
3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 1

CompSci 220

• Data Structures & Algorithms

• Slides written by AProf Gimel’farb & modified by
Mike Barley

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 2

Contact Details

• Lecturer: Mike Barley

• Office Hours: By arrangement

• City Office: Room 394

• Tamaki Office: TBA

• Email: barley@cs.auckland.ac.nz

• Ph ext: x86133 (almost never in my office)

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 3

Overview to My Part

• This part is all about analysing how long an
algorithm will “run”:
– Intro to basic “tools”

– Applying these tools to sorting algorithms

– Applying these tools to searching algorithms

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 4

Who am I
and why am I teaching this?

• My area of expertise is

Artificial Intelligence

• I have never taught

this part before

• It’s been a number

of decades since I last looked at this area

• However, I have become increasingly interested in this
area: intelligent automatic software configuration

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 5

Division of My Part
• Intro to tools: 5 lectures

• Intro to sorting: 3 1/2 lectures

• Intro to search: 2 1/2 lectures

• On the 12th lecture we rest :^)

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 6

The 5 “Tool” Lectures

• Terms & Definitions & Examples (today)

• Estimating Running Time (also today)

• Complexity Measures (Thursday)

• Computing Simple Time Complexities (Tuesday
next)

• Computing Time Complexities of Recursion (also
Tuesday next)

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 7

Overview of Today’s 1st Half

• Defining basic terms

• Bases for describing & comparing algorithms

• Working thru simple examples

• Exercises

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 8

Pattern for Today’s 1st Half’s
Examples

• Problem description

• Naïve algorithm

• Brief analysis leading to insights about its
complexity

• More Sophisticated algorithm arising from insight

• Brief statement about its complexity

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 9

Some Informal Definitions

• algorithm - a system of uniquely determined rules
that specify successive steps in solving a problem

• program - a clearly specified series of computer
instructions implementing the algorithm

• elementary operation - a computer instruction
executed in a single time unit (computing step)

• running (computing) time of an algorithm - a number
of its computing steps (elementary operations)

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 10

Efficiency of Algorithms: How to
compare algorithms / programs

• by domain of definition – what inputs are legal?

• by correctness – is output correct for each legal
input? (in fact, you need a formal proof!)

• by basic resources – maximum or average
requirements:
– computing time

– memory space

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 11

Example 1: !
"

=
=

1

0
][

n

i
ias

Problem Statement: given an array of n numbers

sum them together.

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 12

Example 1:

Naïve Algorithm:

Algorithm sum (input: array a[n])
 begin s ← 0
 for i ← 0 step i ← i + 1 until n − 1 do

 s ← s + a[i] end for

 return s
 end

!
"

=
=

1

0
][

n

i
ias

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 13

Example 1:

Brief Statement of Complexity:
To sum elements of an array a[n], elementary add

operations are repeated n times ⇒
 Running time T(n) = cn is linear in n

This is as good as it gets.

!
"

=
=

1

0
][

n

i
ias

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 14

Example 2: GCD
• Problem:The greatest common divisor, k =

GCD(n, m) is the greatest positive integer such
that it divides both two positive integers m and n

• Examples: GCD(2, 17) = 1, GCD(6, 9) =
3, GCD(12, 20) = 4

• Naïve Algorithm:A “brute-force” linear
solution: to exhaust all integers from the minimum
of m and n, to the first one that divides both
m and n

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 15

Working out an example

1. 9245 / 7515 = 0?
2. 9245 / 7514 = 0 & 7515 / 7514 = 0?
…
7511. 9245 / 5 = 0 & 7515 / 5 = 0?
• Is it practicable to use such an algorithm to find

GCD(9245, 7515) or what about
GCD(3,787,776,332, 3,555,684776)?

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 16

Naive GCD Analysis

• Let m > n, what do we learn when we divide m
by n?

• If the reminder = 0, what does that tell us?

• If the remainder > 0, what does that tell us?

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 17

Euclid’s Insight

• Euclid’s analysis: if k divides both m and n,
then it divides their difference (n − m if n > m):

• I.e., let n = c * k and m = d * k
then n - m = (c - d) * k
therefore GCD(n, m) = GCD(n-m, m).

• Therefore
GCD(n, m) = GCD(n−m, m)

Why??

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 18

Euclid’s Insight

Since GCD(n,m) = GCD(n-m, m)
then GCD(n,m) = GCD(n-2m, m)

and k divides every difference
when the subtraction is repeated λ
times until n − λm < m

Therefore GCD(n, m) = GCD(n mod m, m)
 where n mod m is the remainder of division of n by m
(in Java/C: n%m, e.g. 13%5 = 3)

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 19

If the remainder > 0,
what does that tell us?

