Tuesday I7th March - 6 pm Lecture

THE UNIVERSITY OF AUCKLAND FACULTY OF SCIENCE

Professor Bernard Chazelle

Princeton University

New Zealand Institute of
Mathematics $\&$ its Application

SLTI Lecture Theatre • Ground Floor Building 303•38 Princes Street (by Albert Park)

CS 220 Complexity Measures

Notation Conventions

- $T(n)$: the "running time" for an algorithm having an n sized input, e.g., $T(14)=33, T(n)=2 n+5$
- $g(n)$: the formula for computing the running time for an algorithm having n-sized input, e.g., $g(n)=2 n+5$
- $O(n)$: a set of formulas that bound the running time for an algorithm as n gets very large
- $f(n)$: the formula that represents how quickly the running time grows as \boldsymbol{n} gets very large

Typical Complexity Curves

$\mathrm{T}(n) \propto \mathrm{c}$ constant	
$\mathrm{T}(n) \propto \operatorname{lo}$	logarithmic
$\mathrm{T}(n) \propto n$	linear
$\mathrm{T}(n) \propto n \log n$	
$\mathrm{T}(n) \propto n^{2}$	quadratic
$\mathrm{T}(n) \propto n^{3}$	cubic
$\mathrm{T}(n) \propto n^{k}$	polynomial
$\mathrm{T}(n) \propto 2^{n}$	exponential

Relative growth: $g(n)=f(n) / f(5)$

		Input size n			
Function $f(n)$		5	25	125	625
Constant	1	1	1	1	1
Logarithm	$\log _{5} n$	1	2	3	4
Linear	n	$\mathbf{1}$	$\mathbf{5}$	$\mathbf{2 5}$	$\mathbf{1 2 5}$
" $n \log n "$	$n \log _{5} n$	1	10	75	500
Quadratic	n^{2}	1	$25\left(5^{2}\right)$	$625\left(5^{4}\right)$	$15,625\left(5^{6}\right)$
Cubic	n^{3}	1	$125\left(5^{3}\right)$	$15,625\left(5^{6}\right)$	$1,953,125\left(5^{9}\right)$
Exponential	2^{n}	$\mathbf{1}$	$\mathbf{2}^{20} \approx 1 \mathbf{0}^{6}$	$\mathbf{2}^{120} \approx 1 \mathbf{0}^{\mathbf{3 6}}$	$\mathbf{2}^{620} \approx 1 \mathbf{0}^{187}$

"Big-Oh" $\boldsymbol{O}(\ldots)$: Formal Definition

Let $f(n)$ and $g(n)$ be nonnegative-valued functions defined on nonnegative integers n
The function $g(n)$ is $O(f(n))$ (read: $g(n)$ is Big Oh of $f(n)$) iff there exists a positive real constant c and a positive integer n_{0} such that $g(n) \leq c f(n)$ for all $n>n_{0}$

- Notation "iff' is an abbreviation of "if and only if"
- Example 1.9 (p.15): $g(n)=100 \log _{10} n$ is $O(n)$ $\Leftarrow g(n)<n$ if $n>238$ or $g(n)<0.3 n$ if $n>1000$

$g(n)$ is $O(f(n))$, or $g(n)=O(f(n))$

$g(n)$ is $O(f(n))$ if:
a constant $c>0$ exists such that $c f(n)$ grows faster than $g(n)$ for all $n>n_{0}$
To prove that some function $g(n)$ is $O(f(n))$ means to show for g and f such constants c and n_{0} exist

The constants c and n_{0} are interdependent

$$
\begin{array}{ll}
\mathrm{n}>\left(\mathrm{n}_{0}=238\right): & \mathrm{g}(\mathrm{n})<(\mathrm{f}(\mathrm{n})=\mathrm{n}) \\
\mathrm{n}>\left(\mathrm{n}_{0}=1000\right): & \mathrm{g}(\mathrm{n})<(\mathrm{f}(\mathrm{n})=0.3 \cdot \mathrm{n})
\end{array}
$$

"Big-Oh" O(...) : Informal Meaning

- If $g(n)$ is $O(f(n))$, an algorithm with running time $g(n)$ runs asymptotically (i.e. for large n), at most as fast, to within a constant factor, as an algorithm with running time $f(n)$
$O(f(n))$ specifies an asymptotic upper bound, i.e. $g(n)$ for large n may approach closer and closer to $c f(n)$
Notation $g(n)=O(f(n))$ means actually $g(n) \in O(f(n))$, i.e. $g(n)$ is a member of the set $O(f(n))$ of functions increasing with the same or lesser rate as $n \rightarrow \infty$

Big Omega $\Omega(\ldots)$

- The function $g(n)$ is $\Omega(f(n))$ iff there exists a positive real constant c and a positive integer n_{0} such that $g(n) \geq c f(n)$ for all $n>n_{0}$
$\Omega(\ldots)$ is opposite to $O(\ldots)$ and specifies an asymptotic lower bound: if $g(n)$ is $\Omega(f(n))$ then $f(n)$ is $O(g(n))$
Example 1: $5 n^{2}$ is $\Omega(n) \Leftarrow 5 n^{2} \geq 5 n$ for $n \geq 1$
Example 2: $0.01 n$ is $\Omega(\log n) \Leftarrow 0.01 n \geq 0.5 \log _{10} n$ for $n \geq 100$

Big Theta $\Theta(. .$.

