
Lecture 10 COMPSCI 220 - AP G. Gimel'farb 1

Binary Search Tree

• Left-to-right ordering in a tree:
– for every node x, the values of all the keys kleft in the

left subtree are smaller than the key kparent in x and

– the values of all the keys kright in the right subtree are

larger than the key in x:

kparentx
krightkleft

kleft < kparent < kright

Lecture 10 COMPSCI 220 - AP G. Gimel'farb 2

Binary Search Tree

Compare the left−right ordering in a BST to the bottom−up
ordering in a heap where the key of each parent node is
greater than or equal to the key of any child node

Lecture 10 COMPSCI 220 - AP G. Gimel'farb 3

Binary Search Tree

• No duplicates! (attach them all to a single item)
• Basic operations:
– find: find a given search key or detect that it is not

present in the tree
– insert: insert a node with a given key to the tree if

it is not found
– findMin: find the minimum key
– findMax: find the maximum key
– remove: remove a node with a given key and

restore the tree if necessary

Lecture 10 COMPSCI 220 - AP G. Gimel'farb 4

BST: find / insert operations

find is a successful
 binary search

insert creates a new
node at the point
at which an

 unsuccessful
 search stops

Lecture 10 COMPSCI 220 - AP G. Gimel'farb 5

Binary Search Trees:
findMin / findMax / sort

• findMin/findMax are extremely simple:
– starting at the root, branch repeatedly left (findMin) or right

(findMax) as long as a corresponding child exists

• The root of the tree plays a role of the pivot in QuickSort
• As in QuickSort, the recursive traversal of the tree can

sort the items:
– First visit the left subtree
– Then visit the root
– Then visit the right subtree

Lecture 10 COMPSCI 220 - AP G. Gimel'farb 6

Binary Search Tree: running time

Time for find, insert, findMin, findMax, sort a single item:
O(log n) average-case and O(n) worst-case complexity

 (just as in QuickSort)

 BST of the depth about log n

Lecture 10 COMPSCI 220 - AP G. Gimel'farb 7

BST of the depth about n

Lecture 10 COMPSCI 220 - AP G. Gimel'farb 8

Binary Search Tree: node removal

• remove is the most complex operation:

– The removal may disconnect parts of the tree

– The reattachment of the tree must maintain the
binary search tree property

– The reattachment should not make the tree
unnecessarily deeper as the depth specifies the
running time of the tree operations

Lecture 10 COMPSCI 220 - AP G. Gimel'farb 9

BST: how to remove a node

• If the node k to be removed is a leaf, delete it

• If the node k has only one child, remove it after linking
its child to its parent node

• Thus, removeMin and removeMax are not
complex because the affected nodes are either leaves
or have only one child

Lecture 10 COMPSCI 220 - AP G. Gimel'farb 10

BST: how to remove a node

If the node k to be removed has two children:

• Replace the item in this node with the item with
the smallest key in the right subtree
– The smallest node is easily found as in findMin

• Remove the latter node from the right subtree
– This removal is very simple as the node with the

smallest key does not have a left child

Lecture 10 COMPSCI 220 - AP G. Gimel'farb 11

BST: an Example of Node Removal

Lecture 10 COMPSCI 220 - AP G. Gimel'farb 12

Average-Case Performance of
Binary Search Tree Operations

Internal path length of a binary tree is the sum of the
depths of its nodes:

 IPL = 0 + 1 + 1 + 2 + 2 + 3 + 3 + 3

 = 15

Average internal path length T(n) of the binary search
trees with n nodes is O(n log n)

depth 0
1

2
3

Lecture 10 COMPSCI 220 - AP G. Gimel'farb 13

Average-Case Performance of
Binary Search Tree Operations

• If the n-node tree contains the root, the i-node
left subtree, and the (n−i−1)-node right subtree:

T(n) = n − 1 + T(i) + T(n−i−1)
– The root contributes 1 to the path length of each of

the other n − 1 nodes
• Averaging over all i; 0 ≤ i < n → the same

recurrence as for QuickSort:

 so that T(n) is O(n log n)

!

T(n) = (n "1) + 2

n
T(0) + T(1) + ... + T(n "1)()

Lecture 10 COMPSCI 220 - AP G. Gimel'farb 14

Average-Case Performance of
Binary Search Tree Operations

• Therefore, the average complexity of find or
insert operations is T(n) ⁄ n = O(log n)

• For n2 pairs of random insert / remove
operations, an expected depth is O(n0.5)

• In practice, for random input, all operations are
about O(log n) but the worst-case performance
can be O(n)!

Lecture 10 COMPSCI 220 - AP G. Gimel'farb 15

Balanced Trees

• Balancing ensures that the internal path lengths are
close to the optimal n log n

• The average-case and the worst-case complexity is
about O(log n) due to their balanced structure

• But, insert and remove operations take more time on
average than for the standard binary search trees
– AVL tree (1962: Adelson-Velskii, Landis)
– Red-black and AA-tree
– B-tree (1972: Bayer, McCreight)

Lecture 10 COMPSCI 220 - AP G. Gimel'farb 16

AVL Tree

• An AVL tree is a binary search tree with the following
additional balance property:

– for any node in the tree, the height of the left and
right subtrees can differ by at most 1

– the height of an empty subtree is −1
• The AVL-balance guarantees that the AVL tree of

height h has at least ch nodes, c > 1, and the
maximum depth of an n-item tree is about logcn

Lecture 10 COMPSCI 220 - AP G. Gimel'farb 17

AVL Tree

• Let Sh be the size of the smallest AVL tree of the
height h (it is obvious that S0 = 1, S1 = 2)

• This tree has two subtrees of the height h−1 and

h−2, respectively, by the AVL-balance condition

• It follows that Sh = Sh−1+Sh−2+1, or Sh= Fh+3 − 1
where Fi is the i-th Fibonacci number

Lecture 10 COMPSCI 220 - AP G. Gimel'farb 18

AVL Tree

• Therefore, for each n-node AVL tree:

• The worst-case height is at most 44% more than the
minimum height of the binary trees

!

 n " S
h
$ h+3 5() %1

where $ = 1+ 5() 2 &1.618, or

 h '1.44 log2(n +1) %1.328

