
Lecture 11 COMPSCI 220 - AP G. Gimel'farb 1

Symbol Table and Hashing

• (Symbol) table is a set of table entries, (k,v)
• Each entry contains:

– a unique key, k, and
– a value (information), v

• Each key uniquely identifies its entry
• Table searching:

– Given: a search key, k
– Find: the table entry, (k,v)

Lecture 11 COMPSCI 220 - AP G. Gimel'farb 2

Symbol Table and Hashing

• Once the entry (k,v) is found:
– its value v, may be updated,
– it may be retrieved, or
– the entire entry, (k,v) , may be removed from the table

• If no entry with key k exists in the table:
– a new entry with k as its key may be inserted to the table

• Hashing:
– a technique of storing values in the tables and
– searching for them in linear, O(n), worst-case and extremely

fast, O(1), average-case time

Lecture 11 COMPSCI 220 - AP G. Gimel'farb 3

Basic Features of Hashing

• Hashing computes an integer, called the hash code,
for each object

• The computation is called the hash function, h(k)
– It maps objects (e.g., keys k) to the array indices (e.g., 0, 1,

…, imax)

• An object with a key k has to be stored at location h(k)
– The hash function must always return a valid index for the

array

Lecture 11 COMPSCI 220 - AP G. Gimel'farb 4

Basic Features of Hashing

• Perfect hash function → a different index value for
every key. But such a function cannot be always found.

• Collision: if two distinct keys, k1 ≠ k2, map to the same
table address, h(k1) = h(k2)

• Collision resolution policy: how to find additional
storage to store one of the collided table entries

• Load factor λ – fraction of the already occupied entries
(m occupied entries in the table of size n → λ = m/n)

Lecture 11 COMPSCI 220 - AP G. Gimel'farb 5

How Common Are Collisions?

• Von Mises Birthday Paradox:

 if there are more than 23 people in a room, the chance
is greater than 50% (!) that two or more of them will
have the same birthday

• In the only 6.3% full table (since 23/365 = 0.063)
there is better than 50% chance of a collision!
– Therefore: 50% chance of collision if λ = 0.063

Lecture 11 COMPSCI 220 - AP G. Gimel'farb 6

How Common Are Collisions?

• Probability QN(n) of no collision:
– that is, that none of the n items collides, being randomly

tossed into a table with N slots:

!

Q
N

(1) =1"
N

N
; Q

N
(2) = Q

N
(1)
N #1

N
"
N(N #1)

N
2

;

Q
N

(3) = Q
N

(2)
N # 2

N
"
N(N #1)(N # 2)

N
3

; ...

Q
N

(n) = Q
N

(n #1)
N # n +1

N
"
N(N #1)...(N # n +1)

N
n

Lecture 11 COMPSCI 220 - AP G. Gimel'farb 7

Probability PN (n)
of One or More Collisions

!

P
N
(n) =1"Q

N
(n) =1"

N!

N
n
(N " n)!

16.4

13.7
11.0
8.2
5.5
2.7
%

0.994160

0.970450
0.891240
0.706330
0.411420
0.116910
P365(n)n

Lecture 11 COMPSCI 220 - AP G. Gimel'farb 8

Open Addressing
with Linear Probing (OALP)

• The simplest collision resolution policy:
– Successive search for the first empty entry at a lower location
– If no such entry, then “wrap around” the table

• Lemma 3.33: The average number of probes for successful,
Tss(λ), and unsuccessful, Tus(λ), search in a hash table
with load factor λ = m/n is, respectively,

 and

• Drawbacks: clustering of keys in the table

!

Tss(") = 0.5 1+
1

1# "

$

%
&

'

(
)

!

