

CompSci 220

- Data Structures & Algorithms
- Slides written by AProf Gimel'farb & modified by Mike Barley

Contact Details

- Lecturer: Mike Barley
- Office Hours: By arrangement
- City Office: Room 394
- Tamaki Office: TBA
- Email: <u>barley@cs.auckland.ac.nz</u>
- Ph ext: x86133 (almost never in my office)

Overview to My Part

- This part is all about analysing how long an algorithm will "run":
 - Intro to basic "tools"
 - Applying these tools to sorting algorithms
 - Applying these tools to searching algorithms

Who am I and why am I teaching this?

- My area of expertise is Artificial Intelligence
- I have never taught this part before
- It's been a number
 of decades since I last looked at this area
- However, I have become increasingly interested in this area: *intelligent automatic software configuration*

Division of My Part

- Intro to tools: 5 lectures
- Intro to sorting: 3 1/2 lectures
- Intro to search: 2 1/2 lectures
- On the 12th lecture we rest :^)

The 5 "Tool" Lectures

- Terms & Definitions & Examples (today)
- Estimating Running Time (also today)
- Complexity Measures (Thursday)
- Computing Simple Time Complexities (Tuesday next)
- Computing Time Complexities of Recursion (also Tuesday next)

Overview of Today's 1st Half

- Defining basic terms
- Bases for describing & comparing algorithms
- Working thru simple examples
- Exercises

Pattern for Today's 1st Half's Examples

- Problem description
- Naïve algorithm
- Brief analysis leading to insights about its complexity
- More Sophisticated algorithm arising from insight
- Brief statement about its complexity

Some Informal Definitions

- **algorithm** a system of uniquely determined rules that specify successive steps in solving a problem
- **program** a clearly specified series of computer instructions implementing the algorithm
- elementary operation a computer instruction executed in a single time unit (computing step)
- **running** (computing) **time** of an algorithm a number of its computing steps (elementary operations)

Efficiency of Algorithms: How to compare algorithms / programs

- by domain of definition what inputs are legal?
- by correctness is output correct for each legal input? (in fact, you need a <u>formal proof</u>!)
- by **basic resources** *maximum* or *average* requirements:
 - computing time
 - memory space

Problem Statement: given an array of n numbers sum them together.

Naïve Algorithm:

```
Algorithm sum (input: array a[n])

begin s \leftarrow 0

for i \leftarrow 0 step i \leftarrow i + 1 until n - 1 do

s \leftarrow s + a[i] end for

return s

end
```


Brief Statement of Complexity:

To sum elements of an array a[n], elementary add operations are repeated n times \Rightarrow Running time T(n) = cn is linear in n

This is as good as it gets.

Example 2: GCD

- <u>**Problem:**</u>The greatest common divisor, k = GCD(n, m) is the greatest positive integer such that it divides both two positive integers m and n
- Examples: GCD(2, 17) = 1, GCD(6, 9) = 3, GCD(12, 20) = 4
- <u>Naïve Algorithm:</u>A "brute-force" linear solution: to exhaust all integers from the minimum of *m* and *n*, to the first one that divides both *m* and *n*

Working out an example

- 1. 9245 / 7515 = 0?
- 2. 9245 / 7514 = 0 & 7515 / 7514 = 0?

7511. 9245 / 5 = 0 & 7515 / 5 = 0?

Is it practicable to use such an algorithm to find GCD(9245, 7515) or what about GCD(3,787,776,332, 3,555,684776)?

Naive GCD Analysis

- Let m > n, what do we learn when we divide m by n?
- If the reminder = 0, what does that tell us?
- If the remainder > 0, what does that tell us?

Euclid's Insight

- <u>Euclid's analysis</u>: if k divides both m and n, then it divides their difference (n - m if n > m):
- I.e., let n = c * k and m = d * k then n - m = (c - d) * k therefore GCD(n, m) = GCD(n-m, m).
- Therefore

$$GCD(n, m) = GCD(n-m, m)$$

Why??

Euclid's Insight

Since GCD(n,m) = GCD(n-m, m) then GCD(n,m) = GCD(n-2m, m) and k divides every difference when the subtraction is repeated λ times until $n - \lambda m < m$

Therefore $GCD(n, m) = GCD(n \mod m, m)$

where $n \mod m$ is the *remainder* of division of n by m (in Java/C: n%m, e.g. 13%5 = 3)

If the remainder > 0, what does that tell us?

- It tells us a new smaller number that has the same GCD with *m* and with *n* as *m* and *n*.
- How can we use this info to our advantage?
- We don't have to try every integer between the min of *m* and *n*, we need only try the remainders of the divisions.

