; returns zero on read. 0 0 Reserved

CPUNum 9..0

This field specifies the number of the CPU in a
multi-processor system and can be used by software
to distinguish a particular processor from the others.
The value in this field is set by inputs to the
processor hardware when the processor is
implemented in the system environment. In a single
processor system, this value should be set to zero.

R
Preset or

Externally
Set

Required
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 93

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

set.
h VI or

ber as
ase
Programming Note:

Software must set EBase15..12to zero in all bit positions less than or equal to the most significant bit in the vector off
This situation can only occur when a vector offset greater than 16#FFF is generated when an interrupt occurs wit
EIC interrupt mode enabled. The operation of the processor isUNDEFINED if this condition is not met.Table 8-29
shows the conditions under which each EBase bit must be set to zero. VN represents the interrupt vector num
described inTable 5-4 on page 32and the bit must be set to zero if any of the relationships in the row are true. No EB
bits must be set to zero if the interrupt vector spacing is 32 (or zero) bytes.

Table 8-29 Conditions Under Which EBase15..12 Must Be Zero

Interrupt Vector Spacing in Bytes (IntCtl VS
1)

1. SeeTable 8-20 on page 82

EBase bit 32 64 128 256 512

15

None

None None None VN≥ 63

14 None Νονε VN ≥ 62 VN ≥ 31

13 Νονε VN ≥ 60 VN ≥ 30 VN ≥ 15

12 VN ≥ 56 VN ≥ 28 VN ≥ 14 VN ≥ 7
94 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.25 Configuration Register (CP0 Register 16, Select 0)

ed by
8.25 Configuration Register (CP0 Register 16, Select 0)

Compliance Level:Required.

TheConfigregister specifies various configuration and capabilities information. Most of the fields in theConfigregister
are initialized by hardware during the Reset Exception process, or are constant. One field, K0, must be initializ
software in the reset exception handler.

Figure 8-23 shows the format of theConfig register;Table 8-30 describes theConfig register fields.

Figure 8-23 Config Register Format

31 30 16 15 14 13 12 10 9 7 6 4 3 2 0

M Impl BE AT AR MT 0 VI K0

Table 8-30 Config Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

M 31 Denotes that the Config1 register is implemented at a
select field value of 1. R 1 Required

Impl 30:16
This field is reserved for implementations. Refer to the
processor specification for the format and definition of
this field

Undefined Optional

BE 15

Indicates the endian mode in which the processor is
running:

R
Preset or

Externally
Set

Required

AT 14:13

Architecture type implemented by the processor:

R Preset Required

AR 12:10

Architecture revision level:

R Preset Required

Encoding Meaning

0 Little endian

1 Big endian

Encoding Meaning

0 MIPS32

1
MIPS64 with access only to 32-bit
compatibility segments

2 MIPS64 with access to all address segments

3 Reserved

Encoding Meaning

0 Release 1

1 Release 2

2-7 Reserved
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 95

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MT 9:7

MMU Type:

R Preset Required

0 6:4 Must be written as zero; returns zero on read. 0 0 Reserved

VI 3

Virtual instruction cache (using both virtual indexing
and virtual tags):

R Preset Required

K0 2:0 Kseg0 coherency algorithm. SeeTable 8-8 on page 61
for the encoding of this field. R/W Undefined Optional

Table 8-30 Config Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

Encoding Meaning

0 None

1 Standard TLB

2
Standard BAT (see SectionA.2 on page
131)

3
Standard fixed mapping (see SectionA.1
on page 127)

4-7 Reserved

Encoding Meaning

0 Instruction Cache is not virtual

1 Instruction Cache is virtual
96 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.26 Configuration Register 1 (CP0 Register 16, Select 1)

e

, and the
8.26 Configuration Register 1 (CP0 Register 16, Select 1)

Compliance Level:Required.

TheConfig1register is an adjunct to theConfigregister and encodes additional capabilities information. All fields in th
Config1 register are read-only.

The Icache and Dcache configuration parameters include encodings for the number of sets per way, the line size
associativity. The total cache size for a cache is therefore:

Cache Size = Associativity * Line Size * Sets Per Way

If the line size is zero, there is no cache implemented.

Figure 8-24 shows the format of theConfig1 register;Table 8-31 describes theConfig1 register fields.

Figure 8-24 Config1 Register Format

31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6 5 4 3 2 1 0

M MMU Size - 1 IS IL IA DS DL DA C2 MD PC WR CA EP FP

Table 8-31 Config1 Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

M 31

This bit is reserved to indicate that aConfig2register is
present. If theConfig2register is not implemented, this
bit should read as a 0. If theConfig2 register is
implemented, this bit should read as a 1.

R Preset Required

MMU
Size - 1 30..25

Number of entries in the TLB minus one. The values 0
through 63 is this field correspond to 1 to 64 TLB
entries. The value zero is implied by ConfigMT having
a value of ‘none’.

R Preset Required

IS 24:22

Icache sets per way:

R Preset Required

Encoding Meaning

0 64

1 128

2 256

3 512

4 1024

5 2048

6 4096

7 Reserved
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 97

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

IL 21:19

Icache line size:

R Preset Required

IA 18:16

Icache associativity:

R Preset Required

DS 15:13

Dcache sets per way:

R Preset Required

Table 8-31 Config1 Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

Encoding Meaning

0 No Icache present

1 4 bytes

2 8 bytes

3 16 bytes

4 32 bytes

5 64 bytes

6 128 bytes

7 Reserved

Encoding Meaning

0 Direct mapped

1 2-way

2 3-way

3 4-way

4 5-way

5 6-way

6 7-way

7 8-way

Encoding Meaning

0 64

1 128

2 256

3 512

4 1024

5 2048

6 4096

7 Reserved
98 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.26 Configuration Register 1 (CP0 Register 16, Select 1)
DL 12:10

Dcache line size:

R Preset Required

DA 9:7

Dcache associativity:

R Preset Required

C2 6

Coprocessor 2 implemented:

This bit indicates not only that the processor contains
support for Coprocessor 2, but that such a coprocessor
is attached.

MD 5

Used to denote MDMX ASE implemented on a
MIPS64 processor. Not used on a MIPS32 processor.

This bit indicates not only that the processor contains
support for MDMX, but that such a processing element
is attached.

R 0 Required

PC 4

Performance Counter registers implemented:

R Preset Required

Table 8-31 Config1 Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

Encoding Meaning

0 No Dcache present

1 4 bytes

2 8 bytes

3 16 bytes

4 32 bytes

5 64 bytes

6 128 bytes

7 Reserved

Encoding Meaning

0 Direct mapped

1 2-way

2 3-way

3 4-way

4 5-way

5 6-way

6 7-way

7 8-way

Encoding Meaning

0 No coprocessor 2 implemented

1 Coprocessor 2 implements

Encoding Meaning

0
No performance counter registers
implemented

1 Performance counter registers implemented
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 99

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

WR 3

Watch registers implemented:

R Preset Required

CA 2

Code compression (MIPS16e) implemented:

R Preset Required

EP 1

EJTAG implemented:

R Preset Required

FP 0

FPU implemented:

This bit indicates not only that the processor contains
support for a floating point unit, but that such a unit is
attached.