- The function $g(n)$ is $\Theta(f(n))$ iff there exists two positive real constants c_{1} and c_{2} and a positive integer n_{0} such that $c_{1} f(n) \leq g(n) \leq c_{2} f(n)$ for all $n>n_{0}$

$$
\begin{aligned}
& g(n) \text { is } \Theta(f(n)) \Rightarrow \\
& \quad g(n) \text { is } O(f(n)) \text { AND } f(n) \text { is } O(g(n))
\end{aligned}
$$

Ex.: the same rate of increase for $g(n)=n+5 n^{0.5}$ and $f(n)=n$

$$
\Rightarrow n \leq n+5 n^{0.5} \leq 6 n \text { for } n>1
$$

Comparisons: Two Crucial Ideas

- Exact running time function is unimportant since it can be multiplied by an arbitrary positive constant.
- Two functions are compared asymptotically, for large n, and not near the origin
- If the constants c involved are very large, then the asymptotical behaviour is of no practical interest!
- To prove that $g(n)$ is not $O(f(n)), \Omega(f(n))$, or Θ $(f(n))$ we have to show that the desired constants do not exist, i.e. lead to a contradiction

Example 1.12, p. 17

Linear function $g(n)=a n+b ; a>0$, is $O(n)$

To prove, we form a chain of inequalities:

$$
g(n) \leq a n+|b| \leq g(n) \leq(a+|b|) \cdot n \text { for all } n \geq 1
$$

Do not write $\mathrm{O}(2 n)$ or $\mathrm{O}(a n+b)$ as this means still $\mathrm{O}(n)$! $\mathrm{O}(n)$ - running time:

$$
\begin{array}{ll}
\mathrm{T}(n)=3 n+1 & \mathrm{~T}(n)=10^{8}+n \\
\mathrm{~T}(n)=50+10^{-8} n & \mathrm{~T}(n)=10^{6} n+1
\end{array}
$$

Remember that "Big-Oh" describes an "asymptotic behaviour" for large problem sizes

Example 1.13, p. 17

Polynomial $P_{k}(n)=a_{k} n^{k}+a_{k-1} n^{k-1}+\ldots+a_{1} n+a_{0} ; a_{k}>0$,

$$
\text { is } \mathrm{O}\left(n^{k}\right) \Leftarrow P_{k}(n) \leq\left(a_{k}+\left|a_{k-1}\right|+\ldots+\left|a_{0}\right|\right) n^{k} ; n \geq 1
$$

Do not write $\mathrm{O}\left(\mathrm{P}_{k}(n)\right)$ as this means still $\mathrm{O}\left(n^{k}\right)$!
$\mathrm{O}(n-\underline{k})$ - running time:

- $\mathrm{T}(n)=3 n^{2}+5 n+1$ is $\mathrm{O}\left(n^{2}\right) \quad$ Is it also $\mathrm{O}\left(n^{3}\right)$?
- $\mathrm{T}(n)=10^{-8} n^{3}+10^{8} n^{2}+30$ is $\mathrm{O}\left(n^{3}\right)$
- $\mathrm{T}(n)=10^{-8} n^{8}+1000 n+1$ is $\mathrm{O}\left(n^{8}\right)$
$T(n)=P_{k}(n) \Rightarrow O\left(n^{m}\right), m \geq k ; \Theta\left(n^{k}\right) ; \Omega\left(n^{m}\right) ; m \leq k$

Example 1.14, p. 17

Exponential $\mathrm{g}(n)=2^{n+k}$ is $\mathrm{O}\left(2^{n}\right): 2^{n+k}=2^{k} \cdot 2^{n}$ for all n
Exponential $\mathrm{g}(n)=m^{n+k}$ is $\mathrm{O}\left(l^{n}\right), l \geq m>1$:

$$
m^{n+k} \leq l^{n+k}=l^{k} \cdot l^{n} \text { for all } n, k
$$

A "brute-force" search for the best combination of n interdependent binary decisions by exhausting all the 2^{n} possible combinations has exponential time complexity! Therefore, try to find a more efficient way of solving the decision problem with $n \geq 20 \ldots 30$

Example 1.15, p. 17

- Logarithmic function $\mathrm{g}(n)=\log _{m} n$ has the same rate of increase as $\log _{2} n$ because

$$
\log _{m} n=\log _{m} 2 \cdot \log _{2} n \text { for all } n, m>0
$$

Do not write $\mathrm{O}\left(\log _{m} n\right)$ as this means still $\mathrm{O}(\log n)$!
You will find later that the most efficient search for data in an ordered array has logarithmic time complexity

