

Symbol Table and Hashing

- (Symbol) **table** is a set of table entries, (k,v)
- Each entry contains:
 - a unique key, k, and
 - a value (information), ν
- Each key uniquely identifies its entry
- Table searching:
 - Given: a search key, k
 - Find: the table entry, (k,v)

Symbol Table and Hashing

- Once the entry (k,v) is found:
 - its value v, may be updated,
 - it may be retrieved, or
 - the entire entry, (k,v), may be removed from the table
- If no entry with key *k* exists in the table:
 - a new entry with k as its key may be inserted to the table

Hashing:

- a technique of storing values in the tables and
- searching for them in linear, O(n), worst-case and extremely fast, O(1), average-case time

Basic Features of Hashing

- Hashing computes an integer, called the hash code, for each object
- The computation is called the hash function, h(k)
 - It maps objects (e.g., keys k) to the array indices (e.g., $0, 1, \dots, i_{max}$)
- An object with a key k has to be stored at location h(k)
 - The hash function must always return a valid index for the array

Basic Features of Hashing

- Perfect hash function → a different index value for every key. But such a function cannot be always found.
- Collision: if two distinct keys, $k_1 \neq k_2$, map to the same table address, $h(k_1) = h(k_2)$
- Collision resolution policy: how to find additional storage to store one of the collided table entries
- Load factor λ fraction of the already occupied entries (m occupied entries in the table of size $n \rightarrow \lambda = m/n$)

How Common Are Collisions?

Von Mises Birthday Paradox:

if there are more than 23 people in a room, the chance is greater than 50% (!) that two or more of them will have the same birthday

- In the only 6.3% full table (since 23/365 = 0.063) there is better than 50% chance of a collision!
 - Therefore: 50% chance of collision if $\lambda = 0.063$

How Common Are Collisions?

• Probability $Q_N(n)$ of no collision:

 that is, that none of the n items collides, being randomly tossed into a table with N slots:

$$Q_{N}(1) = 1 = \frac{N}{N}; Q_{N}(2) = Q_{N}(1) \frac{N-1}{N} = \frac{N(N-1)}{N^{2}};$$

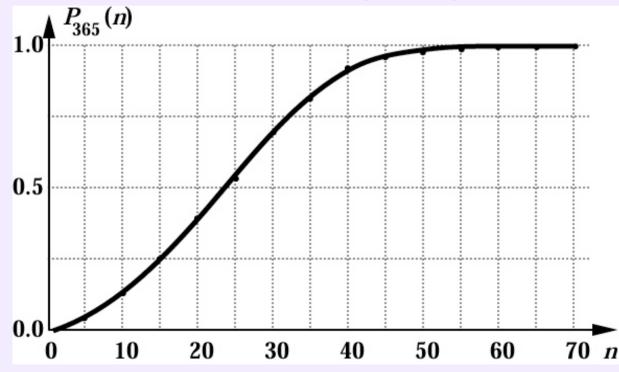
$$Q_{N}(3) = Q_{N}(2) \frac{N-2}{N} = \frac{N(N-1)(N-2)}{N^{3}}; ...$$

$$Q_{N}(n) = Q_{N}(n-1) \frac{N-n+1}{N} = \frac{N(N-1)...(N-n+1)}{N^{n}}$$

Probability $P_N(n)$ of One or More Collisions

$$P_{N}(n) = 1 - Q_{N}(n) = 1 - \frac{N!}{N^{n}(N-n)!}$$
(n) 1.0 $P_{365}(n)$

n	%	$P_{365}(n)$
10	2.7	0.1169
20	5.5	0.4114
30	8.2	0.7063
40	11.0	0.8912
50	13.7	0.9704
60	16.4	0.9941



Lecture 11

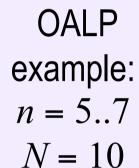
COMPSCI 220 - AP G. Gimel'farb

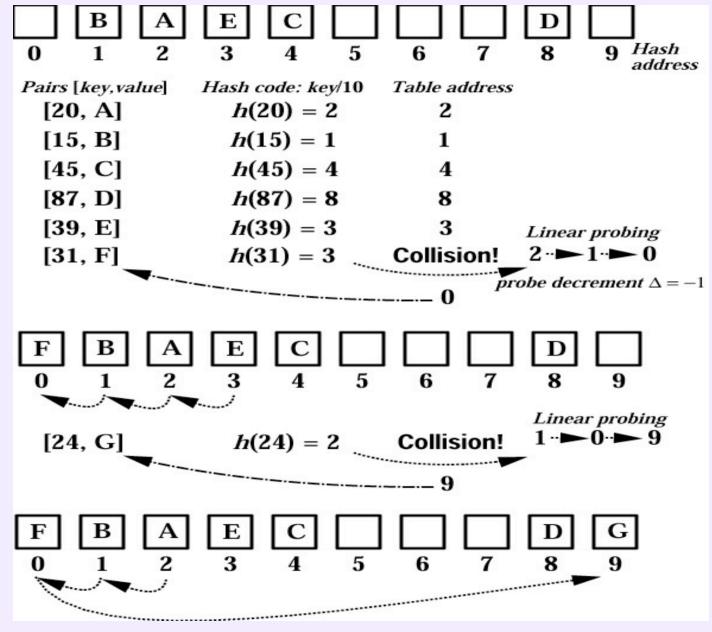
Open Addressing with Linear Probing (OALP)

- The simplest collision resolution policy:
 - Successive search for the first empty entry at a lower location
 - If no such entry, then "wrap around" the table
- **Lemma 3.33**: The average number of probes for successful, $T_{\rm ss}(\lambda)$, and unsuccessful, $T_{\rm us}(\lambda)$, search in a hash table with load factor $\lambda = m/n$ is, respectively,

$$T_{\rm ss}(\lambda) = 0.5 \left(1 + \frac{1}{1 - \lambda}\right)$$
 and $T_{\rm us}(\lambda) = 0.5 \left(1 + \left(\frac{1}{1 - \lambda}\right)^2\right)$