If an FPU is implemented, the capabilities of the FPU
can be read from the capability bits in theFIR CP1
register.

R Preset Required

Table 8-31 Config1 Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

Encoding Meaning

0 No watch registers implemented

1 Watch registers implemented

Encoding Meaning

0 MIPS16e not implemented

1 MIPS16e implemented

Encoding Meaning

0 No EJTAG implemented

1 EJTAG implemented

Encoding Meaning

0 No FPU implemented

1 FPU implemented
100 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.27 Configuration Register 2 (CP0 Register 16, Select 2)

nal
8.27 Configuration Register 2 (CP0 Register 16, Select 2)

Compliance Level:Required if a level 2 or level 3 cache is implemented, or if the Config3 register is required; Optio
otherwise.

TheConfig2 register encodes level 2 and level 3 cache configurations.

Figure 8-25 shows the format of theConfig2 register;Table 8-32 describes theConfig2 register fields.

Figure 8-25 Config2 Register Format

31 30 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

M TU TS TL TA SU SS SL SA

Table 8-32 Config2 Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

M 31

This bit is reserved to indicate that a Config3 register is
present. If the Config3 register is not implemented, this
bit should read as a 0. If the Config3 register is
implemented, this bit should read as a 1.

R Preset Required

TU 30:28
Implementation-specific tertiary cache control or status
bits. If this field is not implemented it should read as
zero and be ignored on write.

R/W Preset Optional

TS 27:24

Tertiary cache sets per way:

R Preset Required

Encoding Sets Per Way

0 64

1 128

2 256

3 512

4 1024

5 2048

6 4096

7 8192

8-15 Reserved
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 101

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

TL 23:20

Tertiary cache line size:

R Preset Required

TA 19:16

Tertiary cache associativity:

R Preset Required

SU 15:12
Implementation-specific secondary cache control or
status bits. If this field is not implemented it should
read as zero and be ignored on write.

R/W Preset Optional

SS 11:8

Secondary cache sets per way:

R Preset Required

Table 8-32 Config2 Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

Encoding Line Size

0
No cache
present

1 4

2 8

3 16

4 32

5 64

6 128

7 256

8-15 Reserved

Encoding Associativity

0
Direct

Mapped

1 2

2 3

3 4

4 5

5 6

6 7

7 8

8-15 Reserved

Encoding Sets Per Way

0 64

1 128

2 256

3 512

4 1024

5 2048

6 4096

7 8192

8-15 Reserved
102 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.27 Configuration Register 2 (CP0 Register 16, Select 2)
SL 7:4

Secondary cache line size:

R Preset Required

SA 3:0

Secondary cache associativity:

R Preset Required

Table 8-32 Config2 Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

Encoding Line Size

0
No cache
present

1 4

2 8

3 16

4 32

5 64

6 128

7 256

8-15 Reserved

Encoding Associativity

0
Direct

Mapped

1 2

2 3

3 4

4 5

5 6

6 7

7 8

8-15 Reserved
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 103

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.28 Configuration Register 3 (CP0 Register 16, Select 3)

Compliance Level:Required if any optional feature described by this register is implemented: Release 2 of the
Architecture, the SmartMIPS ASE, or trace logic; optional otherwise.

TheConfig3 register encodes additional capabilities. All fields in theConfig3 register are read-only.

Figure 8-26 shows the format of theConfig3 register;Table 8-33 describes theConfig3 register fields.

Figure 8-26 Config3 Register Format

31 30 7 6 5 4 3 2 1 0

M 0
000 0000 0000 0000 0000 0000 LPA VEIC VInt SP 0 SM TL

Table 8-33 Config3 Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

M 31
This bit is reserved to indicate that a Config4 register is
present. With the current architectural definition, this
bit should always read as a 0.

R Preset Required

0 30:8,3:2 Must be written as zeros; returns zeros on read 0 0 Reserved

LPA 7

Denotes the presence of support for large physical
addresses on MIPS64 processors. Not used by MIPS32
processors and returns zero on read.

For implementations of Release 1 of the Architecture,
this bit returns zero on read.

R Preset
Required
(Release 2

Only)

VEIC 6

Support for an external interrupt controller is
implemented.

For implementations of Release 1 of the Architecture,
this bit returns zero on read.

This bit indicates not only that the processor contains
support for an external interrupt controller, but that
such a controller is attached.

R Preset
Required
(Release 2

Only)

VInt 5

Vectored interrupts implemented. This bit indicates
whether vectored interrupts are implemented.

For implementations of Release 1 of the Architecture,
this bit returns zero on read.

R Preset
Required
(Release 2

Only)

Encoding Meaning

0
Support for EIC interrupt mode is not
implemented

1
Support for EIC interrupt mode is
implemented

Encoding Meaning

0 Vector interrupts are not implemented

1 Vectored interrupts are implemented
104 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.28 Configuration Register 3 (CP0 Register 16, Select 3)
SP 4

Small (1KByte) page support is implemented, and the
PageGrain register exists

For implementations of Release 1 of the Architecture,
this bit returns zero on read.

R Preset
Required
(Release 2

Only)

SM 1

SmartMIPS™ ASE implemented. This bit indicates
whether the SmartMIPS ASE is implemented.

R Preset Required

TL 0

Trace Logic implemented. This bit indicates whether
PC or data trace is implemented.

R Preset Required

Table 8-33 Config3 Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

Encoding Meaning

0 Small page support is not implemented

1 Small page support is implemented

Encoding Meaning

0 SmartMIPS ASE is not implemented

1 SmartMIPS ASE is implemented

Encoding Meaning

0 Trace logic is not implemented

1 Trace logic is implemented
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 105

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

106 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.29 Reserved for Implementations (CP0 Register 16, Selects 6 and 7)

Compliance Level:Optional: Implementation Dependent.

CP0 register 16, Selects 6 and 7 are reserved for implementation dependent use and is not defined by the architecture.
In order to use CP0 register 16, Selects 6 and 7, it is not necessary to implement CP0 register 16, Selects 2 through 5
only to set the M bit in each of these registers. That is, if theConfig2 andConfig3 registers are not needed for the
implementation, they need not be implemented just to provide the M bits.

8.30 Load Linked Address (CP0 Register 17, Select 0)

MIPS32™ Architecture For Programmers Volume III, Revision 2.00 107

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.30 Load Linked Address (CP0 Register 17, Select 0)

Compliance Level:Optional.

TheLLAddrregister contains relevant bits of the physical address read by the most recent Load Linked instruction. This
register is implementation dependent and for diagnostic purposes only and serves no function during normal operation.

Figure 8-27 shows the format of theLLAddr register;Table 8-34 describes theLLAddr register fields.

Figure 8-27 LLAddr Register Format

31 0

PAddr

Table 8-34 LLAddr Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

PAddr 31..0

This field encodes the physical address read by the
most recent Load Linked instruction. The format of this
register is implementation dependent, and an
implementation may implement as many of the bits or
format the address in any way that it finds convenient.

