CompSci 220

o Data Structures & Algorithms

o Slides written by AProf Gimel'farb & modified by
Mike Barley

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1

[~

D)
@ Contact Details

* Lecturer: Mike Barley

Office Hours: By arrangement

City Office: Room 394

Tamaki Office: TBA

Email:

Ph ext: x86133 (almost never in my office)

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1

[~

"RAM
@ Overview to My Part

» This part is all about analysing how long an
algorithm will “run”:

— Intro to basic “tools”
— Applying these tools to sorting algorithms
— Applying these tools to searching algorithms

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1

[~

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 4

Who am |
and why am | teaching this?

My area of expertise is g
Artificial Intelligence '
| have never taught
this part before

It's been a number

of decades since | last looked at this area

However, | have become increasingly interested in this
area. intelligent automatic software configuration

[~

"RAM
@ Division of My Part

* |ntro to tools: 5 lectures
* Intro to sorting: 3 1/2 lectures
* Intro to search: 2 1/2 lectures

 On the 12th lecture we rest :*)

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1

[~

D)
@ The 5 “Tool” Lectures

» Terms & Definitions & Examples (today)
» Estimating Running Time (also today)
» Complexity Measures (Thursday)

» Computing Simple Time Complexities (Tuesday
next)

» Computing Time Complexities of Recursion (also
Tuesday next)

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 6

[~

S

.. Overview of Today’s 1st Half

* Defining basic terms

Bases for describing & comparing algorithms
Working thru simple examples

Exercises

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1

[~

FAPA A
@ Pattern for Today’s 1st Half’s
E— Examples

* Problem description

* Nalive algorithm

» Brief analysis leading to insights about its
complexity

* More Sophisticated algorithm arising from insight
» Brief statement about its complexity

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 8

[~

D)
@ Some Informal Definitions

» algorithm - a system of uniquely determined rules
that specify successive steps in solving a problem

* program - a clearly specified series of computer
Instructions implementing the algorithm

* elementary operation - a computer instruction
executed in a single time unit (computing step)

* running (computing) time of an algorithm - a number
of its computing steps (elementary operations)

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 9

[~

S

— . compare algorithms / programs

Efficiency of Algorithms: How to

* by domain of definition — what inputs are legal?

* by correctness - is output correct for each legal
input? (in fact, you need a formal proof!)

* by basic resources — maximum or average
requirements:
— computing time
— memaory space

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 10

[~

n-1

Example 1: S = z ,ali]

l=

Problem Statement: given an array of n numbers
sum them together.

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1

11

[~

n-1

Example 1: S = z ,ali]

l=

Naive Algorithm:

Algorithm sum (input: array a[n])
begins < 0
for i<— O stepi<—i+1 until n-1 do
s < s + a[i] end for
return s
end

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1

12

[~

n-1

_Example 1; § = E Oa[i]

l=

Brief Statement of Complexity:

To sum elements of an array a[n], elementary add
operations are repeated » times =

Running time 7(n) = cn is linear in n

This is as good as it gets.

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1

13

[~

"R
@ Example 2. GCD

Problem:The greatest common divisor, £ =

GCD(n, m) Is the greatest positive integer such
that it divides both two positive integers m and »

Examples: GCD(2, 17) = 1, GCD(6, 9) =

3, GCD(12, 20) = 4

Naive _Algorithm:A “brute-force” linear
solution: to exhaust all integers from the minimum
of m and n, to the first one that divides both

m and n

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 14

[~

[FTHE UNIVERSITY OF AUCKLANG

Working out an example

1. 9245/73515=0?
2. 9245/7514=0 & 7515/7514 =0?

7511. 9245 /5=0& 7515/5=0?

» |s it practicable to use such an algorithm to find
GCD(9245, 7515) or what about

GCD(@3,787,776,332, 3,555,684776)?

3/3/09 19:20

COMPSCI 220 - AP G Gimel'farb L-1

15

[~

"R
@ Naive GCD Analysis

« Let m>n, what do we learn when we divide m
by n?

o |fthe reminder = 0, what does that tell us?

* |f the remainder > 0, what does that tell us?

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1

16

[~

"R
@ Euclid’s Insight

 Euclid’s analysis: if k divides both m and #,
then it divides their difference (n — m it n > m).
e e, letn=c*kandm=d*k
thenn-m=(c-d) "k
therefore GCD(n, m) = GCD(n-m, m).
* Therefore
GCD(n, m) = GCD(n-m, m)
Why??

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 17

[~

"R
@ Euclid’s Insight

Since GCD(n,m) = GCD(n-m, m)

then GCD(n,m) = GCD(n-2m, m)
and k divides every difference
when the subtraction is repeated A
times until n — Am <m

Therefore GCD(n, m) = GCD(n mod m, m)

where n mod m is the remainder of division of n by m
(in Java/C: n%m, e.g. 13%5 = 3)

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1

18

[~

SIS
@ If the remainder > 0,

what does that tell us?

 |ttells us a new smaller number that has the
same GCD with m and with n as m and n.

