
COMPSCI 220S1T, 2008

Mark C. Wilson

April 1, 2008



(Di)graphs

A digraph is a finite nonempty set V of nodes along with a set
E ⊂ V × V of arcs. We often write n = |V |, e = |E|.
Think of arc (v, w) as an arrow from v to w.

A graph is similar, but edges between vertices are undirected.
Can interpret a graph as a special type of digraph (2 arcs
represent an undirected edge).

A tree is a very special type of (di)graph.

Key concepts: node/vertex, arc/edge, walk, path, cycle,
connected/strongly connected, (strong) component,
degree/indegree/outdegree (sequence), distance, diameter,
etc.

Applications: many concerned with networks (communication,
transport, electrical, computer, social); other interpretations
such as job precedence, tournaments, molecule structure.

Mark C. Wilson COMPSCI 220S1T, 2008



Mark C. Wilson COMPSCI 220S1T, 2008



Organizational matters

Lecturer: Dr Mark Wilson.

Office: City 303.588, office hours by appointment and
whenever my door is open (most of the time 10am-2pm).
Many questions can be answered by email.

Textbook: must be read before lecture and brought to lecture;
prizes for finding errors.

“Handouts”: available from my website; will not be numerous.

Lectures: will stick mostly to textbook, but there may be
some extra material. Please ask questions but we need only
one person talking at a time.

Other resources: lecturer, tutor, course webpages, forum,
library (check books on reserve and textbook references).

Mark C. Wilson COMPSCI 220S1T, 2008



(Di)graphs

A digraph is a finite nonempty set V of nodes along with a set
E ⊂ V × V of arcs. We often write n = |V |, e = |E|.

Think of arc (v, w) as an arrow from v to w.

A graph is similar, but edges between vertices are undirected.
Can interpret a graph as a special type of digraph (2 arcs
represent an undirected edge).

A tree is a very special type of (di)graph.

Key concepts: node/vertex, arc/edge, walk, path, cycle,
connected/strongly connected, (strong) component,
degree/indegree/outdegree (sequence), distance, diameter,
etc.

Applications: many concerned with networks (communication,
transport, electrical, computer, social); other interpretations
such as job precedence, tournaments, molecule structure.

Mark C. Wilson COMPSCI 220S1T, 2008



(Di)graphs

A digraph is a finite nonempty set V of nodes along with a set
E ⊂ V × V of arcs. We often write n = |V |, e = |E|.
Think of arc (v, w) as an arrow from v to w.

A graph is similar, but edges between vertices are undirected.
Can interpret a graph as a special type of digraph (2 arcs
represent an undirected edge).

A tree is a very special type of (di)graph.

Key concepts: node/vertex, arc/edge, walk, path, cycle,
connected/strongly connected, (strong) component,
degree/indegree/outdegree (sequence), distance, diameter,
etc.

Applications: many concerned with networks (communication,
transport, electrical, computer, social); other interpretations
such as job precedence, tournaments, molecule structure.

Mark C. Wilson COMPSCI 220S1T, 2008



(Di)graphs

A digraph is a finite nonempty set V of nodes along with a set
E ⊂ V × V of arcs. We often write n = |V |, e = |E|.
Think of arc (v, w) as an arrow from v to w.

A graph is similar, but edges between vertices are undirected.
Can interpret a graph as a special type of digraph (2 arcs
represent an undirected edge).

A tree is a very special type of (di)graph.

Key concepts: node/vertex, arc/edge, walk, path, cycle,
connected/strongly connected, (strong) component,
degree/indegree/outdegree (sequence), distance, diameter,
etc.

Applications: many concerned with networks (communication,
transport, electrical, computer, social); other interpretations
such as job precedence, tournaments, molecule structure.

Mark C. Wilson COMPSCI 220S1T, 2008



(Di)graphs

A digraph is a finite nonempty set V of nodes along with a set
E ⊂ V × V of arcs. We often write n = |V |, e = |E|.
Think of arc (v, w) as an arrow from v to w.

A graph is similar, but edges between vertices are undirected.
Can interpret a graph as a special type of digraph (2 arcs
represent an undirected edge).

A tree is a very special type of (di)graph.

Key concepts: node/vertex, arc/edge, walk, path, cycle,
connected/strongly connected, (strong) component,
degree/indegree/outdegree (sequence), distance, diameter,
etc.

Applications: many concerned with networks (communication,
transport, electrical, computer, social); other interpretations
such as job precedence, tournaments, molecule structure.

Mark C. Wilson COMPSCI 220S1T, 2008



(Di)graphs

A digraph is a finite nonempty set V of nodes along with a set
E ⊂ V × V of arcs. We often write n = |V |, e = |E|.
Think of arc (v, w) as an arrow from v to w.

A graph is similar, but edges between vertices are undirected.
Can interpret a graph as a special type of digraph (2 arcs
represent an undirected edge).

A tree is a very special type of (di)graph.

Key concepts: node/vertex, arc/edge, walk, path, cycle,
connected/strongly connected, (strong) component,
degree/indegree/outdegree (sequence), distance, diameter,
etc.

Applications: many concerned with networks (communication,
transport, electrical, computer, social); other interpretations
such as job precedence, tournaments, molecule structure.

Mark C. Wilson COMPSCI 220S1T, 2008



Computer representation of (di)graphs

Two main ways: adjacency matrix or adjacency lists. Neither
is better in every case; adjacency lists are usually better for
sparse (di)graphs.

Adjacency matrix needs Θ(n2) storage, adjacency list
Θ(n + e). With matrix, arc query takes Θ(1) but it takes
Θ(d) with list, where d is the maximum outdegree.

Basic graph methods: add/delete node, add/delete arc, find
neighbours, check adjacency, compute (in/out-)degree of
node, etc; time complexity of these operations depends on
particular data structures used.

Mark C. Wilson COMPSCI 220S1T, 2008



Computer representation of (di)graphs

Two main ways: adjacency matrix or adjacency lists. Neither
is better in every case; adjacency lists are usually better for
sparse (di)graphs.