Drawbacks: clustering of keys in the table

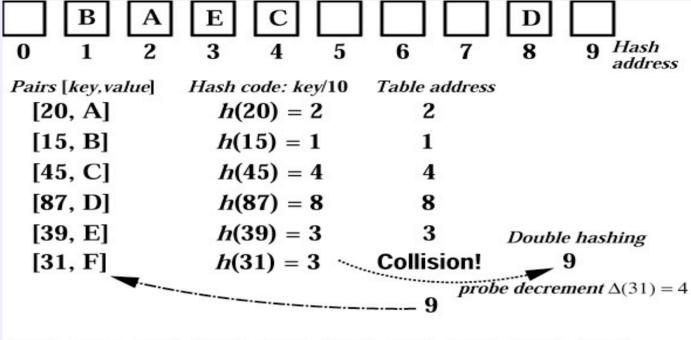




Open Addressing with Double Hashing (OADH)

- Better collision resolution policy reducing the clustering:
 - hash the collided key again with a different hash function
 - use the result of the second hashing as an increment for probing table locations (including wraparound)
- **Lemma 3.35**: Assuming that OADH provides nearly uniform hashing, the average number of probes for successful, $T_{\rm ss}(\lambda)$, and unsuccessful, $T_{\rm us}(\lambda)$, search is, respectively,

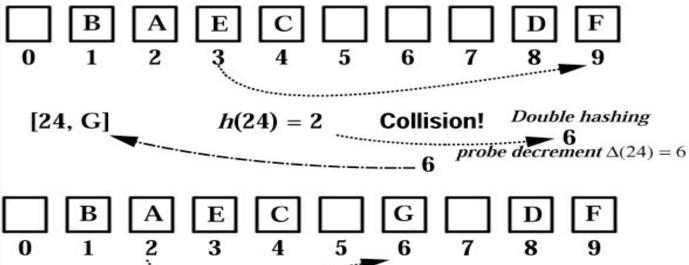
$$T_{\rm ss}(\lambda) = \frac{1}{\lambda} \ln \left(\frac{1}{1 - \lambda} \right)$$
 and $T_{\rm us}(\lambda) = \frac{1}{1 - \lambda}$



OADH example:

$$n = 5..7$$

$$N = 10$$



Two More Collision Resolution Techniques

- Open addressing has a problem if significant number of items need to be deleted:
 - Logically deleted items must remain in the table until the table can be re-organised
- Two techniques to attenuate this drawback:
 - Chaining
 - Hash bucket

Chaining and Hash Bucket

- Chaining: all keys collided at a single hash address are placed on a linked list, or chain, started at that address
- Hash bucket: a big hash table is divided into a number of small sub-tables, or buckets
 - the hush function maps a key into one of the buckets
 - the keys are stored in each bucket sequentially in increasing order

Choosing a hash function

Four basic methods:

division, folding, middle-squaring, and truncation

Division:

- choose a prime number as the table size n
- convert keys, k, into integers
- use the remainder $h(k) = k \mod n$ as a hash value of k
- get the double hashing decrement using the quotient

$$\Delta k = \max\{1, (k/n) \bmod n\}$$

Choosing a hash function

Folding:

- divide the integer key, k, into sections
- add, subtract, and / or multiply them together for combining into the final value, h(k)

Ex.: $k = 013402122 \rightarrow 013, 402, 122 \rightarrow h(k) = 013 + 402 + 122 = 537$

Middle-squaring:

- choose a middle section of the integer key, k
- square the chosen section
- use a middle section of the result as h(k)

Ex.: $k = 013402122 \rightarrow \text{mid}$: $402 \rightarrow 402^2 = 161404 \rightarrow \text{mid}$: h(k) = 6140

Choosing a hash function

Truncation:

- delete part of the key, k
- use the remaining digits (bits, characters) as h(k)

Example:

$$k = 013402122 \rightarrow last 3 digits: h(k) = 122$$

 Notice that truncation does not spread keys uniformly into the table; thus it is often used in conjunction with other methods

Efficiency of Search in Hash Tables

Load factor λ : if a table of size n has exactly m occupied entries, then $\ddot{e} = \frac{m}{n}$

• Average numbers of probe addresses examined for a successful $(T_{\rm ss}(\lambda))$ and unsuccessful $(T_{\rm us}(\lambda))$ search:

	OALP: $\lambda < 0.7$	OADH: $\lambda < 0.7$	SC
$T_{\rm ss}(\lambda)$	$0.5(1+1/(1-\lambda))$	$(1/\lambda)\ln(1/(1-\lambda))$	$1+\lambda/2$
$T_{\rm us}(\lambda)$	$0.5(1+(1/(1-\lambda))^2)$	$1/(1-\lambda)$	λ

SC – separate chaining; λ may be higher than 1

Table Data Type Representations: Comparative Performance

Operation	Representation			
	Sorted array	AVL tree	Hash table	
Initialize	O(n)	<i>O</i> (1)	O(n)	
Is full?	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)	
Search*)	$O(\log n)$	$O(\log n)$	<i>O</i> (1)	
Insert	O(n)	$O(\log n)$	<i>O</i> (1)	
Delete	O(n)	$O(\log n)$	<i>O</i> (1)	
Enumerate	O(n)	O(n)	$O(n \log n)^{**}$	

^{*)} also: **Retrieve**, **Update** **) To enumerate a hash table, entries must first be sorted in ascending order of keys that takes $O(n \log n)$ time