* How can we use this info to our advantage?

» We don't have to try every integer between the
min of m and n, we need only try the remainders
of the divisions.

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 19

[~

’AALA
ng Euclid’s GCD Algorithm

More Sophisticated Algorithm:

GCD(input: int max, min) // assume that max > min
begin if min ==

then return max

else return GCD(min, max mod min)

endif
end

Is 1t correct?
How would you prove it?
What is its running time?

How would you determine that?
3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1

20

[~

GCD(9245,7515) = 5

Euclid’s GCD =clog(n+m) time

9245 mod 7515 = 1730

7515 mod 1730 = 595

1730 mod 595 = 540

595 mod 540 = 55

540 mod 55 =45

55 mod 45 =10

45 mod 10=15

10 mod 5 = 0 =GCD=5

8 steps vs 7511 steps of the brute-force algorithm!

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1

21

[~

[FTHE UNIVERSITY OF AUCKLANG

Problem Statement:

Example 3: Sums of Subarrays

Given an array (a[i]: i=0,1, ..., n — 1) of size n,
compute n — m + 1 sums:

: m-1 o, :
s[j]= EMQU +kl,j=0,...n-m
of all contiguous subarrays of size m

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 22

[~

Sums of Subarrays

Worked example:

Letj=3,m=4
n =12, then
s[3] =a[3] + a[4] +

a[5] + a[6] a.[O]

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1

23

AAFARD
" Naive Algorithm
b4 (2 nested loops)

Algorithm slowsum (input: array a[2m])
begin array s[m + 1]
for j < 0 to m do
s[j] <= 0
for k< Otom-1 do
sl < sl + alk + j]
end for
end for
return s
end

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1

24

[~

FAPA A
@ Sums of Subarrays

» Complexity : crm operations per subarray; in
total: cm(n — m + 1) operations

» Time is linear if m is fixed and quadratic if m Is
growing with n, such as m = 0.5n

nin
T(n)=c—|=+1|=c"-n*=n"T()

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1

[~

S

[FTHE UNIVERSITY OF AUCKLAN

. Getting Linear Computing Time

Quadratic time due to reiterated innermost computations:

sljil=aljl+alj+1]+...+a]j+m-1

s|j+1]= alj+1]+...+alj+m-1]+alj+m]

How many times is a[k] added?

Linear time 7(n) = c(m + 2m) = 1.5¢n after excluding reiterated
computations:

slj+1l=sljl+alj+m]|-al/]

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 26

[~

More sophisticated algorithm

Algorithm fastsum (input: array a[2m])

begin array s
compute s

compute s
return s

end

3/3/09 19:20

m+ 1]
0]

j]forj <1 to m

COMPSCI 220 - AP G Gimel'farb L-1

27

[~

S

[FTHE UNIVERSITY OF AUCKLAND

Algorithm fastsum (input: array a[2m])
begin array s[m + 1]
s[0] < O
fork<— 0to m-1 do
s[0] <= s[0] + a[k]
end for
forj< 1 to m do
s|jl] <= slj-1]+alj + m—-1] —alj - 1]
end for
return s
end

Linear time (2 simple loops)

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1

28

[~

"RAM
@ Computing Time for T(1)=1us

Array size n 2,000 2,000,000

Size / number of subarrays m/ 1,000 / 1,000,000 /
m+ 1 1,001 1,000,001

Naive (quadratic) 1(n) 2 sec > 23 days

algorithm

Efficient (linear) algorithm | 7(n) | 1.5 msec 1.5 sec

3/3109 19:20 COMPSCI 220 - AP G Gimelfarb L-1 29

[~

Exercises: Textbook, p.12

1.1.1: Quadratic algorithm with processing time 7(#n)=cn* spends 500usec on 10
data items. What time will be spent on 1000 data items?

Solution: 7(10) = ¢:10%> = 500 — ¢ = 500/100 =5 usec/item
— T(1000) = 5-1000% = 5-10° usec or T(1000)= 5 sec

1.1.2: Algorithms A and B use 7,(n) = c nlog,n and Tx(n) = cyn® elementary
operations for a problem of size n. Find the fastest algorithm for processing » =
220 data items if A and B spend 10 and 1 operations, respectively, to process
210-1024 items.
Solution: 7,(21%) =10 — ¢, = 10/(10-21%) = 2-19;

T2 =1 — c¢g= 1/220=2"20

— TA(ZZO) =2-10.00 . 220 = 20210 << TB(220) =2-20 . 240 = 220 _
Algorithm A is the fastest for n = 2%°

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 30 E

2nd Half: Estimating Running Time

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 31

[~

2/A7A
%’ The Heart of Algorithmic
I Complexity (AC)

» The Question that AC is normally to answer is: Assume
we know how long it takes for algorithm A to run for n
‘items”, approximately how long will it take for 2n items?

» Answering this type of question typically involves

“‘counting” how many elementary operations occur per
item.