R Undefined Optional

atch
te some

e

select
rence

match.
ignored
register

 only)
8.31 WatchLo Register (CP0 Register 18)

Compliance Level:Optional.

TheWatchLoandWatchHiregisters together provide the interface to a watchpoint debug facility which initiates a w
exception if an instruction or data access matches the address specified in the registers. As such, they duplica
functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are zero in theStatus
register. If either bit is a one, the WP bit is set in theCause register, and the watch exception is deferred until both th
EXL and ERL bits are zero.

An implementation may provide zero or more pairs of WatchLo and WatchHi registers, referencing them via the
field of the MTC0/MFC0 instructions, and each pair of Watch registers may be dedicated to a particular type of refe
(e.g., instruction or data). Software may determine if at least one pair ofWatchLoandWatchHiregisters are implemented
via the WR bit of theConfig1 register. See the discussion of the M bit in theWatchHi register description below.

TheWatchLoregister specifies the base virtual address and the type of reference (instruction fetch, load, store) to
If a particular Watch register only supports a subset of the reference types, the unimplemented enables must be
on write and return zero on read. Software may determine which enables are supported by a particular Watch
pair by setting all three enables bits and reading them back to see which ones were actually set.

It is implementation dependent whether a data watch is triggered by a prefetch, CACHE, or SYNCI (Release 2
instruction whose address matches the Watch register address match conditions.

Figure 8-28 shows the format of theWatchLo register;Table 8-35 describes theWatchLo register fields.

Figure 8-28 WatchLo Register Format

31 3 2 1 0

VAddr I R W

Table 8-35 WatchLo Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

VAddr 31..3
This field specifies the virtual address to match. Note
that this is a doubleword address, since bits [2:0] are
used to control the type of match.

R/W Undefined Required

I 2

If this bit is one, watch exceptions are enabled for
instruction fetches that match the address and are
actually issued by the processor (speculative
instructions never cause Watch exceptions).

If this bit is not implemented, writes to it must be
ignored, and reads must return zero.

R/W 0 Optional

R 1

If this bit is one, watch exceptions are enabled for loads
that match the address.

For the purposes of the MIPS16e PC-relative load
instructions, the PC-relative reference is considered to
be a data, rather than an instruction reference. That is,
the watchpoint is triggered only if this bit is a 1.

If this bit is not implemented, writes to it must be
ignored, and reads must return zero.

R/W 0 Optional
108 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.31 WatchLo Register (CP0 Register 18)
W 0

If this bit is one, watch exceptions are enabled for
stores that match the address.

If this bit is not implemented, writes to it must be
ignored, and reads must return zero.

R/W 0 Optional

Table 8-35 WatchLo Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 109

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

atch
te some

e

select
rence

watch
a watch

s

 indicate
essor,
 must

n the
8.32 WatchHi Register (CP0 Register 19)

Compliance Level:Optional.

TheWatchLoandWatchHiregisters together provide the interface to a watchpoint debug facility which initiates a w
exception if an instruction or data access matches the address specified in the registers. As such, they duplica
functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are zero in theStatus
register. If either bit is a one, the WP bit is set in theCause register, and the watch exception is deferred until both th
EXL and ERL bits are zero.

An implementation may provide zero or more pairs of WatchLo and WatchHi registers, referencing them via the
field of the MTC0/MFC0 instructions, and each pair of Watch registers may be dedicated to a particular type of refe
(e.g., instruction or data). Software may determine if at least one pair ofWatchLoandWatchHiregisters are implemented
via the WR bit of theConfig1 register. If the M bit is one in theWatchHi register reference with a select field of ‘n’,
another WatchHi/WatchLo pair is implemented with a select field of ‘n+1’.

TheWatchHiregister contains information that qualifies the virtual address specified in theWatchLoregister: an ASID,
a G(lobal) bit, an optional address mask, and three bits (I, R, and W) which denote the condition that caused the
register to match. If the G bit is one, any virtual address reference that matches the specified address will cause
exception. If the G bit is a zero, only those virtual address references for which the ASID value in theWatchHiregister
matches the ASID value in theEntryHi register cause a watch exception. The optional mask field provides addres
masking to qualify the address specified inWatchLo.

The I, R, and W bits are set by the processor when the corresponding watch register condition is satisfied and
which watch register pair (if more than one is implemented) and which condition matched. When set by the proc
each of these bits remain set until cleared by software. All three bits are “write one to clear”, such that software
write a one to the bit in order to clear its value. The typical way to do this is to write the value read from theWatchHi
register back toWatchHi. In doing so, only those bits which were set when the register was read are cleared whe
register is written back.

Figure 8-29 shows the format of theWatchHi register;Table 8-36 describes theWatchHi register fields.

Figure 8-29 WatchHi Register Format

31 30 29 24 23 16 15 12 11 3 2 1 0

M G 0 ASID 0 Mask I R W

Table 8-36 WatchHi Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

M 31
If this bit is one, another pair ofWatchHi/WatchLo
registers is implemented at a MTC0 or MFC0 select
field value of ‘n+1’

R Preset Required

G 30

If this bit is one, any address that matches that specified
in theWatchLoregister will cause a watch exception. If
this bit is zero, the ASID field of theWatchHi register
must match the ASID field of theEntryHi register to
cause a watch exception.

R/W Undefined Required

ASID 23..16
ASID value which is required to match that in the
EntryHi register if the G bit is zero in theWatchHi
register.

R/W Undefined Required
110 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.32 WatchHi Register (CP0 Register 19)
Mask 11..3

Optional bit mask that qualifies the address in the
WatchLoregister. If this field is implemented, any bit in
this field that is a one inhibits the corresponding
address bit from participating in the address match.

If this field is not implemented, writes to it must be
ignored, and reads must return zero.

Software may determine how many mask bits are
implemented by writing ones the this field and then
reading back the result.

R/W Undefined Optional

I 2

This bit is set by hardware when an instruction fetch
condition matches the values in this watch register pair.
When set, the bit remains set until cleared by software,
which is accomplished by writing a 1 to the bit.

W1C Undefined Required
(Release 2)

R 1

This bit is set by hardware when a load condition
matches the values in this watch register pair. When
set, the bit remains set until cleared by software, which
is accomplished by writing a 1 to the bit.

W1C Undefined Required
(Release 2)

W 0

This bit is set by hardware when a store condition
matches the values in this watch register pair. When
set, the bit remains set until cleared by software, which
is accomplished by writing a 1 to the bit.

W1C Undefined Required
(Release 2)

0 29..24,
15..12 Must be written as zero; returns zero on read. 0 0 Reserved

Table 8-36 WatchHi Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 111

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

112 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.33 Reserved for Implementations (CP0 Register 22, all Select values)

Compliance Level:Optional: Implementation Dependent.

CP0 register 22 is reserved for implementation dependent use and is not defined by the architecture.