Euclid's GCD Algorithm

More Sophisticated Algorithm:

GCD(input: int max, min) // assume that max > min begin if min == 0 then return max else return GCD(min, max mod min) endif

end

Is it correct? How would you prove it? What is its running time? How would you determine that? 3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1

GCD(9245,7515) = 5

9245 mod 7515 = 1730	7515 mod 1730 = 595
1730 mod 595 = 540	595 mod 540 = 55
$540 \mod 55 = 45$	$55 \mod 45 = 10$
45 mod 10 = 5	$10 \mod 5 = 0 \Rightarrow \mathbf{GCD=5}$

8 steps vs 7511 steps of the brute-force algorithm!

Example 3: Sums of Subarrays

Problem Statement:

Given an array (a[i]: i = 0, 1, ..., n - 1) of size n, compute n - m + 1 sums: $s[j] = \sum_{k=0}^{m-1} a[j+k]; j = 0, ..., n - m$

of all contiguous subarrays of size m

Sums of Subarrays

Naïve Algorithm (2 nested loops)

Algorithm slowsum (input: array a[2m]) begin array s[m + 1]for $j \leftarrow 0$ to m do $s[j] \leftarrow 0$ for $k \leftarrow 0$ to m-1 do $s[j] \leftarrow s[j] + a[k + j]$ end for
</ end for • return s end

3/3/09 19:20

Sums of Subarrays

- **Complexity** : *cm* operations per subarray; in total: cm(n m + 1) operations
- Time is **linear** if *m* is fixed and **quadratic** if *m* is growing with *n*, such as m = 0.5n

$$T(n) = c \frac{n}{2} \left(\frac{n}{2} + 1 \right) \cong c' \cdot n^2 = n^2 T(1)$$

COMPSCI 220 - AP G Gimel'farb L-1

3/3/09 19:20

Quadratic time due to reiterated innermost computations:

$$s[j] = a[j] + a[j+1] + \dots + a[j+m-1]$$

$$s[j+1] = a[j+1] + \dots + a[j+m-1] + a[j+m]$$

How many times is a[k] added? Linear time T(n) = c(m + 2m) = 1.5cn after excluding reiterated computations:

$$s[j+1] = s[j] + a[j+m] - a[j]$$

COMPSCI 220 - AP G Gimel'farb L-1

More sophisticated algorithm

```
Algorithm fastsum (input: array a[2m])
 begin array s[m + 1]
     compute s[0]
     compute s[j] for j \leftarrow 1 to m
   return s
 end
```


Linear time (2 simple loops)

Algorithm fastsum (input: array a[2m]) begin array s[m + 1] $s[0] \leftarrow 0$ for $k \leftarrow 0$ to m-1 do $s[0] \leftarrow s[0] + a[k]$ end for for $j \leftarrow 1$ to m do $s[j] \leftarrow s[j-1] + a[j + m - 1] - a[j - 1]$ end for return s end

Computing Time for $T(1)=1\mu s$

Array size	п	2,000	2,000,000
Size / number of subarrays	m / m + 1	1,000 / 1,001	1,000,000 / 1,000,001
Naïve (<i>quadratic</i>) algorithm	T(n)	2 <i>sec</i>	> 23 days
Efficient (<i>linear</i>) algorithm	T(n)	1.5 <i>msec</i>	1.5 sec

Exercises: Textbook, p.12

1.1.1: Quadratic algorithm with processing time $T(n)=cn^2$ spends 500μ sec on 10 data items. What time will be spent on 1000 data items?

Solution: $T(10) = c \cdot 10^2 = 500 \implies c = 500/100 = 5 \ \mu sec/item$ $\implies T(1000) = 5 \cdot 1000^2 = 5 \cdot 10^6 \ \mu sec \ or \ T(1000) = 5 \ sec$

1.1.2: Algorithms **A** and **B** use $T_A(n) = c_A n \log_2 n$ and $T_B(n) = c_B n^2$ elementary operations for a problem of size *n*. Find the fastest algorithm for processing $n = 2^{20}$ data items if **A** and **B** spend 10 and 1 operations, respectively, to process $2^{10}=1024$ items.

Solution: $T_A(2^{10}) = 10 \implies c_A = 10/(10 \cdot 2^{10}) = 2^{-10}$; $T_B(2^{10}) = 1 \implies c_B = 1/2^{20} = 2^{-20}$ $\Rightarrow T_A(2^{20}) = 2^{-10} \cdot 20 \cdot 2^{20} = 20 \cdot 2^{10} \iff T_B(2^{20}) = 2^{-20} \cdot 2^{40} = 2^{20} \Rightarrow$ Algorithm A is the fastest for $n = 2^{20}$

3/3/09 19:20

2nd Half: Estimating Running Time

The Heart of Algorithmic Complexity (AC)

- The Question that AC is normally to answer is: Assume we know how long it takes for algorithm A to run for n "items", approximately how long will it take for 2n items?
- Answering this type of question typically involves "counting" how many elementary operations occur per item.
- Unfortunately, we usually need more sophisticated counting techniques than using one's fingers.