* Unfortunately, we usually need more sophisticated
counting techniques than using one’s fingers.

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 32

[~

SIS
@ Counting Elementary Ops

Algorithm slowsum (input: array a[2m])
begin array s[m + 1]
for j < 0 to m do
slj] <= 0
for k< Otom-1 do
sl < sl + alk + j]
end for
end for
return s
end

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1

[~

FAPA A
@ Estimated Time to Sum Subarrays

* Ignore data Initialisation
* “Brute-force” summing with two nested loops:
I(n)=m(m+1)=",(",+t1)
= 0.25n*> + 0.5n
 Foralarge n, T(n) = 0.25n?

- e.g., ifn >10, the linear term 0.57 < 16.7% of T(n)
— if n > 500, the linear term 0.5z < 0.4% of T(n)

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 34

[~

Quadratic vs linear term

T(n)=0.25n>+ 0.5n

n T(n) | 0.25n° 0.5n

10 30 25 S 16.7%

50 650 625 25 3.8%
100 2550 2500 50 2.0%
500 62750 | 62500 250 0.4%
1000 | 250500 | 250000 | 500 0.2%

3/3/09 19:20

COMPSCI 220 - AP G Gimel'farb L-1

35

[~

SIS
@ Quadratic Time to Sum Subarrays:
T()=0.25n2 + 0.5n

« Factorc=0.25 Is referred to as a “constant of
proportionality”

* An actual value of the factor does not effect the
behaviour of the algorithm for a large »:

— Double value of » — 4-fold increase in 7(n):
1(2n) =4 T(n)

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 36

[~

S

'Running Time: Estimation Rules

[FTHE UNIVERSITY OF AUCKLA

* Running time Is proportional to the most
significant term in 7(n)

* Once a problem size becomes large, the most
significant term is that which has the largest
power of n

* This term increases faster than other terms
which reduce in significance

3/3/09 19:21 COMPSCI 220 - AP G Gimel'farb L-1 37

[~

S

. Running Time: Estimation Rules

» Constants of proportionality depend on the
compiler, language, computer, etc.

— It is useful to ignore the constants when analysing
algorithms.

» Constants of proportionality are reduced by using faster
hardware or minimising time spent on the “inner loop’

— But this would not effect behaviour of an algorithm
for a large problem!

3/3/09 19:21 COMPSCI 220 - AP G Gimel'farb L-1 38

[~

FR7AA
@ Elementary Operations

» Basic arithmetic operations (+;—; *;/; %)

* Basic relational operators (==, =, >, <, >=, <=)
» Basic Boolean operations (AND,OR,NOT)
 Branch operations, return, ...

Input for problem domains (meaning of »):

Sorting: » items Graph / path: » vertices / edges
Image processing: n pixels Text processing: string length

3/3/09 19:21 COMPSCI 220 - AP G Gimel'farb L-1 39

[~

SIS
@ Estimating Running Time

 Simplifying assumptions:
all elementary statements / expressions take the
same amount of time to execute

* e.g., simple arithmetic assignments
* return

* Loops increase in time linearly as

kT body of a loop
where k is number of times the loop Is executed

3/3/09 19:21 COMPSCI 220 - AP G Gimel'farb L-1 40

[~

SIS
@ Estimating Running Time

» Conditional / switch statements like if {condition}
then {const time T,} else {const time T,} are
more complicated (one has to account for branching
frequencies: T = f; . T, + (1-f,...)T, S max{T,, T,}

* Function calls:

T

function

=2T

statements 1n function

* Function composition:

1(f(g(n))) = T(g(n)) + 1(f(n))

3/3/09 19:21 COMPSCI 220 - AP G Gimel'farb L-1 41

[~

Example 1.6: Textbook, p.13

Logarithmic time due to an exponential change i =
k, k2, k3, ..., k™ of the loop control in the range
1 <i<n:
for i =k step i < ik until » do
... {const # of elementary operations}
end for

m iterations such that k"' < n < k"=
T(n)= c| log, n |

3/3/09 19:21 COMPSCI 220 - AP G Gimel'farb L-1 42

[~

Example 1.7: Textbook, p.13

n log n running time of the conditional nested loops:

m<2;for j< 1 tondo

if (j =m) then

m<— 2m
for i<—1 tondo
end for

end if
end for

...{const # of operations}

The inner loop is executed k times forj =2, 4, ..., 2k

k<log,n < k+ 1;In total:

T(n)=kn=n|log, n |

3/3/09 19:21 COMPSCI 220 - AP G Gimel'farb L-1

43

[~

Exercise 1.2.1: Textbook, p.14

Conditional nested loops: linear or quadratic running time?
m<1; for j< 1 tondo

if (j=m) thenm<mm-1)

for i <1 to n do ...{const # of operations}

end for
end if
end for

The inner loop is executed only twice, forj =1 andj =n — 1;
In total: 7(n)=2n —> linear running time

3/3/09 19:21 COMPSCI 220 - AP G Gimel'farb L-1 44

[~