Adjacency matrix needs Θ(n2) storage, adjacency list
Θ(n + e). With matrix, arc query takes Θ(1) but it takes
Θ(d) with list, where d is the maximum outdegree.

Basic graph methods: add/delete node, add/delete arc, find
neighbours, check adjacency, compute (in/out-)degree of
node, etc; time complexity of these operations depends on
particular data structures used.

Mark C. Wilson COMPSCI 220S1T, 2008



Computer representation of (di)graphs

Two main ways: adjacency matrix or adjacency lists. Neither
is better in every case; adjacency lists are usually better for
sparse (di)graphs.

Adjacency matrix needs Θ(n2) storage, adjacency list
Θ(n + e). With matrix, arc query takes Θ(1) but it takes
Θ(d) with list, where d is the maximum outdegree.

Basic graph methods: add/delete node, add/delete arc, find
neighbours, check adjacency, compute (in/out-)degree of
node, etc; time complexity of these operations depends on
particular data structures used.

Mark C. Wilson COMPSCI 220S1T, 2008



Traversing a (di)graph

How to visit all the nodes of G in an efficient and systematic
way? Main idea: start somewhere, and colour in nodes as we
visit them. At each step choose a coloured node, and visit one
of its unvisited neighbours.

There are three main ways in common use:

Breadth-first search (BFS): choose coloured node using
first-in, first-out;
Depth-first search (DFS): choose coloured node using last-in,
first-out;
Priority-first search (PFS): choose coloured node using a
priority function, which may be updated at each step.

Each builds a tree rooted at v, containing all nodes reachable
from v. Repeating from different roots yields a collection of
disjoint trees containing all nodes (a spanning forest). Given a
search forest, we can classify each arc of G as a tree arc, a
forward arc, a back arc or a cross arc.

Mark C. Wilson COMPSCI 220S1T, 2008



Traversing a (di)graph

How to visit all the nodes of G in an efficient and systematic
way? Main idea: start somewhere, and colour in nodes as we
visit them. At each step choose a coloured node, and visit one
of its unvisited neighbours.
There are three main ways in common use:

Breadth-first search (BFS): choose coloured node using
first-in, first-out;
Depth-first search (DFS): choose coloured node using last-in,
first-out;
Priority-first search (PFS): choose coloured node using a
priority function, which may be updated at each step.

Each builds a tree rooted at v, containing all nodes reachable
from v. Repeating from different roots yields a collection of
disjoint trees containing all nodes (a spanning forest). Given a
search forest, we can classify each arc of G as a tree arc, a
forward arc, a back arc or a cross arc.

Mark C. Wilson COMPSCI 220S1T, 2008



Traversing a (di)graph

How to visit all the nodes of G in an efficient and systematic
way? Main idea: start somewhere, and colour in nodes as we
visit them. At each step choose a coloured node, and visit one
of its unvisited neighbours.
There are three main ways in common use:

Breadth-first search (BFS): choose coloured node using
first-in, first-out;

Depth-first search (DFS): choose coloured node using last-in,
first-out;
Priority-first search (PFS): choose coloured node using a
priority function, which may be updated at each step.

Each builds a tree rooted at v, containing all nodes reachable
from v. Repeating from different roots yields a collection of
disjoint trees containing all nodes (a spanning forest). Given a
search forest, we can classify each arc of G as a tree arc, a
forward arc, a back arc or a cross arc.

Mark C. Wilson COMPSCI 220S1T, 2008



Traversing a (di)graph

How to visit all the nodes of G in an efficient and systematic
way? Main idea: start somewhere, and colour in nodes as we
visit them. At each step choose a coloured node, and visit one
of its unvisited neighbours.
There are three main ways in common use:

Breadth-first search (BFS): choose coloured node using
first-in, first-out;
Depth-first search (DFS): choose coloured node using last-in,
first-out;

Priority-first search (PFS): choose coloured node using a
priority function, which may be updated at each step.

Each builds a tree rooted at v, containing all nodes reachable
from v. Repeating from different roots yields a collection of
disjoint trees containing all nodes (a spanning forest). Given a
search forest, we can classify each arc of G as a tree arc, a
forward arc, a back arc or a cross arc.

Mark C. Wilson COMPSCI 220S1T, 2008



Traversing a (di)graph

How to visit all the nodes of G in an efficient and systematic
way? Main idea: start somewhere, and colour in nodes as we
visit them. At each step choose a coloured node, and visit one
of its unvisited neighbours.
There are three main ways in common use:

Breadth-first search (BFS): choose coloured node using
first-in, first-out;
Depth-first search (DFS): choose coloured node using last-in,
first-out;
Priority-first search (PFS): choose coloured node using a
priority function, which may be updated at each step.

Each builds a tree rooted at v, containing all nodes reachable
from v. Repeating from different roots yields a collection of
disjoint trees containing all nodes (a spanning forest). Given a
search forest, we can classify each arc of G as a tree arc, a
forward arc, a back arc or a cross arc.

Mark C. Wilson COMPSCI 220S1T, 2008



Traversing a (di)graph

How to visit all the nodes of G in an efficient and systematic
way? Main idea: start somewhere, and colour in nodes as we
visit them. At each step choose a coloured node, and visit one
of its unvisited neighbours.
There are three main ways in common use:

Breadth-first search (BFS): choose coloured node using
first-in, first-out;
Depth-first search (DFS): choose coloured node using last-in,
first-out;
Priority-first search (PFS): choose coloured node using a
priority function, which may be updated at each step.

Each builds a tree rooted at v, containing all nodes reachable
from v. Repeating from different roots yields a collection of
disjoint trees containing all nodes (a spanning forest). Given a
search forest, we can classify each arc of G as a tree arc, a
forward arc, a back arc or a cross arc.

Mark C. Wilson COMPSCI 220S1T, 2008



Breadth-first search

Basic properties of breadth-first search

Implemented using a queue containing nodes visited but not
finished with; takes Θ(n + e) time using adjacency list, Θ(n2)
using adjacency matrix.

The level (distance from root in BFS tree) of each node can
be stored. Level of a node equals distance from root in
original digraph.

There are no forward arcs; in a graph every edge is a tree edge
or cross edge.