• It tells us a new smaller number that has the
same GCD with m and with n as m and n.

• How can we use this info to our advantage?

• We don’t have to try every integer between the
min of m and n, we need only try the remainders
of the divisions.

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 20

Euclid’s GCD Algorithm

More Sophisticated Algorithm:

GCD(input: int max, min) // assume that max > min
begin if min == 0

then return max
else return GCD(min, max mod min)
endif

end

Is it correct?
How would you prove it?
What is its running time?
How would you determine that?

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 21

Euclid’s GCD ≈clog(n+m) time

GCD(9245,7515) = 5

8 steps vs 7511 steps of the brute-force algorithm!

10 mod 5 = 0 ⇒GCD=545 mod 10 = 5

55 mod 45 = 10540 mod 55 = 45

595 mod 540 = 551730 mod 595 = 540

7515 mod 1730 = 5959245 mod 7515 = 1730

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 22

Example 3: Sums of Subarrays
Problem Statement:
Given an array (a[i]: i = 0,1, …, n – 1) of size n,

compute n − m + 1 sums:

 of all contiguous subarrays of size m
!

"

=
"=+=

1

0
,,0];[][

m

k
mnjkjajs K

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 23

Sums of Subarrays

a[0]

a[11]
.

 .

 .

Worked example:

Let j = 3, m = 4

n = 12, then

s[3] = a[3] + a[4] +

 a[5] + a[6]

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 24

Naïve Algorithm
(2 nested loops)

Algorithm slowsum (input: array a[2m])
 begin array s[m + 1]
 for j ← 0 to m do
 s[j] ← 0
 for k ← 0 to m−1 do
 s[j] ← s[j] + a[k + j]
 end for
 end for
 return s
 end

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 25

Sums of Subarrays

• Complexity : cm operations per subarray; in
total: cm(n − m + 1) operations

• Time is linear if m is fixed and quadratic if m is
growing with n, such as m = 0.5n

)1(1
22

)(22
Tnnc

nn
cnT =!"#$

%

&
'
(

)
+=

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 26

Getting Linear Computing Time

Quadratic time due to reiterated innermost computations:

How many times is a[k] added?
Linear time T(n) = c(m + 2m) = 1.5cn after excluding reiterated

computations:

][]1[...]1[]1[

]1[...]1[][][

mjamjajajs

mjajajajs

++!++++=+

!+++++=

][][][]1[jamjajsjs !++=+

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 27

More sophisticated algorithm

Algorithm fastsum (input: array a[2m])
 begin array s[m + 1]
 compute s[0]

 compute s[j] for j ← 1 to m
return s

 end

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 28

Linear time (2 simple loops)
Algorithm fastsum (input: array a[2m])
 begin array s[m + 1]
 s[0] ← 0
 for k ← 0 to m−1 do

s[0] ← s[0] + a[k]
 end for
 for j ← 1 to m do
 s[j] ← s[j−1] + a[j + m − 1] − a[j − 1]
 end for
 return s
 end

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 29

Computing Time for T(1)=1µs

1.5 sec1.5 msecT(n)Efficient (linear) algorithm

> 23 days2 secT(n)Naïve (quadratic)
algorithm

1,000,000 /
1,000,001

1,000 /
1,001

m /
m + 1

Size / number of subarrays

2,000,0002,000nArray size

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 30

Exercises: Textbook, p.12

1.1.1: Quadratic algorithm with processing time T(n)=cn2 spends 500µsec on 10
data items. What time will be spent on 1000 data items?
Solution: T(10) = c·102 = 500 → c = 500/100 = 5 µsec/item
 → T(1000) = 5·10002 = 5·106 µsec or T(1000)= 5 sec

1.1.2: Algorithms A and B use TA(n) = cAnlog2n and TB(n) = cBn2 elementary
operations for a problem of size n. Find the fastest algorithm for processing n =
 220 data items if A and B spend 10 and 1 operations, respectively, to process
210=1024 items.

 Solution: TA(210) = 10 → cA = 10/(10·210) = 2−10;
 TB(210) = 1 → cB = 1/220 = 2−20

 → TA(220) = 2−10·20 · 220 = 20·210 << TB(220) = 2−20 · 240 = 220 →
Algorithm A is the fastest for n = 220

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 31

2nd Half: Estimating Running Time

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 32

The Heart of Algorithmic
Complexity (AC)

• The Question that AC is normally to answer is: Assume
we know how long it takes for algorithm A to run for n
“items”, approximately how long will it take for 2n items?

• Answering this type of question typically involves
“counting” how many elementary operations occur per
item.

• Unfortunately, we usually need more sophisticated
counting techniques than using one’s fingers.

