CompSci 220

- Data Structures \& Algorithms
- Slides written by AProf Gimel'farb \& modified by Mike Barley

Contact Details

- Lecturer: Mike Barley
- Office Hours: By arrangement
- City Office: Room 394
- Tamaki Office: TBA
- Email:
- Ph ext: x86133 (almost never in my office)

Overview to My Part

- This part is all about analysing how long an algorithm will "run":
- Intro to basic "tools"
- Applying these tools to sorting algorithms
- Applying these tools to searching algorithms

Who am I and why am I teaching this?

- My area of expertise is Artificial Intelligence
- I have never taught this part before
- It's been a number of decades since I last looked at this area
- However, I have become increasingly interested in this area: intelligent automatic software configuration

Division of My Part

- Intro to tools: 5 lectures
- Intro to sorting: 3 1/2 lectures
- Intro to search: 2 1/2 lectures
- On the 12th lecture we rest : ${ }^{\wedge}$)

The 5 "Tool" Lectures

- Terms \& Definitions \& Examples (today)
- Estimating Running Time (also today)
- Complexity Measures (Thursday)
- Computing Simple Time Complexities (Tuesday next)
- Computing Time Complexities of Recursion (also Tuesday next)

Overview of Today's 1st Half

- Defining basic terms
- Bases for describing \& comparing algorithms
- Working thru simple examples
- Exercises

Pattern for Today's 1st Half's Examples

- Problem description
- Naïve algorithm
- Brief analysis leading to insights about its complexity
- More Sophisticated algorithm arising from insight
- Brief statement about its complexity

Some Informal Definitions

- algorithm - a system of uniquely determined rules that specify successive steps in solving a problem
- program - a clearly specified series of computer instructions implementing the algorithm
- elementary operation - a computer instruction executed in a single time unit (computing step)
- running (computing) time of an algorithm - a number of its computing steps (elementary operations)

Efficiency of Algorithms: How to compare algorithms / programs

- by domain of definition - what inputs are legal?
- by correctness - is output correct for each legal input? (in fact, you need a formal proof!)
- by basic resources - maximum or average requirements:
- computing time
- memory space

Example 1: $s=\sum_{i=0}^{n-1} a[i]$

Problem Statement: given an array of n numbers

 sum them together.

Naïve Algorithm:

Algorithm sum (input: array $a[n]$)
begin $s \leftarrow 0$
for $i \leftarrow 0$ step $i \leftarrow i+1$ until $n-1$ do
$s \leftarrow s+a[i]$ end for
return s
end

Example 1: $s=\sum_{i=0}^{n-1} a[i]$

Brief Statement of Complexity:
To sum elements of an array $a[n]$, elementary add operations are repeated n times \Rightarrow

Running time $T(n)=c n$ is linear in n
This is as good as it gets.

Example 2: GCD

- Problem:The greatest common divisor, $k=$ $\operatorname{GCD}(n, m)$ is the greatest positive integer such that it divides both two positive integers m and n
- Examples: $G C D(2,17)=1, G C D(6,9)=$ $3, G C D(12,20)=4$
- Naïve Algorithm:A "brute-force" linear solution: to exhaust all integers from the minimum of m and n, to the first one that divides both m and n

Working out an example

$$
\begin{aligned}
& \text { 1. } 9245 / 7515=0 ? \\
& \text { 2. } 9245 / 7514=0 \& 7515 / 7514=0 \text { ? }
\end{aligned}
$$

7511. $9245 / 5=0 \& 7515 / 5=0$?

- Is it practicable to use such an algorithm to find GCD $(9245,7515)$ or what about GCD(3,787,776,332, 3,555,684776)?

Naive GCD Analysis

- Let $m>n$, what do we learn when we divide m by n ?
- If the reminder $=0$, what does that tell us?
- If the remainder >0, what does that tell us?