8.34 Debug Register (CP0 Register 23)

MIPS32™ Architecture For Programmers Volume III, Revision 2.00 113

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.34 Debug Register (CP0 Register 23)

Compliance Level:Optional.

TheDebug register is part of the EJTAG specification. Refer to that specification for the format and description of this
register.

114 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.35 DEPC Register (CP0 Register 24)

Compliance Level:Optional.

TheDEPC register is part of the EJTAG specification. Refer to that specification for the format and description of this
register.

All bits of theDEPC register are significant and must be writable.

8.35.1 Special Handling of the DEPC Register in Processors That Implement the MIPS16e ASE

In processors that implement the MIPS16e ASE, a read of theDEPCregister (via MFC0) returns the following value in
the destination GPR:

GPR[rt] ← RestartPC 31..1 || ISAMode

That is, the upper 31 bits of the restart PC are combined with the ISA Mode bit and written to the GPR.

Similarly, a write to theDEPCregister (via MTC0) takes the value from the GPR and distributes that value to the restart
PC and theISA Mode bit, as follows

RestartPC ← GPR[rt] 31..1 || 0
ISAMode ← GPR[rt] 0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the restart PC, and the lower bit of the restart PC
is cleared. TheISA Mode bit is loaded from the lower bit of the GPR.

8.36 Performance Counter Register (CP0 Register 25)

o count
 counter
ility,

d set of
ts once

he
terrupt
nding
re
erflow

ol
w

tain the
 Control
ounter
ers

ter.
8.36 Performance Counter Register (CP0 Register 25)

Compliance Level:Recommended.

The MIPS32 Architecture supports implementation dependent performance counters that provide the capability t
events or cycles for use in performance analysis. If performance counters are implemented, each performance
consists of a pair of registers: a 32-bit control register and a 32-bit counter register. To provide additional capab
multiple performance counters may be implemented.

Performance counters can be configured to count implementation dependent events or cycles under a specifie
conditions that are determined by the control register for the performance counter. The counter register incremen
for each enabled event. When the most significant bit of the counter register is a one (the counter overflows), t
performance counter optionally requests an interrupt. In implementations of Release 1 of the Architecture, this in
is combined in a implementation-dependent way with hardware interrupt 5. In Release 2 of the Architecture, pe
interrupts from all performance counters are ORed together to become the PCI bit in the Cause register, and a
prioritized as appropriate to the interrupt mode of the processor. Counting continues after a counter register ov
whether or not an interrupt is requested or taken.

Each performance counter is mapped into even-odd select values of thePerfCntregister: Even selects access the contr
register and odd selects access the counter register.Table 8-37shows an example of two performance counters and ho
they map into the select values of thePerfCnt register.

More or less than two performance counters are also possible, extending the select field in the obvious way to ob
desired number of performance counters. Software may determine if at least one pair of Performance Counter
and Counter registers is implemented via the PC bit in the Config1 register. If the M bit is one in the Performance C
Control register referenced via a select field of ‘n’, another pair of Performance Counter Control and Counter regist
is implemented at the select values of ‘n+2’ and ‘n+3’.

The Control Register associated with each performance counter controls the behavior of the performance coun
Figure 8-30 shows the format of the Performance Counter Control Register;Table 8-38 describes the Performance
Counter Control Register fields.

Table 8-37 Example Performance Counter Usage of the PerfCnt CP0 Register

Performance
Counter

PerfCnt
Register Select

Value PerfCnt Register Usage

0
PerfCnt, Select 0 Control Register 0

PerfCnt, Select 1 Counter Register 0

1
PerfCnt, Select 2 Control Register 1

PerfCnt, Select 3 Counter Register 1

Figure 8-30 Performance Counter Control Register Format

31 30 29 11 10 5 4 3 2 1 0

M W 0 Event IE U S K EXL
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 115

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Table 8-38 Performance Counter Control Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

M 31
If this bit is a one, another pair of Performance Counter
Control and Counter registers is implemented at a
MTC0 or MFC0 select field value of ‘n+2’ and ‘n+3’.

R Preset Required

W 30
Denotes that the corresponding Counter register is 64
bits wide on a MIPS64 processor. Unused on a MIPS32
processor.

R Preset Required

0 29..11 Must be written as zero; returns zero on read 0 0 Reserved

Event 10..5

Selects the event to be counted by the corresponding
Counter Register. The list of events is implementation
dependent, but typical events include cycles,
instructions, memory reference instructions, branch
instructions, cache and TLB misses, etc.

Implementations that support multiple performance
counters allow ratios of events, e.g., cache miss ratios if
cache miss and memory references are selected as the
events in two counters

R/W Undefined Required

IE 4

Interrupt Enable. Enables the interrupt request when
the corresponding counter overflows (the most
significant bit of the counter is one. This is bit 31 for a
32-bit wide counter or bit 63 of a 64-bit wide counter,
denoted by the W bit in this register).

Note that this bit simply enables the interrupt request.
The actual interrupt is still gated by the normal
interrupt masks and enable in theStatus register.

R/W 0 Required

U 3

Enables event counting in User Mode. Refer to Section
Section 3.4, "User Mode" on page 10for the conditions
under which the processor is operating in User Mode.

R/W Undefined Required

S 2

Enables event counting in Supervisor Mode (for those
processors that implement Supervisor Mode). Refer to
SectionSection 3.3, "Supervisor Mode" on page 9 for
the conditions under which the processor is operating
in Supervisor mode.

If the processor does not implement Supervisor Mode,
this bit must be ignored on write and return zero on
read.

R/W Undefined Required

Encoding Meaning

0 Performance counter interrupt disabled

1 Performance counter interrupt enabled

Encoding Meaning

0 Disable event counting in User Mode

1 Enable event counting in User Mode

Encoding Meaning

0 Disable event counting in Supervisor Mode

1 Enable event counting in Supervisor Mode
116 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.36 Performance Counter Register (CP0 Register 25)

er

The Counter Register associated with each performance counter increments once for each enabled event.Figure 8-31
shows the format of the Performance Counter Counter Register;Table 8-39describes the Performance Counter Count
Register fields.

K 1

Enables event counting in Kernel Mode. Unlike the
usual definition of Kernel Mode as described in Section
Section 3.2, "Kernel Mode" on page 9, this bit enables
event counting only when the EXL and ERL bits in the
Status register are zero.

R/W Undefined Required

EXL 0

Enables event counting when the EXL bit in theStatus
register is one and the ERL bit in theStatus register is
zero.

Counting is never enabled when the ERL bit in the
Status register or the DM bit in theDebug register is
one.

R/W Undefined Required

Figure 8-31 Performance Counter Counter Register Format

31 0

Event Count

Table 8-39 Performance Counter Counter Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

Event
Count 31..0

Increments once for each event that is enabled by the
corresponding Control Register. When the most
significant bit is one, a pending interrupt request is
ORed with those from other performance counters and
indicated by the PCI bit in theCause register.