In a graph, every edge connects two vertices at the same level
(hence is a cross edge) or at levels differing by 1 (may be tree
or cross edge).

In the following pseudocode, a FIFO queue Q and arrays
colour, d, pred are used.

Mark C. Wilson COMPSCI 220S1T, 2008



Breadth-first search

Breadth-first search pseudocode

algorithm BFSv(node s)
colour[s] ← GREY ; d[s] ← 0; pred[s] ← NULL
level ← 0; insert(Q, s)
while not empty(Q) do

u ← next(Q)
level ← level + 1
for each v adjacent to u do

if colour[v] = WHITE then
colour[v] ← GREY ; d[v] ← level; pred[v] ← u
insert(Q, v)

delete(Q)
colour[u] ← BLACK

end

Mark C. Wilson COMPSCI 220S1T, 2008



Depth-first search

Depth-first search

Grows search tree by getting as far from the root as possible.

Implemented recursively (or with stack); takes Θ(n + e) time
using adjacency list, Θ(n2) using adjacency matrix.

Can store the time a node is first seen, and the time its
recursive call finishes; these values are related to pre- and
post-order traversal of a tree.

In following pseudocode, arrays colour, seen, done are
used. They are initialized so all entries are WHITE, 0, 0
respectively.

Mark C. Wilson COMPSCI 220S1T, 2008



Depth-first search

Depth-first search pseudocode

algorithm DFS(digraph G)
{initialize arrays colour, pred, seen, done of size |V (G)|}
time ← 0
for s ∈ V (G) do

if colour[s] = WHITE then
DFSv(s)

end
algorithm DFSv(node s)
colour[s] ← GREY ; seen[s] ← time; time ← time + 1
for each v adjacent to s do

if colour[v] = WHITE then
pred[v] ← s; DFSv(v)

colour(s) ← BLACK; done[s] ← time; time ← time + 1;
end

Mark C. Wilson COMPSCI 220S1T, 2008



Depth-first search

Basic properties of depth-first search

Each call to DFSv(v) terminates only when all nodes
reachable from v via a path of white nodes have been seen.

If seen[v] < seen[w] then either
w is a descendant of v,
seen[v] < seen[w] < done[w] < done[v], or
w is not a descendant of v,
seen[v] < done[v] < seen[w] < done[w].

Suppose that (v, w) is an arc. Cases:
tree or forward arc: seen[v] < seen[w] < done[w] < done[v];
back arc: seen[w] < seen[v] < done[v] < done[w];
cross arc: seen[w] < done[w] < seen[v] < done[v].

Hence on a graph, there are no cross edges.

Mark C. Wilson COMPSCI 220S1T, 2008



Applications

Nice DFS application: (Strong) components

Nodes v and w are mutually reachable if there is a path from
v to w and a path from w to v. The nodes of a digraph divide
up into disjoint subsets of mutually reachable nodes, called
strong components. For a graph, we just call it a component.

(Strong) components are precisely the equivalence classes
under the mutual reachability relation.

(Di)graph is (strongly) connected iff it has only one (strong)
component.

Components of a graph are found easily by BFS or DFS (each
tree spans a component). However, this doesn’t work well for
digraphs (a digraph may have a connected underlying graph
yet not be strongly connected). A new idea is needed.

Mark C. Wilson COMPSCI 220S1T, 2008



Applications

Strong components algorithm

Run DFS on G, to get depth-first forest F . Create reverse
digraph Gr by reversing all arcs. Run DFS on Gr; choose root
from unseen nodes finishing latest in F . This gives a forest Fr.

Suppose v in tree of Fr with root w. Consider the 4
possibilities in F :

seen[w] < seen[v] < done[v] < done[w]
seen[w] < done[w] < seen[v] < done[v]
seen[v] < seen[w] < done[w] < done[v]
seen[v] < done[v] < seen[w] < done[w]

By root choice, 2nd and 3rd impossible. By root choice and
since w reachable from v in G, 4th impossible. So v is
descendant of w in F , and v, w are in the same strong
component. The converse is easy.

Mark C. Wilson COMPSCI 220S1T, 2008



Applications

Cycles

Suppose that there is a cycle in G and let v be the node in
the cycle visited first by DFS. If (u, v) is an arc in the cycle
then it must be a back arc (check timestamps).

Conversely if there is a back arc, we must have a cycle. So a
digraph is acyclic iff there are no back arcs from DFS.

An acyclic digraph is called a DAG (directed acyclic graph).
An acyclic graph is a forest.

Cycles can also be easily detected in a graph using BFS.
Finding a cycle of minimum length in a graph is also not
difficult using BFS.

Mark C. Wilson COMPSCI 220S1T, 2008



Applications

Topological sorting

Try to draw digraph in a line so all arcs go in one direction.
Possible if and only if digraph is a DAG.

Main application: scheduling events (putting on clothes,
university prerequisites, etc).

List of finishing times for depth-first search, in reverse order,
solves the problem (since there are no back arcs, each node
finishes before anything pointing to it).

Another solution: zero in-degree sorting. Find node of
indegree zero, delete it and repeat until all nodes listed. Less
efficient(?)

Mark C. Wilson COMPSCI 220S1T, 2008



Weighted (di)graphs

Also called “networks”. Very common in applications.
Optimization problems on networks are important in
operations research.

Each arc carries a real number “weight”, usually positive, can
be +∞. Weight typically represents cost, distance, time.

Representation: weighted adjacency matrix or double
adjacency list.

Standard problems concern finding a minimum or maximum
weight path between given nodes (covered here), spanning
tree (here and CS 225), cycle or tour (e.g TSP), matching,
flow, etc.

Mark C. Wilson COMPSCI 220S1T, 2008



Single-source shortest path problem

Single-source shortest path problem

Given an originating node s, find shortest (minimum weight)
path to each other node. Write dist(s, v) for this minimum
weight.

If all weights are equal then BFS works, but it fails in general.

We present two algorithms: the first is faster but fails when
weights can be negative; the second is slower but always
works.

