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Lower Bound for Sorting Complexity

• Theorem 2.30: Any algorithm that sorts by comparing only
pairs of elements must use at least

log2(n!) ≅ n log2 n − 1.44n
   comparisons in the worst case (that is, for some “worst”

input sequence) and in the average case
– Stirling's approximation of the factorial (n!):
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Decision Tree for Sorting n Items

Decision tree for n =3:
• i:j - a comparison of

ai and aj

• ijk - a sorted array
(ai aj ak)

• n! permutations ⇒ 
n! leaves

Sorting in descending
  order of the numbers
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Decision Tree for Sorting n Items

• Decision tree for n = 3: an array A={a1, a2, a3}
• Example: {a1=35, a2=10, a3=17}

– Comparison 1:2  (35 > 10) → left branch   a1 > a2

– Comparison 2:3  (10 < 17) → right branch a2 < a3

– Comparison 1:3  (35 > 17) → left branch   a1 > a3

• Sorted array 132 → {a1=35, a3=17, a2=10}
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Decision Tree

Lemma: Decision tree of height h has Lh ≤ 2h leaves

Proof by mathematical induction:
· h = 1: any tree of height 1 has L1 ≤ 21 leaves

· h−1 → h:
· Let any tree of height h − 1 have Lh−1 ≤ 2h−1 leaves

· Any tree of height h consists of a root and two subtrees of
height at most h − 1

· Therefore,   Lh =  Lh−1 + Lh−1 ≤ 2h−1 + 2h−1 = 2h
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Worst-Case Complexity of Sorting

• Theorem 2.32: The worst-case complexity of sorting
n items by pairwise comparisons is  Ω(n log n)

• Proof:
– Any decision tree of height h has at most 2h leaves (see

Lemma, Slide 4)

– The least height h such that Lh = 2h ≥ n! leaves is

h ≥ log2( n!) ≅ n log2 n − 1.44 n
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Bucket Sort (Exercise 2.6.2)

Let all integers to sort in an array a of size n be in the
fixed range [1,…,qmax]

1. Introduce a counter array t of size qmax and set its
entries initially to zero

2. Scan through a to accumulate in the counters t[i];
i = 0,…,qmax−1, how many times each item i + 1
is found in a

3. Loop through 0 ≤  i  ≤ qmax−1 and output t[i]
copies of integer i + 1 at each step
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Bucket Sort (Exercise 2.6.2)

Worst- and average-case time complexity of bucket
sort is Θ(n) provided that qmax is fixed

–  qmax + n elementary operations to first set t to
zero and then count how many times t[i] each
item i + 1 is found in a

–  qmax + n elementary operations to successively
output the sorted array a by repeating t[i] times
each entry i + 1

Theorem 2.30 does not hold under additional constraints!
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Data Search: Efficiency

• Data record  Specific key

• Goal: to find all records with keys matching a
given search key

• Purpose:
– to access information in the record for processing, or

– to update information in the record, or

– to insert a new record or to delete the record
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Types of Search

• Static search: unalterable databases
– Given a data structure D of records and a search

key k, either return the record associated with k in D
or indicate that k is not found, without altering D

– If k occurs more than once, return any occurrence
• Examples: searching a phone directory or a dictionary

• Dynamic search: alterable databases
– Records may be inserted or removed
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Static Sequential Search (SSS)

• Lemma 3.3: Both successful and unsuccessful SSS
have worst- and average-case complexity Θ(n)
– Proof: the unsuccessful search explores each of n

keys, so the worst- and average-case time is Θ(n);
the successful search examines n keys in the worst
case and n/2 on the average, which is still Θ(n)

• Sequential search is the only option for an unsorted array
and for linked-list data structures of records
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Static Binary Search O(log n)

• Ordered array: key0 < key1 < … < keyn−1

• Compare the search key with the record keyi at
the middle position i = (n−1)/2
– if key = keyi, return i
– if key < keyi or key < keyi, then it must be in

the 1st or in the 2nd half of the array, respectively

• Apply the previous two steps to the chosen half of the
array iteratively (repeating halving principle)
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Pseudocode of Binary Search

begin BinarySearch (an integer array a of size n, a search key)
       low ← 0;   high ← n − 1
       while low ≤ high do
             middle ← ( low + high ) / 2
             if a[ middle ] < key  then  low  ←  middle + 1
             else if a[ middle ] > key then  high  ←  middle − 1
             else return  middle end if
       end while
       return ItemNotFound
end BinarySearch
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Binary
search:
detailed
analysis
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Comparison
structure:
the binary

(search) tree
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Worst-Case Complexity Θ(log n)
of Binary Search

• Let n = 2k − 1; k = 1,2,…, then the binary tree
is complete (each internal node has 2 children)
– The tree height is k −1 since the tree is balanced
– Each tree level l contains 2l nodes for l = 0 (the

root), 1, …, k − 2, k −1 (the leaves)

•  l + 1 comparisons to find a key of level l
• The worst case: k = log2(n + 1) comparisons

so that the time complexity is Θ(log n)
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Average-Case Complexity Θ(log n)
of Binary Search

Lemma 3.9: The average-case complexity of binary
search in a balanced binary tree is Θ(log n)

Proof:  k = log2(n + 1) − 1 is the depth of the tree
    At least half of the nodes in the tree have the depth

at least k − 1
   The average depth over all nodes is at least k/2

which is Ω(log n)
Expected search time for an arbitrary binary search tree

is equal to the average tree height Θ(log n)
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Interpolation Search

• Improvement of binary search if it is possible to guess
where the desired key sits

– Example: the search for C or X in a phone directory

– Practical if the sorted keys are almost uniformly distributed over
their range

• BS: the middle position

• IS: the predicted position
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Dynamic Binary Tree Search

• Static binary search is converted into a dynamic
binary tree search by allowing for insertion and
deletion of data records

• Binary tree search makes actual use of the
binary search tree data structure
– The data structure is constructed by linking data

records

– Any node of a binary search tree may be removed