Euclid's Insight

- Euclid's analysis: if k divides both m and n, then it divides their difference $(n-m$ if $n>m)$:
- l.e., let $n=c * k$ and $m=d * k$ then $n-m=(c-d) * k$ therefore $\operatorname{GCD}(\mathrm{n}, \mathrm{m})=\operatorname{GCD}(\mathrm{n}-\mathrm{m}, \mathrm{m})$.
- Therefore

$$
\begin{gathered}
\operatorname{GCD}(n, m)=\operatorname{GCD}(n-m, m) \\
\text { Why?? }
\end{gathered}
$$

Euclid's Insight

Since $G C D(n, m)=G C D(n-m, m)$ then $\operatorname{GCD}(\mathrm{n}, \mathrm{m})=\mathrm{GCD}(\mathrm{n}-2 \mathrm{~m}, \mathrm{~m})$
and k divides every difference when the subtraction is repeated λ
times until $n-\lambda m<m$
Therefore $\operatorname{GCD}(\boldsymbol{n}, \boldsymbol{m})=\mathbf{G C D}(\boldsymbol{n} \bmod \boldsymbol{m}, \boldsymbol{m})$
where $\boldsymbol{n} \boldsymbol{\operatorname { m o d }} \mathbf{m}$ is the remainder of division of n by m (in Java/C: $\boldsymbol{n} \% \boldsymbol{m}$, e.g. $13 \% 5=3$)

If the remainder >0, what does that tell us?

- It tells us a new smaller number that has the same GCD with m and with n as m and n.
- How can we use this info to our advantage?
- We don't have to try every integer between the min of m and n, we need only try the remainders of the divisions.

Euclid's GCD Algorithm

More Sophisticated Algorithm:

GCD(input: int max, min) // assume that max $>$ min
begin if $\min =0$
then return max
else return GCD(min, max mod min) endif
end
Is it correct?
How would you prove it?
What is its running time?
How would you determine that?

Euclid's GCD $\approx c \log (n+m)$ time

$\operatorname{GCD}(\mathbf{9 2 4 5 , 7 5 1 5)}=\mathbf{5}$

$9245 \bmod 7515=1730$	$7515 \bmod 1730=595$
$1730 \bmod 595=540$	$595 \bmod 540=55$
$540 \bmod 55=45$	$55 \bmod 45=10$
$45 \bmod 10=5$	$10 \bmod 5=\mathbf{0} \Rightarrow \mathbf{G C D}=\mathbf{5}$

8 steps vs 7511 steps of the brute-force algorithm!

Example 3: Sums of Subarrays

Problem Statement:

Given an array ($a[i]: i=0,1, \ldots, n-1$) of size n, compute $n-m+1$ sums:

$$
s[j]=\sum_{k=0}^{m-1} a[j+k] ; j=0, \ldots, n-m
$$

of all contiguous subarrays of size m

Sums of Subarrays

Worked example:
Let $\mathrm{j}=3, \mathrm{~m}=4$
$\mathrm{n}=12$, then
$\mathrm{s}[3]=\mathrm{a}[3]+\mathrm{a}[4]+$ $\mathrm{a}[5]+\mathrm{a}[6]$

Naïve Algorithm (2 nested loops)

Algorithm slowsum (input: array $a[2 m]$) begin array $s[m+1]$
for $j \leftarrow 0$ to m do

$$
s[j] \leftarrow 0
$$

for $k \leftarrow 0$ to $m-1$ do $s[j] \leftarrow s[j]+a[k+j]$
end for
end for
return s
end

Sums of Subarrays

- Complexity : cm operations per subarray; in total: $c m(n-m+1)$ operations
- Time is linear if m is fixed and quadratic if m is growing with n, such as $m=0.5 n$

$$
T(n)=c \frac{n}{2}\left(\frac{n}{2}+1\right) \cong c^{\prime} \cdot n^{2}=n^{2} T(1)
$$

Getting Linear Computing Time

Quadratic time due to reiterated innermost computations:

$$
\begin{aligned}
s[j] & =a[j]+\underline{a[j+1]+\ldots+a[j+m-1]} \\
s[j+1] & =\quad \underline{a[j+1]+\ldots+a[j+m-1]}+a[j+m]
\end{aligned}
$$

How many times is $\mathbf{a}[\mathbf{k}]$ added?
Linear time $T(n)=c(m+2 m)=1.5 \mathrm{cn}$ after excluding reiterated computations:

$$
s[j+1]=s[j]+a[j+m]-a[j]
$$

More sophisticated algorithm

Algorithm fastsum (input: array $a[2 m]$)
begin array $s[m+1]$
compute $s[0]$
compute $s[j]$ for $j \leftarrow 1$ to m
return s
end