Tus(") = 0.5 1+
1

1# "

$

%
&

'

(
)

2$

%
& &

'

(
))

Lecture 11 COMPSCI 220 - AP G. Gimel'farb 9

 OALP
example:
n = 5..7
N = 10

Lecture 11 COMPSCI 220 - AP G. Gimel'farb 10

Open Addressing
with Double Hashing (OADH)

• Better collision resolution policy reducing the clustering:
– hash the collided key again with a different hash function

– use the result of the second hashing as an increment for
probing table locations (including wraparound)

• Lemma 3.35: Assuming that OADH provides nearly uniform
hashing, the average number of probes for successful,
Tss(λ), and unsuccessful, Tus(λ), search is, respectively,

 and

!

Tss(") =
1

"
ln

1

1# "

$

%
&

'

(
)

!

T
us
(") =

1

1# "

Lecture 11 COMPSCI 220 - AP G. Gimel'farb 11

OADH
example:
n = 5..7
N = 10

Lecture 11 COMPSCI 220 - AP G. Gimel'farb 12

Two More Collision Resolution
Techniques

• Open addressing has a problem if significant
number of items need to be deleted:
– Logically deleted items must remain in the table until

the table can be re-organised

• Two techniques to attenuate this drawback:
– Chaining

– Hash bucket

Lecture 11 COMPSCI 220 - AP G. Gimel'farb 13

Chaining and Hash Bucket

• Chaining: all keys collided at a single hash
address are placed on a linked list, or chain,
started at that address

• Hash bucket: a big hash table is divided into a
number of small sub-tables, or buckets
– the hush function maps a key into one of the buckets

– the keys are stored in each bucket sequentially in
increasing order

Lecture 11 COMPSCI 220 - AP G. Gimel'farb 14

Choosing a hash function

• Four basic methods:
– division, folding, middle-squaring, and truncation

• Division:
– choose a prime number as the table size n
– convert keys, k, into integers

– use the remainder h(k) = k mod n as a hash value of k
– get the double hashing decrement using the quotient

Δk = max{1, (k/n) mod n}

Lecture 11 COMPSCI 220 - AP G. Gimel'farb 15

Choosing a hash function

• Folding:
– divide the integer key, k, into sections
– add, subtract, and / or multiply them together for combining

into the final value, h(k)
Ex.: k = 013402122 → 013, 402, 122 → h(k) = 013 + 402 + 122 = 537

• Middle-squaring:
– choose a middle section of the integer key, k
– square the chosen section
– use a middle section of the result as h(k)
Ex.: k = 013402122 → mid: 402 → 4022=161404 → mid: h(k) = 6140

Lecture 11 COMPSCI 220 - AP G. Gimel'farb 16

Choosing a hash function

Truncation:
– delete part of the key, k
– use the remaining digits (bits, characters) as h(k)

Example:
 k = 013402122 → last 3 digits: h(k) = 122
• Notice that truncation does not spread keys uniformly

into the table; thus it is often used in conjunction with
other methods

Lecture 11 COMPSCI 220 - AP G. Gimel'farb 17

Efficiency of Search in Hash Tables

Load factor λ: if a table of size n has exactly m occupied entries,
then

• Average numbers of probe addresses examined for a
successful (Tss(λ)) and unsuccessful (Tus(λ)) search:

λ1/(1−λ)0.5(1+(1/(1−λ))2)Tus(λ)

1+λ/2(1/λ)ln(1/(1−λ))0.5(1+1/(1−λ))Tss(λ)
SCOADH: λ < 0.7OALP: λ < 0.7

SC − separate chaining; λ may be higher than 1

n
më =

Lecture 11 COMPSCI 220 - AP G. Gimel'farb 18

Table Data Type Representations:
Comparative Performance

O(n log n)**)O(n)O(n)Enumerate
O(1)O(log n)O(n)Delete

O(log n)
O(log n)

O(1)
O(1)

AVL tree

O(1)O(n)Insert
O(1)O(log n)Search*)

O(1)O(1)Is full?
O(n)O(n)Initialize

Hash tableSorted array
RepresentationOperation

*) also: Retrieve, Update **)To enumerate a hash table, entries must
first be sorted in ascending order of keys that takes O(n log n) time

