SIS
@ Binary Search Tree

* Left-to-right ordering in a tree:
— for every node x, the values of all the keys k. in the
left subtree are smaller than the key k.., in x and

— the values of all the keys &, In the right subtree are
larger than the key in x:

i ; > kparent kleft < kparent < kright
kleft bk

right

Lecture 10 COMPSCI 220 - AP G. Gimel'farb 1

[~



27272
@ Binary Search Tree

Compare the left—right ordering in a BST to the bottom—up

ordering in a heap where the key of each parent node is
greater than or equal to the key of any child node

AN

can’ in the
It lt ce f If‘t bt

Lecture 10 COMPSCI 220 - AP G. Gimel'farb 2




27272
@ Binary Search Tree

* No duplicates! (attach them all to a single item)
» Basic operations:
— find: find a given search key or detect that it is not
present in the tree
— insert: insert a node with a given key to the tree if
it is not found
— findMin: find the minimum key
— findMax: find the maximum key
— remove: remove a node with a given key and
restore the tree if necessary

Lecture 10 COMPSCI 220 - AP G. Gimel'farb 3

[~



find s a successful
binary search
ry o 8<3? @

insert creates a new ;
node at the point @ §<5?

at which an

unsuccessful ® @ s

SearCh StOpS found node
Lecture 10 COMPSCI 220 - AP G. Gimel'farb

BST: find / insert operations

4

inserted node

[~




Binary Search Trees:
findMin / findMax / sort

 findMin/findMax are extremely simple:

— starting at the root, branch repeatedly left (findMin) or right
(findMax) as long as a corresponding child exists

* The root of the tree plays a role of the pivot in QuickSort

* As in QuickSort, the recursive traversal of the tree can
sort the items:

— First visit the left subtree
— Then visit the root
— Then visit the right subtree

Lecture 10 COMPSCI 220 - AP G. Gimel'farb 5

[~



Binary Search Tree: running time

Time for find, insert, findMin, findMax, sort a single item:
O(log n) average-case and O(n) worst-case complexity

(just as in QuickSort)

BST of the depth about log #

Lecture 10 COMPSCI 220 - AP G. Gimel'farb 6

[~



Lecture 10

BST of the depth about »

COMPSCI 220 - AP G. Gimel'farb

[~



Binary Search Tree: node removal

°* remove is the most complex operation:

— The removal may disconnect parts of the tree

— The reattachment of the tree must maintain the
binary search tree property

— The reattachment should not make the tree
unnecessarily deeper as the depth specifies the
running time of the tree operations

Lecture 10 COMPSCI 220 - AP G. Gimel'farb

[~



BST: how to remove a node

» |f the node & to be removed is a leaf, delete it

+ |f the node & has only one child, remove it after linking
its child to its parent node

* Thus, removeMin and removeMax are not
complex because the affected nodes are either leaves
or have only one child

Lecture 10 COMPSCI 220 - AP G. Gimel'farb 9

[~



D)
@ BST: how to remove a node

If the node £ to be removed has two children:

 Replace the item in this node with the item with
the smallest key in the right subtree

— The smallest node is easily found as in findMin

» Remove the latter node from the right subtree

— This removal is very simple as the node with the
smallest key does not have a left child

Lecture 10 COMPSCI 220 - AP G. Gimel'farb

[~



| BST: an Example of Node Removal

remove 10

minimum in the
right subtree

Lecture 10 COMPSCI 220 - AP G. Gimel'farb 11




27272

2

FTHE UNIVERSITY OF AUCKLANG

Average-Case Performance of
Binary Search Tree Operations

Internal path length of a binary tree is the sum of the
depths of its nodes:

Average internal path length 7(7) of the binary search

>
O

trees with 7 nodes is O(n log n)

Lecture 10

COMPSCI 220 - AP G. Gimel'farb

PL=0+1+1+2+2+3+3+3

12

[~



Average-Case Performance of
Binary Search Tree Operations

* |f the n-node tree contains the root, the i-node
left subtree, and the (n—i—1)-node right subtree:

I(n)=n-1+10G)+ T(n-i-1)

— The root contributes 1 to the path length of each of
the other » — 1 nodes

* Averaging over all i; 0 <i <n — the same
recurrence as for QuickSort:
T(n)=(n-1)+2(TO)+TA)+...+ T(n-1))
so that 7(n) Is O(n log n)

Lecture 10 COMPSCI 220 - AP G. Gimel'farb 13

[~



27272

@ Average-Case Performance of
= Binary Search Tree Operations

» Therefore, the average complexity of find or
Insert operations is 7(n)/n = O(log n)

» For n? pairs of random insert / remove
operations, an expected depth is O(n°?)

* |n practice, for random input, all operations are
about O(log n) but the worst-case performance
can be O(n)!

Lecture 10 COMPSCI 220 - AP G. Gimel'farb

14

[~



D)
@ Balanced Trees

» Balancing ensures that the internal path lengths are
close to the optimal » log n

 The average-case and the worst-case complexity is
about O(log ») due to their balanced structure

 But, insert and remove operations take more time on
average than for the standard binary search trees

— AVL tree (1962: Adelson-Velskii, Landis)
— Red-black and AA-tree
— B-tree (1972: Bayer, McCreight)

Lecture 10 COMPSCI 220 - AP G. Gimel'farb 15

[~



D)
@ AVL Tree

* An AVL tree is a binary search tree with the following
additional balance property:

— for any node in the tree, the height of the left and
right subtrees can differ by at most 1

— the height of an empty subtree is —1

» The AVL-balance guarantees that the AVL tree of
height /4 has at least ¢’ nodes, ¢ > 1, and the

maximum depth of an n-item tree is about log »

Lecture 10 COMPSCI 220 - AP G. Gimel'farb

[~



D)
@ AVL Tree

* Let S, be the size of the smallest AVL tree of the
height 7 (it is obvious that §,= 1, S, = 2)

* This tree has two subtrees of the height 2—1 and
h-2, respectively, by the AVL-balance condition

» ltfollows that S, =S, +S, ,+1,0orS=F, ;-1
where F’; is the i-th Fibonacci number

Lecture 10 COMPSCI 220 - AP G. Gimel'farb 17

[~



D)
@ AVL Tree

« Therefore, for each n-node AVL tree:

n=S$, =(¢"/5)-1

where @ = (1+ \/51/2 =1.618, or

h=<1.44log,(n+1)-1.328

 The worst-case height is at most 44% more than the
minimum height of the binary trees

Lecture 10 COMPSCI 220 - AP G. Gimel'farb

18

[~