R/W Undefined Required

Table 8-38 Performance Counter Control Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

Encoding Meaning

0 Disable event counting in Kernel Mode

1 Enable event counting in Kernel Mode

Encoding Meaning

0
Disable event counting while EXL = 1,
ERL = 0

1
Enable event counting while EXL = 1,
ERL = 0
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 117

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

118 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.37 ErrCtl Register (CP0 Register 26, Select 0)

Compliance Level:Optional.

TheErrCtl register provides an implementation dependent diagnostic interface with the error detection mechanisms
implemented by the processor. This register has been used in previous implementations to read and write parity or ECC
information to and from the primary or secondary cache data arrays in conjunction with specific encodings of the Cache
instruction or other implementation-dependent method. The exact format of the ErrCtl register is implementation
dependent and not specified by the architecture. Refer to the processor specification for the format of this register and a
description of the fields.

8.38 CacheErr Register (CP0 Register 27, Select 0)

MIPS32™ Architecture For Programmers Volume III, Revision 2.00 119

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.38 CacheErr Register (CP0 Register 27, Select 0)

Compliance Level:Optional.

The CacheErr register provides an interface with the cache error detection logic that may be implemented by a processor.

The exact format of theCacheErr register is implementation dependent and not specified by the architecture. Refer to
the processor specification for the format of this register and a description of the fields.

120 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.39 TagLo Register (CP0 Register 28, Select 0, 2)

Compliance Level:Required if a cache is implemented; Optionalotherwise.

TheTagLo andTagHi registers are read/write registers that act as the interface to the cache tag array. The Index Store
Tag and Index Load Tag operations of the CACHE instruction use theTagLo andTagHi registers as the source or sink
of tag information, respectively.

The exact format of theTagLoandTagHiregisters is implementation dependent. Refer to the processor specification for
the format of this register and a description of the fields.

However, software must be able to write zeros into theTagLoandTagHiregisters and then use the Index Store Tag cache
operation to initialize the cache tags to a valid state at powerup.

It is implementation dependent whether there is a singleTagLo register that acts as the interface to all caches, or a
dedicatedTagLoregister for each cache. If multipleTagLoregisters are implemented, they occupy the even select values
for this register encoding, with select 0 addressing the instruction cache and select 2 addressing the data cache. Whether
individualTagLoregisters are implemented or not for each cache, processors must accept a write of zero to select 0 and
select 2 ofTagLo as part of the software process of initializing the cache tags at powerup.

8.40 DataLo Register (CP0 Register 28, Select 1, 3)

MIPS32™ Architecture For Programmers Volume III, Revision 2.00 121

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.40 DataLo Register (CP0 Register 28, Select 1, 3)

Compliance Level:Optional.

TheDataLoandDataHi registers are read-only registers that act as the interface to the cache data array and are intended
for diagnostic operation only. The Index Load Tag operation of the CACHE instruction reads the corresponding data
values into theDataLo andDataHi registers.

The exact format and operation of theDataLoandDataHi registers is implementation dependent. Refer to the processor
specification for the format of this register and a description of the fields.

It is implementation dependent whether there is a singleDataLo register that acts as the interface to all caches, or a
dedicatedDataLo register for each cache. If multipleDataLo registers are implemented, they occupy the odd select
values for this register encoding, with select 1 addressing the instruction cache and select 3 addressing the data cache.

122 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.41 TagHi Register (CP0 Register 29, Select 0, 2)

Compliance Level:Required if a cache is implemented; Optionalotherwise.

TheTagLo andTagHi registers are read/write registers that act as the interface to the cache tag array. The Index Store
Tag and Index Load Tag operations of the CACHE instruction use theTagLo andTagHi registers as the source or sink
of tag information, respectively.

The exact format of theTagLoandTagHiregisters is implementation dependent. Refer to the processor specification for
the format of this register and a description of the fields. However, software must be able to write zeros into theTagLo
andTagHiregisters and the use the Index Store Tag cache operation to initialize the cache tags to a valid state at powerup.

It is implementation dependent whether there is a singleTagHi register that acts as the interface to all caches, or a
dedicatedTagHiregister for each cache. If multipleTagHiregisters are implemented, they occupy the even select values
for this register encoding, with select 0 addressing the instruction cache and select 2 addressing the data cache. Whether
individualTagHi registers are implemented or not for each cache, processors must accept a write of zero to select 0 and
select 2 ofTagHi as part of the software process of initializing the cache tags at powerup.

8.42 DataHi Register (CP0 Register 29, Select 1, 3)

MIPS32™ Architecture For Programmers Volume III, Revision 2.00 123

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.42 DataHi Register (CP0 Register 29, Select 1, 3)

Compliance Level:Optional.

TheDataLoandDataHi registers are read-only registers that act as the interface to the cache data array and are intended
for diagnostic operation only. The Index Load Tag operation of the CACHE instruction reads the corresponding data
values into theDataLo andDataHi registers.

The exact format and operation of theDataLoandDataHi registers is implementation dependent. Refer to the processor
specification for the format of this register and a description of the fields.

124 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8.43 ErrorEPC (CP0 Register 30, Select 0)

Compliance Level:Required.

TheErrorEPC register is a read-write register, similar to theEPC register, except thatErrorEPC is used on error
exceptions. All bits of theErrorEPC register are significant and must be writable. It is also used to store the program
counter on Reset, Soft Reset, Nonmaskable Interrupt (NMI), and Cache Error exceptions.

TheErrorEPC register contains the virtual address at which instruction processing can resume after servicing an error.
ErrorEPC contains either:

• the virtual address of the instruction that was the direct cause of the exception, or

• the virtual address of the immediately preceding branch or jump instruction when the error causing instruction is in a
branch delay slot.

Unlike theEPC register, there is no corresponding branch delay slot indication for theErrorEPC register.

Figure 8-32 shows the format of theErrorEPC register;Table 8-40 describes theErrorEPC register fields.

8.43.1 Special Handling of the ErrorEPC Register in Processors That Implement the MIPS16e ASE

In processors that implement the MIPS16e ASE, a read of theErrorEPCregister (via MFC0) returns the following value
in the destination GPR:

GPR[rt] ← RestartPC 31..1 || ISAMode

That is, the upper 31 bits of the restart PC are combined with theISA Mode bit and written to the GPR.

Similarly, a write to theErrorEPC register (via MTC0) takes the value from the GPR and distributes that value to the
restart PC and theISA Mode bit, as follows

RestartPC ← GPR[rt] 31..1 || 0
ISAMode ← GPR[rt] 0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the restart PC, and the lower bit of the restart PC
is cleared. TheISA Mode bit is loaded from the lower bit of the GPR.

Figure 8-32 ErrorEPC Register Format

31 0

ErrorEPC

Table 8-40 ErrorEPC Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

ErrorEPC 31..0 Error Exception Program Counter R/W Undefined Required

8.44 DESAVE Register (CP0 Register 31)

f this
8.44 DESAVE Register (CP0 Register 31)

Compliance Level:Optional.

TheDESAVEregister is part of the EJTAG specification. Refer to that specification for the format and description o
register.
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 125

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

126 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

r

ment
by the

 the low

e Status

re the
ception,
Appendix A

Alternative MMU Organizations

The main body of this specification describes the TLB-based MMU organization. This appendix describes othe
potential MMU organizations.