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 33

Counting Elementary Ops
Algorithm slowsum (input: array a[2m])
 begin array s[m + 1]
 for j ← 0 to m do
 s[j] ← 0
 for k ← 0 to m−1 do
 s[j] ← s[j] + a[k + j]
 end for
 end for
 return s
 end

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 34

Estimated Time to Sum Subarrays

• Ignore data initialisation

• “Brute-force” summing with two nested loops:
 T(n) = m(m +1) = n/2(n/2 + 1)
 = 0.25n2 + 0.5n
• For a large n, T(n) ≅ 0.25n2

– e.g., if n ≥10, the linear term 0.5n ≤ 16.7% of T(n)
– if n ≥ 500, the linear term 0.5n ≤ 0.4% of T(n)

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 35

Quadratic vs linear term

T(n) = 0.25n2 + 0.5n

0.2%5002500002505001000
0.4%2506250062750500
2.0%5025002550100
3.8%2562565050
16.7%5253010

0.5n0.25n2T(n)n

3/3/09 19:20 COMPSCI 220 - AP G Gimel'farb L-1 36

Quadratic Time to Sum Subarrays:
T(n)=0.25n2 + 0.5n

• Factor c = 0.25 is referred to as a “constant of
proportionality”

• An actual value of the factor does not effect the
behaviour of the algorithm for a large n:
– Double value of n → 4-fold increase in T(n):
 T(2n) = 4 T(n)

3/3/09 19:21 COMPSCI 220 - AP G Gimel'farb L-1 37

Running Time: Estimation Rules

• Running time is proportional to the most
significant term in T(n)

• Once a problem size becomes large, the most
significant term is that which has the largest
power of n

• This term increases faster than other terms
which reduce in significance

3/3/09 19:21 COMPSCI 220 - AP G Gimel'farb L-1 38

Running Time: Estimation Rules

• Constants of proportionality depend on the
compiler, language, computer, etc.
– It is useful to ignore the constants when analysing

algorithms.

• Constants of proportionality are reduced by using faster
hardware or minimising time spent on the “inner loop”

– But this would not effect behaviour of an algorithm
for a large problem!

3/3/09 19:21 COMPSCI 220 - AP G Gimel'farb L-1 39

Elementary Operations

• Basic arithmetic operations (+ ; – ; ∗ ; / ; %)

• Basic relational operators (==, !=, >, <, >=, <=)

• Basic Boolean operations (AND,OR,NOT)

• Branch operations, return, …

Input for problem domains (meaning of n):
Sorting: n items Graph / path: n vertices / edges
Image processing: n pixels Text processing: string length

3/3/09 19:21 COMPSCI 220 - AP G Gimel'farb L-1 40

Estimating Running Time

• Simplifying assumptions:
 all elementary statements / expressions take the

same amount of time to execute
• e.g., simple arithmetic assignments
• return

• Loops increase in time linearly as
k⋅Tbody of a loop

 where k is number of times the loop is executed

3/3/09 19:21 COMPSCI 220 - AP G Gimel'farb L-1 41

Estimating Running Time

• Conditional / switch statements like if {condition}
then {const time T1} else {const time T2} are
more complicated (one has to account for branching
frequencies: T = ftrueT1 + (1−ftrue)T2 ≤ max{T1, T2}

• Function calls:
Tfunction = Σ Tstatements in function

• Function composition:
T(f(g(n))) = T(g(n)) + T(f(n))

3/3/09 19:21 COMPSCI 220 - AP G Gimel'farb L-1 42

Example 1.6: Textbook, p.13

Logarithmic time due to an exponential change i =
k, k2, k3, …, km of the loop control in the range
1 ≤ i ≤ n:

 for i = k step i ← ik until n do
… {const # of elementary operations}
end for

 m iterations such that km−1 < n ≤ km ⇒
T(n) = c  logk n 

3/3/09 19:21 COMPSCI 220 - AP G Gimel'farb L-1 43

Example 1.7: Textbook, p.13

n log n running time of the conditional nested loops:
 m ← 2; for j ← 1 to n do
 if (j = m) then
 m ← 2m
 for i←1 to n do …{const # of operations}
 end for
 end if
 end for
The inner loop is executed k times for j = 2, 4, …, 2k;

k < log2n ≤ k + 1; in total: T(n) = kn = n  logk n 

3/3/09 19:21 COMPSCI 220 - AP G Gimel'farb L-1 44

Exercise 1.2.1: Textbook, p.14

Conditional nested loops: linear or quadratic running time?
m ← 1; for j ← 1 to n do
 if (j = m) then m ← m (n − 1)
 for i ←1 to n do …{const # of operations}
 end for
 end if
 end for
The inner loop is executed only twice, for j = 1 and j = n − 1;

in total: T(n)=2n  linear running time