Of course no algorithm can work if there exists a cycle of
negative total weight, since there is no minimum value in that
case. A robust algorithm will detect such a cycle if it exists,
and give the correct answer when it doesn’t.

Mark C. Wilson COMPSCI 220S1T, 2008



Single-source shortest path problem

Single-source shortest path problem

Given an originating node s, find shortest (minimum weight)
path to each other node. Write dist(s, v) for this minimum
weight.

If all weights are equal then BFS works, but it fails in general.

We present two algorithms: the first is faster but fails when
weights can be negative; the second is slower but always
works.

Of course no algorithm can work if there exists a cycle of
negative total weight, since there is no minimum value in that
case. A robust algorithm will detect such a cycle if it exists,
and give the correct answer when it doesn’t.

Mark C. Wilson COMPSCI 220S1T, 2008



Single-source shortest path problem

Single-source shortest path problem

Given an originating node s, find shortest (minimum weight)
path to each other node. Write dist(s, v) for this minimum
weight.

If all weights are equal then BFS works, but it fails in general.

We present two algorithms: the first is faster but fails when
weights can be negative; the second is slower but always
works.

Of course no algorithm can work if there exists a cycle of
negative total weight, since there is no minimum value in that
case. A robust algorithm will detect such a cycle if it exists,
and give the correct answer when it doesn’t.

Mark C. Wilson COMPSCI 220S1T, 2008



Single-source shortest path problem

Single-source shortest path problem

Given an originating node s, find shortest (minimum weight)
path to each other node. Write dist(s, v) for this minimum
weight.

If all weights are equal then BFS works, but it fails in general.

We present two algorithms: the first is faster but fails when
weights can be negative; the second is slower but always
works.

Of course no algorithm can work if there exists a cycle of
negative total weight, since there is no minimum value in that
case. A robust algorithm will detect such a cycle if it exists,
and give the correct answer when it doesn’t.

Mark C. Wilson COMPSCI 220S1T, 2008



Single-source shortest path problem

Dijkstra’s algorithm

E. W. Dijkstra (1930–2002) discovered this in the late 1950’s.
He was a very famous computer scientist with many strong
opinions and interesting quotations — look him up.

An example of a greedy algorithm; sequence of locally best
choices gives globally best solution.

Maintain a list S of visited nodes (say using a priority queue)
and an array of best distances found so far; choose node
u &∈ S with best distances; update distances in case adding u
has created shorter paths.

With negative weights, doesn’t detect or find correct solution.

Complexity depends on data structures used, especially for
priority queue; O(e + n log n) is possible. For simple matrix
implementation we have Θ(n2), as good as can be expected.

Mark C. Wilson COMPSCI 220S1T, 2008



Single-source shortest path problem

Dijkstra’s algorithm pseudocode

algorithm Dijkstra(weighted digraph (G, c), node v)
for u ∈ V (G) do

d[u] ←∞
d[v] ← 0; S ← ∅
while S &= V (G) do

find u ∈ V (G) \ S so that d[u] is minimum; S ← S ∪ {u}
for x ∈ V (G) \ S do

d[x] ← min{d[x], d[u] + c[u, x]}

Claim: at the top of the while loop, (P1) if w ∈ S, d[w] equals
the optimal path length, whereas (P2) if w is adjacent to S, d[w]
holds the best value achievable using only nodes seen so far.

Mark C. Wilson COMPSCI 220S1T, 2008



Single-source shortest path problem

Correctness of Dijkstra’s algorithm I

By induction on the while loop iteration number m. When
m = 0, S0 = {v} and clearly claim holds.

Suppose claim holds for m and let u be the next special node
(so Sm+1 = Sm ∪ {u}).
Let w ∈ Sm+1. Note dm+1[w] = dm[w]. If w &= u then claim
holds for m + 1, clearly.

Now suppose that w = u and there is a path to u shorter than
dm[u]. Let y be the first node in this path not in Sm. Then
dm[y] = dist(s, y) by inductive hypothesis. Thus
dm+1[u] = dm[u] > dist(s, y) + dist(y, u) ≥ dm[y]. This
contradicts the choice of u.

This completes the induction step for P1.

Mark C. Wilson COMPSCI 220S1T, 2008



Single-source shortest path problem

Correctness of Dijkstra’s algorithm I

By induction on the while loop iteration number m. When
m = 0, S0 = {v} and clearly claim holds.

Suppose claim holds for m and let u be the next special node
(so Sm+1 = Sm ∪ {u}).

Let w ∈ Sm+1. Note dm+1[w] = dm[w]. If w &= u then claim
holds for m + 1, clearly.

Now suppose that w = u and there is a path to u shorter than
dm[u]. Let y be the first node in this path not in Sm. Then
dm[y] = dist(s, y) by inductive hypothesis. Thus
dm+1[u] = dm[u] > dist(s, y) + dist(y, u) ≥ dm[y]. This
contradicts the choice of u.

This completes the induction step for P1.

Mark C. Wilson COMPSCI 220S1T, 2008



Single-source shortest path problem

Correctness of Dijkstra’s algorithm I

By induction on the while loop iteration number m. When
m = 0, S0 = {v} and clearly claim holds.

Suppose claim holds for m and let u be the next special node
(so Sm+1 = Sm ∪ {u}).
Let w ∈ Sm+1. Note dm+1[w] = dm[w]. If w &= u then claim
holds for m + 1, clearly.

Now suppose that w = u and there is a path to u shorter than
dm[u]. Let y be the first node in this path not in Sm. Then
dm[y] = dist(s, y) by inductive hypothesis. Thus
dm+1[u] = dm[u] > dist(s, y) + dist(y, u) ≥ dm[y]. This
contradicts the choice of u.

This completes the induction step for P1.

Mark C. Wilson COMPSCI 220S1T, 2008



Single-source shortest path problem

Correctness of Dijkstra’s algorithm I

By induction on the while loop iteration number m. When
m = 0, S0 = {v} and clearly claim holds.

Suppose claim holds for m and let u be the next special node
(so Sm+1 = Sm ∪ {u}).
Let w ∈ Sm+1. Note dm+1[w] = dm[w]. If w &= u then claim
holds for m + 1, clearly.