Linear time (2 simple loops)

Algorithm fastsum (input: array $a[2 m]$)
begin array $s[m+1]$

$$
s[0] \leftarrow 0
$$

for $k \leftarrow 0$ to $m-1$ do

$$
s[0] \leftarrow s[0]+a[k]
$$

end for
for $j \leftarrow 1$ to m do

$$
s[j] \leftarrow s[j-1]+a[j+m-1]-a[j-1]
$$

end for return s
end

Computing Time for $\mathbf{T}(\mathbf{1})=\mathbf{1} \mu \mathrm{s}$

Array size	n	2,000	$2,000,000$
Size / number of subarrays	$m /$ $m+1$	$1,000 /$ 1,001	$1,000,000 /$ $1,000,001$
Naïve (quadratic) algorithm	$T(n)$	2 sec	>23 days
Efficient (linear) algorithm	$T(n)$	1.5 msec	1.5 sec

Exercises: Textbook, p. 12

1.1.1: Quadratic algorithm with processing time $T(n)=c n^{2}$ spends $500 \mu \mathrm{sec}$ on 10 data items. What time will be spent on 1000 data items?
Solution: $T(10)=c \cdot 10^{2}=500 \rightarrow c=500 / 100=5 \mu \mathrm{sec} /$ item
$\rightarrow T(1000)=5 \cdot 1000^{2}=5 \cdot 10^{6} \mu \mathrm{sec}$ or $T(1000)=5 \mathrm{sec}$
1.1.2: Algorithms \mathbf{A} and \mathbf{B} use $T_{\mathrm{A}}(n)=c_{\mathrm{A}} n \log _{2} n$ and $T_{\mathrm{B}}(n)=\mathrm{c}_{\mathrm{B}} n^{2}$ elementary operations for a problem of size n. Find the fastest algorithm for processing $n=$ 2^{20} data items if \mathbf{A} and \mathbf{B} spend 10 and 1 operations, respectively, to process $2^{10}=1024$ items.
Solution: $T_{\mathrm{A}}\left(2^{10}\right)=10 \rightarrow c_{\mathrm{A}}=10 /\left(10 \cdot 2^{10}\right)=\mathbf{2}^{\mathbf{- 1 0} 0}$;
$T_{\mathrm{B}}\left(2^{10}\right)=1 \rightarrow c_{\mathrm{B}}=1 / 2^{20}=\mathbf{2}^{-20}$
$\rightarrow \boldsymbol{T}_{\mathrm{A}}\left(\mathbf{2}^{20}\right)=2^{-10} \mathbf{2 0} \cdot 2^{20}=\mathbf{2 0 . 2} \mathbf{2}^{10} \ll \boldsymbol{T}_{\mathrm{B}}\left(\mathbf{2}^{\mathbf{2 0}}\right)=2^{-20} \cdot 2^{40}=\mathbf{2}^{\mathbf{2 0}} \rightarrow$ Algorithm \mathbf{A} is the fastest for $n=2^{20}$

2nd Half: Estimating Running Time

The Heart of Algorithmic Complexity (AC)

- The Question that AC is normally to answer is: Assume we know how long it takes for algorithm A to run for n "items", approximately how long will it take for $2 n$ items?
- Answering this type of question typically involves "counting" how many elementary operations occur per item.
- Unfortunately, we usually need more sophisticated counting techniques than using one's fingers.

Counting Elementary Ops

Algorithm slowsum (input: array $a[2 m]$) begin array $s[m+1]$
for $j \leftarrow 0$ to m do
$s[j] \leftarrow 0$ for $k \leftarrow 0$ to $m-1$ do

$$
s[j] \leftarrow s[j]+a[k+j]
$$

end for
end for
return s
end

Estimated Time to Sum Subarrays

- Ignore data initialisation
- "Brute-force" summing with two nested loops:

$$
\begin{aligned}
T(n) & =m(m+1)=n / 2(n / 2+1) \\
& =0.25 n^{2}+0.5 n
\end{aligned}
$$

- For a large $n, \mathrm{~T}(n) \cong 0.25 n^{2}$
- e.g., if $n \geq 10$, the linear term $0.5 n \leq 16.7 \%$ of $\mathrm{T}(n)$
- if $n \geq 500$, the linear term $0.5 n \leq 0.4 \%$ of $\mathrm{T}(n)$