A.1 Fixed Mapping MMU

As an alternative to the full TLB-based MMU, the MIPS32 Architecture supports a lightweight memory manage
mechanism with fixed virtual-to-physical address translation, and no memory protection beyond what is provided
address error checks required of all MMUs. This may be useful for those applications which do not require the
capabilities of a full TLB-based MMU.

A.1.1 Fixed Address Translation

Address translation using the Fixed Mapping MMU is done as follows:

• Kseg0 and Kseg1 addresses are translated in an identical manner to the TLB-based MMU: they both map to
512MB of physical memory.

• Useg/Suseg/Kuseg addresses are mapped by adding 1GB to the virtual address when the ERL bit is zero in th
register, and are mapped using an identity mapping when the ERL bit is one in the Status register.

• Sseg/Ksseg/Kseg2/Kseg3 addresses are mapped using an identity mapping.

Supervisor Mode is not supported with a Fixed Mapping MMU.

Table 8-41lists all mappings from virtual to physical addresses. Note that address error checking is still done befo
translation process. Therefore, an attempt to reference kseg0 from User Mode still results in an address error ex
just as it does with a TLB-based MMU.

Table 8-41 Physical Address Generation from Virtual Addresses

Segment
Name Virtual Address

Generates Physical Address

StatusERL = 0 StatusERL = 1

useg

suseg

kuseg

16#0000 0000

through

16#7FFF FFFF

16#4000 0000

through

16#BFFF FFFF

16#0000 0000

through

16#7FFF FFFF

kseg0

16#8000 0000

through

16#9FFF FFFF

16#0000 0000

through

16#1FFF FFFF

kseg1

16#A000 0000

through

16#BFFF FFFF

16#0000 0000

through

16#16#1FFF FFFF
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 127

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Appendix A Alternative MMU Organizations
Note that this mapping means that physical addresses16#2000 0000 through16#3FFF FFFF are inaccessible when
the ERL bit is off in theStatus register, and physical addresses16#8000 0000 through16#BFFF FFFF are
inaccessible when the ERL bit is on in theStatus register.

Figure 8-33shows the memory mapping when the ERL bit in theStatusregister is zero;Figure 8-34shows the memory
mapping when the ERL bit is one.

sseg

ksseg

kseg2

16#C000 0000

through

16#DFFF FFFF

16#C000 0000

through

16#DFFF FFFF

kseg3

16#E000 0000

through

16#FFFF FFFF

16#E000 0000

through

16#FFFF FFFF

Table 8-41 Physical Address Generation from Virtual Addresses

Segment
Name Virtual Address

Generates Physical Address

StatusERL = 0 StatusERL = 1
128 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

A.1 Fixed Mapping MMU
Figure 8-33 Memory Mapping when ERL = 0

16#FFFF FFFF

kseg3 kseg3 Mapped

16#FFFF FFFF

16#E000 0000 16#E000 0000

16#DFFF FFFF kseg2

ksseg

sseg

kseg2

ksseg

sseg Mapped

16#DFFF FFFF

16#C000 0000 16#C000 0000

16#BFFF FFFF

kseg1

kuseg

suseg

useg

Mapped

16#BFFF FFFF

16#A000 0000

16#9FFF FFFF

kseg0

16#8000 0000

16#7FFF FFFF

kuseg

suseg

useg

16#4000 0000

Unmapped

16#3FFF FFFF

16#2000 0000

kseg0

kseg1

Mapped

16#1FFF FFFF

16#0000 0000 16#0000 0000
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 129

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Appendix A Alternative MMU Organizations

nism is

ol the

 KU field.
m

e

A.1.2 Cacheability Attributes

Because the TLB provided the cacheability attributes for the kuseg, kseg2, and kseg3 segments, some mecha
required to replace this capability when the fixed mapping MMU is used. Two additional fields are added to theConfig
register whose encoding is identical to that of the K0 field. These additions are the K23 and KU fields which contr
cacheability of the kseg2/kseg3 and the kuseg segments, respectively. Note that when the ERL bit is on in theStatus
register, kuseg data references are always treated as uncacheable references, independent of the value of the
The operation of the processor isUNDEFINED if the ERL bit is set while the processor is executing instructions fro
kuseg.

The cacheability attributes for kseg0 and kseg1 are provided in the same manner as for a TLB-based MMU: th
cacheability attribute for kseg0 comes from the K0 field ofConfig, and references to kseg1 are always uncached.

Figure 8-34 Memory Mapping when ERL = 1

16#FFFF FFFF

kseg3
kseg3

Mapped

16#FFFF FFFF

16#E000 0000 16#E000 0000

16#DFFF FFFF
kseg2

ksseg

sseg

kseg2

ksseg

sseg

Mapped

16#DFFF FFFF

16#C000 0000 16#C000 0000

16#BFFF FFFF

kseg1

Unmapped

16#BFFF FFFF

16#A000 0000

16#9FFF FFFF

kseg0

16#8000 0000 16#8000 0000

16#7FFF FFFF

kuseg

suseg

useg

kuseg

suseg

useg

Mapped

16#7FFF FFFF

kseg0

kseg1

Mapped16#0000 0000 16#0000 0000
130 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

A.2 Block Address Translation

gister

uired

ction

he
ism has

nces.

entries
ectively.
Figure 8-35shows the format of the additions to theConfigregister;Table 8-42describes the newConfigregister fields.

A.1.3 Changes to the CP0 Register Interface

Relative to the TLB-based address translation mechanism, the following changes are necessary to the CP0 re
interface:

• The Index, Random, EntryLo0, EntryLo1, Context, PageMask, Wired, and EntryHi registers are no longer req
and may be removed.

• The TLBWR, TLBWI, TLBP, and TLBR instructions are no longer required and should cause a Reserved Instru
Exception.

A.2 Block Address Translation

This section describes the architecture for a block address translation (BAT) mechanism that reuses much of t
hardware and software interface that exists for a TLB-Based virtual address translation mechanism. This mechan
the following features:

• It preserves as much as possible of the TLB-Based interface, both in hardware and software.

• It provides independent base-and-bounds checking and relocation for instruction references and data refere

• It provides optional support for base-and-bounds relocation of kseg2 and kseg3 virtual address regions.

A.2.1 BAT Organization

The BAT is an indexed structure which is used to translate virtual addresses. It contains pairs of instruction/data
which provide the base-and-bounds checking and relocation for instruction references and data references, resp
Each entry contains a page-aligned bounds virtual page number, a base page frame number (whose width is
implementation dependent), a cache coherence field (C), a dirty (D) bit, and a valid (V) bit.Figure 8-36shows the logical
arrangement of a BAT entry.