Now suppose that w = u and there is a path to u shorter than
dm[u]. Let y be the first node in this path not in Sm. Then
dm[y] = dist(s, y) by inductive hypothesis. Thus
dm+1[u] = dm[u] > dist(s, y) + dist(y, u) ≥ dm[y]. This
contradicts the choice of u.

This completes the induction step for P1.

Mark C. Wilson COMPSCI 220S1T, 2008



Single-source shortest path problem

Correctness of Dijkstra’s algorithm I

By induction on the while loop iteration number m. When
m = 0, S0 = {v} and clearly claim holds.

Suppose claim holds for m and let u be the next special node
(so Sm+1 = Sm ∪ {u}).
Let w ∈ Sm+1. Note dm+1[w] = dm[w]. If w &= u then claim
holds for m + 1, clearly.

Now suppose that w = u and there is a path to u shorter than
dm[u]. Let y be the first node in this path not in Sm. Then
dm[y] = dist(s, y) by inductive hypothesis. Thus
dm+1[u] = dm[u] > dist(s, y) + dist(y, u) ≥ dm[y]. This
contradicts the choice of u.

This completes the induction step for P1.

Mark C. Wilson COMPSCI 220S1T, 2008



Single-source shortest path problem

Correctness of Dijkstra’s algorithm II

Now let w ∈ V (G) \ Sm+1 and suppose that there is a path γ
to w, using only nodes in Sm+1, whose length |γ| is less than
dm+1[w]. By the inductive hypothesis, γ must include u.

If γ goes straight from Sm to u and then w, then
|γ| ≥ dm+1[w] by update formula in algorithm. So this can’t
happen.
Otherwise γ goes from Sm to u, back inside Sm and emerges
for the last time at some node x ∈ Sm, before going straight
to w. By inductive hypothesis (P1), there is some optimal
path to x of length dm[x]. Replacing part of γ by this, we
obtain a path to w, using only nodes in Sm, of length less
than dm+1[w] and hence less than dm[w], which contradicts
the inductive hypothesis.
Thus no such path exists; this completes inductive step for P2.
This completes the proof of correctness.

Mark C. Wilson COMPSCI 220S1T, 2008



Single-source shortest path problem

Correctness of Dijkstra’s algorithm II

Now let w ∈ V (G) \ Sm+1 and suppose that there is a path γ
to w, using only nodes in Sm+1, whose length |γ| is less than
dm+1[w]. By the inductive hypothesis, γ must include u.
If γ goes straight from Sm to u and then w, then
|γ| ≥ dm+1[w] by update formula in algorithm. So this can’t
happen.

Otherwise γ goes from Sm to u, back inside Sm and emerges
for the last time at some node x ∈ Sm, before going straight
to w. By inductive hypothesis (P1), there is some optimal
path to x of length dm[x]. Replacing part of γ by this, we
obtain a path to w, using only nodes in Sm, of length less
than dm+1[w] and hence less than dm[w], which contradicts
the inductive hypothesis.
Thus no such path exists; this completes inductive step for P2.
This completes the proof of correctness.

Mark C. Wilson COMPSCI 220S1T, 2008



Single-source shortest path problem

Correctness of Dijkstra’s algorithm II

Now let w ∈ V (G) \ Sm+1 and suppose that there is a path γ
to w, using only nodes in Sm+1, whose length |γ| is less than
dm+1[w]. By the inductive hypothesis, γ must include u.
If γ goes straight from Sm to u and then w, then
|γ| ≥ dm+1[w] by update formula in algorithm. So this can’t
happen.
Otherwise γ goes from Sm to u, back inside Sm and emerges
for the last time at some node x ∈ Sm, before going straight
to w. By inductive hypothesis (P1), there is some optimal
path to x of length dm[x]. Replacing part of γ by this, we
obtain a path to w, using only nodes in Sm, of length less
than dm+1[w] and hence less than dm[w], which contradicts
the inductive hypothesis.

Thus no such path exists; this completes inductive step for P2.
This completes the proof of correctness.

Mark C. Wilson COMPSCI 220S1T, 2008



Single-source shortest path problem

Correctness of Dijkstra’s algorithm II

Now let w ∈ V (G) \ Sm+1 and suppose that there is a path γ
to w, using only nodes in Sm+1, whose length |γ| is less than
dm+1[w]. By the inductive hypothesis, γ must include u.
If γ goes straight from Sm to u and then w, then
|γ| ≥ dm+1[w] by update formula in algorithm. So this can’t
happen.
Otherwise γ goes from Sm to u, back inside Sm and emerges
for the last time at some node x ∈ Sm, before going straight
to w. By inductive hypothesis (P1), there is some optimal
path to x of length dm[x]. Replacing part of γ by this, we
obtain a path to w, using only nodes in Sm, of length less
than dm+1[w] and hence less than dm[w], which contradicts
the inductive hypothesis.
Thus no such path exists; this completes inductive step for P2.

This completes the proof of correctness.

Mark C. Wilson COMPSCI 220S1T, 2008



Single-source shortest path problem

Correctness of Dijkstra’s algorithm II

Now let w ∈ V (G) \ Sm+1 and suppose that there is a path γ
to w, using only nodes in Sm+1, whose length |γ| is less than
dm+1[w]. By the inductive hypothesis, γ must include u.
If γ goes straight from Sm to u and then w, then
|γ| ≥ dm+1[w] by update formula in algorithm. So this can’t
happen.
Otherwise γ goes from Sm to u, back inside Sm and emerges
for the last time at some node x ∈ Sm, before going straight
to w. By inductive hypothesis (P1), there is some optimal
path to x of length dm[x]. Replacing part of γ by this, we
obtain a path to w, using only nodes in Sm, of length less
than dm+1[w] and hence less than dm[w], which contradicts
the inductive hypothesis.
Thus no such path exists; this completes inductive step for P2.
This completes the proof of correctness.