Counting Elementary Ops

Algorithm slowsum (input: array a[2m]) **begin** array s[m + 1]for $j \leftarrow 0$ to m do $s[j] \leftarrow 0$ for $k \leftarrow 0$ to m-1 do $s[j] \leftarrow s[j] + a[k + j]$ end for end for return s end

Estimated Time to Sum Subarrays

- Ignore data initialisation
- "Brute-force" summing with two nested loops: $T(n) = m(m+1) = \frac{n}{2}(\frac{n}{2} + 1)$ $= 0.25n^{2} + 0.5n$
- For a large n, $T(n) \approx 0.25n^2$

- e.g., if $n \ge 10$, the linear term $0.5n \le 16.7\%$ of T(*n*)

- if $n \ge 500$, the linear term $0.5n \le 0.4\%$ of T(*n*)

Quadratic vs linear term

$T(n) = 0.25n^2 + 0.5n$						
n	T(n)	$0.25n^2$	0.5 <i>n</i>			
10	30	25	5	16.7%		
50	650	625	25	3.8%		
100	2550	2500	50	2.0%		
500	62750	62500	250	0.4%		
1000	250500	250000	500	0.2%		

Quadratic Time to Sum Subarrays: $T(n)=0.25n^2+0.5n$

- Factor c = 0.25 is referred to as a "constant of proportionality"
- An actual value of the factor does not effect the behaviour of the algorithm for a large *n*:

– Double value of $n \rightarrow 4$ -fold increase in T(n):

$$T(2n) = 4 T(n)$$

- Running time is proportional to the most significant term in T(n)
- Once a problem size becomes large, the most significant term is that which has the largest power of *n*
- This term increases faster than other terms which reduce in significance

- Constants of proportionality depend on the compiler, language, computer, etc.
 - It is useful to ignore the constants when analysing algorithms.
- Constants of proportionality are reduced by using faster hardware or minimising time spent on the "inner loop"
 - But this would not effect behaviour of an algorithm for a large problem!

Elementary Operations

- Basic arithmetic operations (+ ; ; * ; / ; %)
- Basic relational operators (==, !=, >, <, >=, <=)
- Basic Boolean operations (AND, OR, NOT)
- Branch operations, return, ...

Input for problem domains (meaning of *n*):

Sorting: n itemsGraph / path: n vertices / edgesImage processing: n pixelsText processing: string length

Estimating Running Time

• Simplifying assumptions:

all elementary statements / expressions take the same amount of time to execute

- e.g., simple arithmetic assignments
- return
- Loops increase in time linearly as

 $k \cdot T_{\text{body of a loop}}$

where k is number of times the loop is executed

Estimating Running Time

- Conditional / switch statements like if {condition} then {const time T_1 } else {const time T_2 } are more complicated (one has to account for branching frequencies: $T = f_{true}T_1 + (1-f_{true})T_2 \le \max{T_1, T_2}$
- Function calls:

 $T_{\text{function}} = \sum T_{\text{statements in function}}$

• Function composition:

$$T(f(g(n))) = T(g(n)) + T(f(n))$$

Example 1.6: Textbook, p.13

Logarithmic time due to an exponential change $i = k, k^2, k^3, ..., k^m$ of the loop control in the range $1 \le i \le n$: for i = k step $i \leftarrow ik$ until n do ... {const # of elementary operations} end for m iterations such that $k^{m-1} < n \le k^m \Rightarrow$ $T(n) = c \lceil \log_k n \rceil$

Example 1.7: Textbook, p.13

<u>*n* log *n* running time of the conditional nested loops:</u> $m \leftarrow 2$; for $i \leftarrow 1$ to n do if (j = m) then $m \leftarrow 2m$ for $i \leftarrow 1$ to n do ...{const # of operations} end for end if end for The inner loop is executed k times for $j = 2, 4, ..., 2^k$; $k < \log_2 n \le k + 1$; in total: $T(n) = kn = n \mid \log_k n \mid n$

Exercise 1.2.1: Textbook, p.14

Conditional nested loops: linear or quadratic running time? $m \leftarrow 1$; for $j \leftarrow 1$ to n do if (j = m) then $m \leftarrow m (n - 1)$ for $i \leftarrow 1$ to n do ...{const # of operations} end for end if end for The inner loop is executed <u>only twice</u>, for j = 1 and j = n - 1; in total: $T(n)=2n \rightarrow$ linear running time