Quadratic vs linear term

$T(n)=0.25 n^{2}+0.5 n$				
n	$T(n)$	$0.25 n^{2}$	$0.5 n$	
10	30	25	5	16.7%
50	650	625	25	3.8%
100	2550	2500	50	2.0%
500	62750	62500	250	0.4%
1000	250500	250000	500	0.2%

Quadratic Time to Sum Subarrays: $T(n)=0.25 n^{2}+0.5 n$

- Factor $c=0.25$ is referred to as a "constant of proportionality"
- An actual value of the factor does not effect the behaviour of the algorithm for a large n :
- Double value of $n \rightarrow 4$-fold increase in $T(n)$:

$$
T(2 n)=4 T(n)
$$

Running Time: Estimation Rules

- Running time is proportional to the most significant term in $T(n)$
- Once a problem size becomes large, the most significant term is that which has the largest power of n
- This term increases faster than other terms which reduce in significance

Running Time: Estimation Rules

- Constants of proportionality depend on the compiler, language, computer, etc.
- It is useful to ignore the constants when analysing algorithms.
- Constants of proportionality are reduced by using faster hardware or minimising time spent on the "inner loop"
- But this would not effect behaviour of an algorithm for a large problem!

Elementary Operations

- Basic arithmetic operations (+ ; - ; * ; ; \% \%)
- Basic relational operators ($==$, !=, >, <, >=, <=)
- Basic Boolean operations (AND,OR,NOT)
- Branch operations, return, ...

Input for problem domains (meaning of n):
Sorting: n items
Graph / path: n vertices / edges Image processing: n pixels Text processing: string length

Estimating Running Time

- Simplifying assumptions:
all elementary statements / expressions take the
same amount of time to execute
- e.g., simple arithmetic assignments
- return
- Loops increase in time linearly as

$k \cdot T_{\text {body of a loop }}$

where k is number of times the loop is executed

Estimating Running Time

- Conditional / switch statements like if \{condition\} then \{const time $\left.T_{1}\right\}$ else \{const time $\left.T_{2}\right\}$ are more complicated (one has to account for branching frequencies: $T=f_{\text {true }} T_{1}+\left(1-f_{\text {true }}\right) T_{2} \leq \max \left\{T_{1}, T_{2}\right\}$
- Function calls:

$$
T_{\text {function }}=\sum T_{\text {statements in function }}
$$

- Function composition:

$$
T(f(g(n)))=T(g(n))+T(f(n))
$$

Example 1.6: Textbook, p. 13

Logarithmic time due to an exponential change $i=$ $k, k^{2}, k^{3}, \ldots, k^{m}$ of the loop control in the range $1 \leq i \leq n$:
for $i=k$ step $i \leftarrow i k$ until n do
... \{const \# of elementary operations\} end for
m iterations such that $k^{m-1}<n \leq k^{m} \Rightarrow$

$$
T(n)=c\left\lceil\log _{k} n\right\rceil
$$

Example 1.7: Textbook, p. 13

$n \log n$ running time of the conditional nested loops:
$\mathrm{m} \leftarrow 2$; for $j \leftarrow 1$ to n do
if $(j=m)$ then
$m \leftarrow 2 m$
for $i \leftarrow 1$ to n do ...\{const \# of operations\}
end for
end if
end for
The inner loop is executed k times for $j=2,4, \ldots, 2^{k}$;

$$
k<\log _{2} n \leq k+1 ; \text { in total: } T(n)=k n=n\left\lfloor\log _{k} n\right\rfloor
$$

Exercise 1.2.1: Textbook, p. 14

Conditional nested loops: linear or quadratic running time?
$m \leftarrow 1$; for $j \leftarrow 1$ to n do

$$
\begin{aligned}
& \text { if }(j=m) \text { then } m \leftarrow m(n-1) \\
& \text { for } i \leftarrow 1 \text { to } n \text { do } \ldots\{\text { const } \# \text { of operations }\} \\
& \text { end for } \\
& \text { end if } \\
& \text { end for }
\end{aligned}
$$

The inner loop is executed only twice, for $j=1$ and $j=n-1$; in total: $T(n)=2 n \rightarrow$ linear running time