Mark C. Wilson COMPSCI 220S1T, 2008



Single-source shortest path problem

Bellman-Ford algorithm

algorithm Bellman-Ford(weighted digraph (G, c), node s)
for u ∈ V (G) do

dist[u] ←∞
dist[s] ← 0
for i from 0 to n− 1 do

for x ∈ V (G) do
for v ∈ V (G) do

d[v] ← min{d[v], d[x] + c[x, v]}
end

Claim: After m times round the outer for loop, d[v] holds the
optimal value for all nodes v such that v has a minimum weight
path with at most m arcs.

Mark C. Wilson COMPSCI 220S1T, 2008



Single-source shortest path problem

Correctness of Bellman-Ford algorithm

We prove claim holds for all m with 0 ≤ m ≤ n− 1. Given
this, then the algorithm is correct as long as there are no
negative weight cycles, because in that case every minimum
weight path has at most n− 1 arcs.

When m = 0, claim is true by initialization. Suppose that
0 < m and claim is true for values less than m. Let γ be a
minimum weight path to v with m + 1 arcs. Let y be the last
node before v and γ1 the subpath to y. Then γ1 is an optimal
path to y and so dist[y] = |γ1|.
Thus by the update formula we have
dist[v] ≤ dist[y] + c[y, v] = |γ1| + c[y, v] = |γ|. This
completes the induction step and hence the proof.

Mark C. Wilson COMPSCI 220S1T, 2008



Single-source shortest path problem

Correctness of Bellman-Ford algorithm

We prove claim holds for all m with 0 ≤ m ≤ n− 1. Given
this, then the algorithm is correct as long as there are no
negative weight cycles, because in that case every minimum
weight path has at most n− 1 arcs.

When m = 0, claim is true by initialization. Suppose that
0 < m and claim is true for values less than m. Let γ be a
minimum weight path to v with m + 1 arcs. Let y be the last
node before v and γ1 the subpath to y. Then γ1 is an optimal
path to y and so dist[y] = |γ1|.

Thus by the update formula we have
dist[v] ≤ dist[y] + c[y, v] = |γ1| + c[y, v] = |γ|. This
completes the induction step and hence the proof.

Mark C. Wilson COMPSCI 220S1T, 2008



Single-source shortest path problem

Correctness of Bellman-Ford algorithm

We prove claim holds for all m with 0 ≤ m ≤ n− 1. Given
this, then the algorithm is correct as long as there are no
negative weight cycles, because in that case every minimum
weight path has at most n− 1 arcs.

When m = 0, claim is true by initialization. Suppose that
0 < m and claim is true for values less than m. Let γ be a
minimum weight path to v with m + 1 arcs. Let y be the last
node before v and γ1 the subpath to y. Then γ1 is an optimal
path to y and so dist[y] = |γ1|.
Thus by the update formula we have
dist[v] ≤ dist[y] + c[y, v] = |γ1| + c[y, v] = |γ|. This
completes the induction step and hence the proof.

Mark C. Wilson COMPSCI 220S1T, 2008



All-pairs shortest path problem

All pairs shortest path problem

Several algorithms are known; we present one, Floyd’s
algorithm. Alternative to running Dijkstra from each node.

Number nodes (say from 0 to n− 1) and at each step k,
maintain matrix of shortest distances from node i to node j
not passing through nodes higher than k. Update at each step
to see whether node k shortens current best distance.

Basically a triply nested for loop, runs in Θ(n3) time. Better
than Dijkstra for dense graphs, probably not for sparse ones.

Based on Warshall’s algorithm (just tells whether there is a
path from node i to node j, not concerned with length).

Mark C. Wilson COMPSCI 220S1T, 2008



All-pairs shortest path problem

Floyd’s algorithm

algorithm Floyd(weighted digraph (G, c))
for x ∈ V (G) do

for u ∈ V (G) do
for v ∈ V (G) do

c[u, v] ← min{c[u, v], c[u, x] + c[x, v]}

Claim: At the bottom of the outer for loop, the current value of
c[u, v] is the minimum length of a path from u to v involving only
other nodes that have been seen in the outer for loop.

Mark C. Wilson COMPSCI 220S1T, 2008



All-pairs shortest path problem

Correctness of Floyd’s algorithm

Let Sm be the set of nodes seen so far; call a path with all
intermediate nodes in S an S-path. Claim is true for m = 0.

Suppose claim is true for m and let x be the newest node
seen at iteration m + 1. Fix u, v and let L be the minimum
length of an Sm+1-path from u to v. Certainly L ≤ cm+1[u, v]
by construction. We show that cm+1[u, v] ≤ L.

Choose an Sm+1-path P from u to v of length L. If x is not
involved then P is an Sm-path, so by inductive hypothesis
L = |P | ≥ cm[u, v] ≥ cm+1[u, v].
If x is involved, let P1, P2 be the subpaths from u to x and x
to v. Then P1 and P2 are Sm-paths, so by the inductive
hypothesis
L = |P | = |P1| + |P2| ≥ cm[u, x] + cm[x, v] ≥ cm+1[u, v].

Mark C. Wilson COMPSCI 220S1T, 2008



All-pairs shortest path problem

Correctness of Floyd’s algorithm

Let Sm be the set of nodes seen so far; call a path with all
intermediate nodes in S an S-path. Claim is true for m = 0.

Suppose claim is true for m and let x be the newest node
seen at iteration m + 1. Fix u, v and let L be the minimum
length of an Sm+1-path from u to v. Certainly L ≤ cm+1[u, v]
by construction. We show that cm+1[u, v] ≤ L.

Choose an Sm+1-path P from u to v of length L. If x is not
involved then P is an Sm-path, so by inductive hypothesis
L = |P | ≥ cm[u, v] ≥ cm+1[u, v].
If x is involved, let P1, P2 be the subpaths from u to x and x
to v. Then P1 and P2 are Sm-paths, so by the inductive
hypothesis
L = |P | = |P1| + |P2| ≥ cm[u, x] + cm[x, v] ≥ cm+1[u, v].

Mark C. Wilson COMPSCI 220S1T, 2008



All-pairs shortest path problem

Correctness of Floyd’s algorithm

Let Sm be the set of nodes seen so far; call a path with all
intermediate nodes in S an S-path. Claim is true for m = 0.