Figure 8-35 Config Register Additions

31 30 28 27 25 24 16 15 14 13 12 10 9 7 6 3 2 0

M K23 KU 0 BE AT AR MT 0 K0

Table 8-42 Config Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

K23 30:28 Kseg2/Kseg3 coherency algorithm. SeeTable 8-8 on
page 61 for the encoding of this field. R/W Undefined Optional

KU 27:25 Kuseg coherency algorithm when StatusERL is zero.
SeeTable 8-8 on page 61for the encoding of this field. R/W Undefined Optional
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 131

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Appendix A Alternative MMU Organizations

the needs
ndent
3 into a
ing at

s region
Invalid
a TLB
ded to
The BAT is indexed by the reference type and the address region to be checked as shown inTable 8-43.

Entries 0 and 1 are required. Entries 2, 3, 4 and 5 are optional and may be implemented as necessary to address
of the particular implementation. If entries for kseg2 and kseg3 are not implemented, it is implementation-depe
how, if at all, these address regions are translated. One alternative is to combine the mapping for kseg2 and kseg
single pair of instruction/data entries. Software may determine how many BAT entries are implemented by look
the MMU Size field of theConfig1 register.

A.2.2 Address Translation

When a virtual address translation is requested, the BAT entry that is appropriate to the reference type and addres
is read. If the virtual address is greater than the selected bounds address, or if the valid bit is off in the entry, a TLB
exception of the appropriate reference type is initiated. If the reference is a store and the D bit is off in the entry,
Modified exception is initiated. Otherwise, the base PFN from the selected entry, shifted to align with bit 12, is ad
the virtual address to form the physical address. The BAT process can be described as follows:

i ← SelectIndex (reftype, va)
bounds ← BAT[i] BoundsVPN || 1 12

pfn ← BAT[i] BasePFN
c ← BAT[i] C
d ← BAT[i] D
v ← BAT[i] V
if (va > bounds) or (v = 0) then

InitiateTLBInvalidException(reftype)
endif
if (d = 0) and (reftype = store) then

InitiateTLBModifiedException()
endif

Figure 8-36 Contents of a BAT Entry

BoundsVPN

BasePFN C D V

Table 8-43 BAT Entry Assignments

Entry Index
Reference

Type Address Region

0 Instruction
useg/kuseg

1 Data

2 Instruction kseg2

(or kseg2 and kseg3)3 Data

4 Instruction
kseg3

5 Data
132 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

A.2 Block Address Translation

value

gister

s the

ntry
pa ← va + (pfn || 0 12)

Making all addresses out-of-bounds can only be done by clearing the valid bit in the BAT entry. Setting the bounds
to zero leaves the first virtual page mapped.

A.2.3 Changes to the CP0 Register Interface

Relative to the TLB-based address translation mechanism, the following changes are necessary to the CP0 re
interface:

• TheIndex register is used to index the BAT entry to be read or written by the TLBWI and TLBR instructions.

• TheEntryHi register is the interface to the BoundsVPN field in the BAT entry.

• TheEntryLo0 register is the interface to the BasePFN and C, D, and V fields of the BAT entry. The register ha
same format as for a TLB-based MMU.

• TheRandom, EntryLo1, Context, PageMask, andWired registers are eliminated. The effects of a read or write to
these registers isUNDEFINED .

• The TLBP and TLBWR instructions are unnecessary. The TLBWI and TLBR instructions reference the BAT e
whose index is contained in theIndex register. The effects of executing a TLBP or TLBWR areUNDEFINED , but
processors should prefer a Reserved Instruction Exception.
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 133

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Appendix A Alternative MMU Organizations
134 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ant
e note of

change

ge bars
Appendix B

Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of signific
changes to this document since its last release. Significant changes are defined as those which you should tak
as you use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with
bars. Change bars will be removed for changes which are more than one revision old.

Please note: Limitations on the authoring tools make it difficult to place change bars on changes to figures. Chan
on figure titles are used to denote a potential change in the figure itself.

Revision Date Description

0.92 January 20, 2001 Internal review copy of reorganized and updated architecture documentation.

0.95 March 12, 2001 Clean up document for external review release

1.00 August 29, 2002

Update based on review feedback:

• Change ProbEn to ProbeTrap in the EJTAG Debug entry vector location
discussion.

• Add cache error and EJTAG Debug exceptions to the list of exceptions that
do not go through the general exception processing mechanism.

• Fix incorrect branch offset adjustment in general exception processing
pseudo code to deal with extended MIPS16e instructions.

• Add ConfigVI to denote an instruction cache with both virtual indexing and
virtual tags.

• Correct XContext register description to note that both BadVPN2 and R
fields are UNPREDICTABLE after an address error exception.

• Note that Supervisor Mode is not supported with a Fixed Mapping MMU.

• Define TagLo bits 4..3 as implementation dependent.

• Describe the intended usage model differences between Reset and Soft
Reset Exceptions.

• Correct the minimum number of TLB entries to be 3, not 2, and show an
example of the need for 3.

• Modify the description of PageMask and the TLB lookup process to
acknowledge the fact that not all implementations may support all page
sizes.

1.90 September 1, 2002

Update the specification with the changes introduced in Release 2 of the
Architecture. Changes in this revision include:

• The following new Coprocessor 0 registers were added: EBase, HWREna,
IntCtl, PageGrain, SRSCtl, SRSMap.

• The following Coprocessor 0 registers were modified: Cause, Config,
Config2, Config3, EntryHi, EntryLo0, EntryLo1, PageMask, PerfCnt,
Status, WatchHi, WatchLo.

• The descriptions of Virtual memory, exceptions, and hazards have been
updated to reflect the changes in Release 2.

• A chapter on GPR shadow regsiters has been added.

• The chapter on CP0 hazards has been completely rewriten to reflect the
Release 2 changes.
MIPS32™ Architecture For Programmers Volume III, Revision 2.00 135

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Appendix B Revision History
2.00 June 9, 2003

Complete the update to include Release 2 changes. These include:

• Make bits 12..11 of the PageMask register power up zero and be gated by
1K page enable. This eliminates the problem of having these bits set to 2#11
on a Release 2 chip in which kernel software has not enabled 1K page
support.

• Correct the address of the cache error vector when the BEV bit is 1. It
should be 16#BFC0.0300,. not 16#BFC0.0200.

• Correct the introduction to shadow registers to note that the SRSCtl register
is not updated at the end of an exception in which StatusBEV = 1.

• Clarify that a MIPS16e PC-relative load reference is a data reference for the
purposes of the Watch registers.

• Add note about a hardware interrupt being deasserted between the time that
the processor detects the interrupt request and the time that the software
interrupt handler runs. Software must be prepared for this case and simply
dismiss the interrupt via an ERET.

• Add restriction that software must set EBase15..12to zero in all bit positions
less than or equal to the most significant bit in the vector offset. This is only
required in certain combinations of vector number and vector spacing when
using VI or EIC Interrupt modes.

• Add suggested software TLB init routine which reduced the probability of
triggering a machine check.