Suppose claim is true for m and let x be the newest node
seen at iteration m + 1. Fix u, v and let L be the minimum
length of an Sm+1-path from u to v. Certainly L ≤ cm+1[u, v]
by construction. We show that cm+1[u, v] ≤ L.

Choose an Sm+1-path P from u to v of length L. If x is not
involved then P is an Sm-path, so by inductive hypothesis
L = |P | ≥ cm[u, v] ≥ cm+1[u, v].

If x is involved, let P1, P2 be the subpaths from u to x and x
to v. Then P1 and P2 are Sm-paths, so by the inductive
hypothesis
L = |P | = |P1| + |P2| ≥ cm[u, x] + cm[x, v] ≥ cm+1[u, v].

Mark C. Wilson COMPSCI 220S1T, 2008



All-pairs shortest path problem

Correctness of Floyd’s algorithm

Let Sm be the set of nodes seen so far; call a path with all
intermediate nodes in S an S-path. Claim is true for m = 0.

Suppose claim is true for m and let x be the newest node
seen at iteration m + 1. Fix u, v and let L be the minimum
length of an Sm+1-path from u to v. Certainly L ≤ cm+1[u, v]
by construction. We show that cm+1[u, v] ≤ L.

Choose an Sm+1-path P from u to v of length L. If x is not
involved then P is an Sm-path, so by inductive hypothesis
L = |P | ≥ cm[u, v] ≥ cm+1[u, v].
If x is involved, let P1, P2 be the subpaths from u to x and x
to v. Then P1 and P2 are Sm-paths, so by the inductive
hypothesis
L = |P | = |P1| + |P2| ≥ cm[u, x] + cm[x, v] ≥ cm+1[u, v].

Mark C. Wilson COMPSCI 220S1T, 2008



Minimum spanning tree problem

Minimum spanning tree problem

Given a connected weighted graph, find a spanning tree
(subgraph containing all vertices that is a tree) of minimum
total weight. Many obvious applications.

Two efficient greedy algorithms presented here: Prim’s and
Kruskal’s.

Each selects edges in order of increasing weight, subject to
not obviously creating a cycle.

Prim maintains a tree at each stage that grows to span;
Kruskal maintains a forest whose trees coalesce into one
spanning tree.

Prim implementation very similar to Dijkstra, get
O(e + n log n); Kruskal uses disjoint sets ADT and can be
implemented to run in time O(e log n).

Mark C. Wilson COMPSCI 220S1T, 2008



Minimum spanning tree problem

Minimum spanning tree problem

Given a connected weighted graph, find a spanning tree
(subgraph containing all vertices that is a tree) of minimum
total weight. Many obvious applications.

Two efficient greedy algorithms presented here: Prim’s and
Kruskal’s.

Each selects edges in order of increasing weight, subject to
not obviously creating a cycle.

Prim maintains a tree at each stage that grows to span;
Kruskal maintains a forest whose trees coalesce into one
spanning tree.

Prim implementation very similar to Dijkstra, get
O(e + n log n); Kruskal uses disjoint sets ADT and can be
implemented to run in time O(e log n).

Mark C. Wilson COMPSCI 220S1T, 2008



Minimum spanning tree problem

Minimum spanning tree problem

Given a connected weighted graph, find a spanning tree
(subgraph containing all vertices that is a tree) of minimum
total weight. Many obvious applications.

Two efficient greedy algorithms presented here: Prim’s and
Kruskal’s.

Each selects edges in order of increasing weight, subject to
not obviously creating a cycle.

Prim maintains a tree at each stage that grows to span;
Kruskal maintains a forest whose trees coalesce into one
spanning tree.

Prim implementation very similar to Dijkstra, get
O(e + n log n); Kruskal uses disjoint sets ADT and can be
implemented to run in time O(e log n).

Mark C. Wilson COMPSCI 220S1T, 2008



Minimum spanning tree problem

Minimum spanning tree problem

Given a connected weighted graph, find a spanning tree
(subgraph containing all vertices that is a tree) of minimum
total weight. Many obvious applications.

Two efficient greedy algorithms presented here: Prim’s and
Kruskal’s.

Each selects edges in order of increasing weight, subject to
not obviously creating a cycle.

Prim maintains a tree at each stage that grows to span;
Kruskal maintains a forest whose trees coalesce into one
spanning tree.

Prim implementation very similar to Dijkstra, get
O(e + n log n); Kruskal uses disjoint sets ADT and can be
implemented to run in time O(e log n).

Mark C. Wilson COMPSCI 220S1T, 2008



Minimum spanning tree problem

Minimum spanning tree problem

Given a connected weighted graph, find a spanning tree
(subgraph containing all vertices that is a tree) of minimum
total weight. Many obvious applications.

Two efficient greedy algorithms presented here: Prim’s and
Kruskal’s.

Each selects edges in order of increasing weight, subject to
not obviously creating a cycle.

Prim maintains a tree at each stage that grows to span;
Kruskal maintains a forest whose trees coalesce into one
spanning tree.

Prim implementation very similar to Dijkstra, get
O(e + n log n); Kruskal uses disjoint sets ADT and can be
implemented to run in time O(e log n).

Mark C. Wilson COMPSCI 220S1T, 2008



Minimum spanning tree problem

Prim’s algorithm

algorithm Prim(weighted digraph (G, c), node v)
for u ∈ V (G) do

d[u] ←∞
d(v) ← 0
S ← ∅
while S &= V (G) do

find u ∈ V (G) \ S so that d[u] is minimum
S ← S ∪ {u}
for x ∈ V (G) \ S do

d[x] ← min{d[x], c[u, x]}

Very similar to Dijkstra - uses a priority queue to hold elements of
d. EXTRACT-MIN, CHANGE-PRIORITY dominate runtime.

Mark C. Wilson COMPSCI 220S1T, 2008



Minimum spanning tree problem

Priority-first search

Build a priority queue containing all nodes, each with an
initial priority value.

At each step, choose the grey node with highest priority and
choose the white neighbour arbitrarily. Delete the grey node
you chose. Then update the priority of the nodes in the
priority queue (usually just update the fringe nodes). End
when the queue is empty.
Dijkstra’s and Prim’s algorithms use this approach to create a
search tree.
The main operations are extracting the minimum (n times)
and changing the priority value (e times). Having a good data
structure that supports these efficiently is very important.
Binary heap: good for extract-min, bad for change-priority.
Array: bad for extract-min, good for change-priority. More
complicated data structures exist that are good for both.

Mark C. Wilson COMPSCI 220S1T, 2008



Minimum spanning tree problem

Priority-first search

Build a priority queue containing all nodes, each with an
initial priority value.
At each step, choose the grey node with highest priority and
choose the white neighbour arbitrarily. Delete the grey node
you chose. Then update the priority of the nodes in the
priority queue (usually just update the fringe nodes). End
when the queue is empty.

Dijkstra’s and Prim’s algorithms use this approach to create a
search tree.
The main operations are extracting the minimum (n times)
and changing the priority value (e times). Having a good data
structure that supports these efficiently is very important.
Binary heap: good for extract-min, bad for change-priority.
Array: bad for extract-min, good for change-priority. More
complicated data structures exist that are good for both.

Mark C. Wilson COMPSCI 220S1T, 2008



Minimum spanning tree problem

Priority-first search

Build a priority queue containing all nodes, each with an
initial priority value.
At each step, choose the grey node with highest priority and
choose the white neighbour arbitrarily. Delete the grey node
you chose. Then update the priority of the nodes in the
priority queue (usually just update the fringe nodes). End
when the queue is empty.
Dijkstra’s and Prim’s algorithms use this approach to create a
search tree.

The main operations are extracting the minimum (n times)
and changing the priority value (e times). Having a good data
structure that supports these efficiently is very important.
Binary heap: good for extract-min, bad for change-priority.
Array: bad for extract-min, good for change-priority. More
complicated data structures exist that are good for both.

Mark C. Wilson COMPSCI 220S1T, 2008



Minimum spanning tree problem

Priority-first search

Build a priority queue containing all nodes, each with an
initial priority value.
At each step, choose the grey node with highest priority and
choose the white neighbour arbitrarily. Delete the grey node
you chose. Then update the priority of the nodes in the
priority queue (usually just update the fringe nodes). End
when the queue is empty.
Dijkstra’s and Prim’s algorithms use this approach to create a
search tree.
The main operations are extracting the minimum (n times)
and changing the priority value (e times). Having a good data
structure that supports these efficiently is very important.

Binary heap: good for extract-min, bad for change-priority.
Array: bad for extract-min, good for change-priority. More
complicated data structures exist that are good for both.

Mark C. Wilson COMPSCI 220S1T, 2008



Minimum spanning tree problem

Priority-first search

Build a priority queue containing all nodes, each with an
initial priority value.
At each step, choose the grey node with highest priority and
choose the white neighbour arbitrarily. Delete the grey node
you chose. Then update the priority of the nodes in the
priority queue (usually just update the fringe nodes). End
when the queue is empty.
Dijkstra’s and Prim’s algorithms use this approach to create a
search tree.
The main operations are extracting the minimum (n times)
and changing the priority value (e times). Having a good data
structure that supports these efficiently is very important.
Binary heap: good for extract-min, bad for change-priority.
Array: bad for extract-min, good for change-priority. More
complicated data structures exist that are good for both.

Mark C. Wilson COMPSCI 220S1T, 2008



Minimum spanning tree problem

Kruskal’s algorithm

algorithm Kruskal(weighted digraph (G, c))
T ← ∅
sort E(G) by increasing order of cost
for e = {u, v} ∈ E(G) do

if u and v are not in the same tree then
T ← T ∪ {e}
merge the trees of u and v

Keep track of the trees using disjoint sets ADT, with standard
operations FIND and UNION. They can be implemented efficiently
so that the main time taken is the sorting step.

Mark C. Wilson COMPSCI 220S1T, 2008



Minimum spanning tree problem

Proof that Prim, Kruskal work

Call a set of edges promising if it can extend to give a MST.
Claim: let B ⊂ V and let T ⊆ E be promising, and no edge in T
leaves B. Let e be minimum weight edge leaving B. Then T ∪ {e}
is promising.
Assuming claim, proof follows by taking B = nodes of component
including endpoint of next edge e (Kruskal) or B = nodes of
current tree (Prim).
Proof of claim: let U be MST containing T . If e ∈ U , done. Else
there is another edge e′ leaving B (to close the cycle). Then
removing e′ and adding e to U gives MST containing T .

Mark C. Wilson COMPSCI 220S1T, 2008



Other graph problems

Hamilton cycle: traverse graph, visiting each vertex exactly
once. Example: knight’s tour. Travelling sales rep problem is
a generalization.

Euler cycle: traverse graph, visiting each edge exactly once.
Chinese postman problem is a generalization.

Vertex colouring: colour each vertex one colour, so neighbours
have different colours.

Vertex cover: choose S ⊂ V so each edge is incident to some
s ∈ S.

An Euler cycle can be found (if it exists) in linear time. but no
fast algorithm is known for finding a Hamiltonian cycle in
general, (given that it exists). However, a knight’s tour can be
found on an n× n chessboard in linear time (O(n2)).

Mark C. Wilson COMPSCI 220S1T, 2008



Hard problems

“Easy” problems are solvable in polynomial time; let P denote
the class of these problems. Includes all coursebook problems,
plus planarity testing, Chinese postman and a few more.
Let NP denote the class of problems for which a guess can be
checked in polynomial time. Obviously P ⊆ NP and NP
“must” be much bigger. Main open problem of theoretical
computer science: is P = NP? No problem has been proved
to be in NP \ P , but there are many that are in NP and not
known to be in P .
A problem is NP-complete if it is in NP and is “as hard as”
any other problem in NP. Example: Hamiltonian cycle.
Usually we must solve NP-complete problems via exhaustive
search of exponentially many possibilities. This leads to
backtracking and branch-and-bound methods covered in CS
320.

Mark C. Wilson COMPSCI 220S1T, 2008