Revision Date Description
136 MIPS32™ Architecture For Programmers Volume III, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

	MIPS32™ Architecture For Programmers Volume III: The MIPS32™ Privileged Resource Architecture
	Table of Contents
	List of Figures
	List of Tables
	About This Book
	1.1� Typographical Conventions
	1.1.1� Italic Text
	1.1.2� Bold Text
	1.1.3� Courier Text

	1.2� UNPREDICTABLE and UNDEFINED
	1.2.1� UNPREDICTABLE
	1.2.2� UNDEFINED

	1.3� Special Symbols in Pseudocode Notation
	1.4� For More Information

	The MIPS32 Privileged Resource Architecture
	2.1� Introduction
	2.2� The MIPS Coprocessor Model
	2.2.1� CP0 - The System Coprocessor
	2.2.2� CP0 Registers

	MIPS32 Operating Modes
	3.1� Debug Mode
	3.2� Kernel Mode
	3.3� Supervisor Mode
	3.4� User Mode
	3.5� Other Modes
	3.5.1� 64-bit Floating Point Operations Enable
	3.5.2� 64-bit FPR Enable

	Virtual Memory
	4.1� Support in Release 1 and Release 2 of the Architecture
	4.1.1� Virtual Memory

	4.2� Terminology
	4.2.1� Address Space
	4.2.2� Segment and Segment Size
	4.2.3� Physical Address Size (PABITS)

	4.3� Virtual Address Spaces
	4.4� Compliance
	4.5� Access Control as a Function of Address and Operating Mode
	4.6� Address Translation and Cache Coherency Attributes for the kseg0 and kseg1 Segments
	4.7� Address Translation for the kuseg Segment when StatusERL = 1
	4.8� Special Behavior for the kseg3 Segment when DebugDM = 1
	4.9� TLB-Based Virtual Address Translation
	4.9.1� Address Space Identifiers (ASID)
	4.9.2� TLB Organization
	4.9.3� TLB Initialization
	4.9.4� Address Translation

	Interrupts and Exceptions
	5.1� Interrupts
	5.1.1� Interrupt Modes
	5.1.1.1� Interrupt Compatibility Mode
	5.1.1.2� Vectored Interrupt Mode
	5.1.1.3� External Interrupt Controller Mode

	5.1.2� Generation of Exception Vector Offsets for Vectored Interrupts

	5.2� Exceptions
	5.2.1� Exception Vector Locations
	5.2.2� General Exception Processing
	5.2.3� EJTAG Debug Exception
	5.2.4� Reset Exception
	5.2.5� Soft Reset Exception
	5.2.6� Non Maskable Interrupt (NMI) Exception
	5.2.7� Machine Check Exception
	5.2.8� Address Error Exception
	5.2.9� TLB Refill Exception
	5.2.10� TLB Invalid Exception
	5.2.11� TLB Modified Exception
	5.2.12� Cache Error Exception
	5.2.13� Bus Error Exception
	5.2.14� Integer Overflow Exception
	5.2.15� Trap Exception
	5.2.16� System Call Exception
	5.2.17� Breakpoint Exception
	5.2.18� Reserved Instruction Exception
	5.2.19� Coprocessor Unusable Exception
	5.2.20� Floating Point Exception
	5.2.21� Coprocessor 2 Exception
	5.2.22� Watch Exception
	5.2.23� Interrupt Exception

	GPR Shadow Registers
	6.1� Introduction to Shadow Sets
	6.2� Support Instructions

	CP0 Hazards
	7.1� Introduction
	7.2� Types of Hazards
	7.2.1� Execution Hazards
	7.2.2� Instruction Hazards

	7.3� Hazard Clearing Instructions
	7.3.1� Instruction Encoding

	Coprocessor 0 Registers
	8.1� Coprocessor 0 Register Summary
	8.2� Notation
	8.3� Index Register (CP0 Register 0, Select 0)
	8.4� Random Register (CP0 Register 1, Select 0)
	8.5� EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)
	8.6� Context Register (CP0 Register 4, Select 0)
	8.7� PageMask Register (CP0 Register 5, Select 0)
	8.8� PageGrain Register (CP0 Register 5, Select 1)
	8.9� Wired Register (CP0 Register 6, Select 0)
	8.10� HWREna Register (CP0 Register 7, Select 0)
	8.11� BadVAddr Register (CP0 Register 8, Select 0)
	8.12� Count Register (CP0 Register 9, Select 0)
	8.13� Reserved for Implementations (CP0 Register 9, Selects 6 and 7)
	8.14� EntryHi Register (CP0 Register 10, Select 0)
	8.15� Compare Register (CP0 Register 11, Select 0)
	8.16� Reserved for Implementations (CP0 Register 11, Selects 6 and 7)
	8.17� Status Register (CP Register 12, Select 0)
	8.18� IntCtl Register (CP0 Register 12, Select 1)
	8.19� SRSCtl Register (CP0 Register 12, Select 2)
	8.20� SRSMap Register (CP0 Register 12, Select 3)
	8.21� Cause Register (CP0 Register 13, Select 0)
	8.22� Exception Program Counter (CP0 Register 14, Select 0)
	8.22.1� Special Handling of the EPC Register in Processors That Implement the MIPS16e ASE

	8.23� Processor Identification (CP0 Register 15, Select 0)
	8.24� EBase Register (CP0 Register 15, Select 1)
	8.25� Configuration Register (CP0 Register 16, Select 0)
	8.26� Configuration Register 1 (CP0 Register 16, Select 1)
	8.27� Configuration Register 2 (CP0 Register 16, Select 2)
	8.28� Configuration Register 3 (CP0 Register 16, Select 3)
	8.29� Reserved for Implementations (CP0 Register 16, Selects 6 and 7)
	8.30� Load Linked Address (CP0 Register 17, Select 0)
	8.31� WatchLo Register (CP0 Register 18)
	8.32� WatchHi Register (CP0 Register 19)
	8.33� Reserved for Implementations (CP0 Register 22, all Select values)
	8.34� Debug Register (CP0 Register 23)
	8.35� DEPC Register (CP0 Register 24)
	8.35.1� Special Handling of the DEPC Register in Processors That Implement the MIPS16e ASE

	8.36� Performance Counter Register (CP0 Register 25)
	8.37� ErrCtl Register (CP0 Register 26, Select 0)
	8.38� CacheErr Register (CP0 Register 27, Select 0)
	8.39� TagLo Register (CP0 Register 28, Select 0, 2)
	8.40� DataLo Register (CP0 Register 28, Select 1, 3)
	8.41� TagHi Register (CP0 Register 29, Select 0, 2)
	8.42� DataHi Register (CP0 Register 29, Select 1, 3)
	8.43� ErrorEPC (CP0 Register 30, Select 0)
	8.43.1� Special Handling of the ErrorEPC Register in Processors That Implement the MIPS16e ASE

	8.44� DESAVE Register (CP0 Register 31)

	Alternative MMU Organizations
	A.1� Fixed Mapping MMU
	A.1.1� Fixed Address Translation
	A.1.2� Cacheability Attributes
	A.1.3� Changes to the CP0 Register Interface

	A.2� Block Address Translation
	A.2.1� BAT Organization
	A.2.2� Address Translation
	A.2.3� Changes to the CP0 Register Interface

	Revision History

