Lower Bound for Sorting Complexity

- Theorem 2.30: Any algorithm that sorts by comparing only pairs of elements must use at least

$$
\left\lceil\log _{2}(n!)\right\rceil \cong n \log _{2} n-1.44 n
$$

comparisons in the worst case (that is, for some "worst" input sequence) and in the average case

- Stirling's approximation of the factorial ($n!$):

$$
1 \cdot 2 \cdot \ldots \cdot n \equiv n!\geq(n / e)^{n} \sqrt{2 \pi n} \approx 2.5 n^{n+0.5} e^{-n}
$$

Decision Tree for Sorting \boldsymbol{n} Items

Decision tree for $n=3$:

- i:j - a comparison of a_{i} and a_{j}
- ijk - a sorted array $\left(a_{i} a_{j} a_{k}\right)$
- n ! permutations \Rightarrow n ! leaves
Sorting in descending order of the numbers

Decision Tree for Sorting \boldsymbol{n} Items

- Decision tree for $n=3$: an array $\boldsymbol{A}=\left\{a_{1}, a_{2}, a_{3}\right\}$
- Example: $\left\{a_{1}=35, a_{2}=10, a_{3}=17\right\}$
- Comparison 1:2 $(35>10) \rightarrow$ left branch $a_{1}>a_{2}$
- Comparison 2:3 $(10<17) \rightarrow$ right branch $a_{2}<a_{3}$
- Comparison 1:3 $(35>17) \rightarrow$ left branch $a_{1}>a_{3}$
- Sorted array $132 \rightarrow\left\{a_{1}=35, a_{3}=17, a_{2}=10\right\}$

Decision Tree

Lemma: Decision tree of height h has $L_{h} \leq 2^{h}$ leaves

Proof by mathematical induction:

- $h=1$: any tree of height 1 has $L_{1} \leq 2^{1}$ leaves
- $h-1 \rightarrow h$:
- Let any tree of height $h-1$ have $L_{h-1} \leq 2^{h-1}$ leaves
- Any tree of height h consists of a root and two subtrees of height at most $h-1$
- Therefore, $L_{h}=L_{h-1}+L_{h-1} \leq 2^{h-1}+2^{h-1}=2^{h}$

Worst-Case Complexity of Sorting

- Theorem 2.32: The worst-case complexity of sorting n items by pairwise comparisons is $\Omega(n \log n)$
- Proof:
- Any decision tree of height h has at most 2^{h} leaves (see Lemma, Slide 4)
- The least height h such that $L_{h}=2^{h} \geq n$! leaves is

$$
h \geq \log _{2}(n!) \cong n \log _{2} n-1.44 n
$$

Bucket Sort (Exercise 2.6.2)

Let all integers to sort in an array a of size n be in the fixed range $\left[1, \ldots, q_{\max }\right]$

1. Introduce a counter array t of size $q_{\max }$ and set its entries initially to zero
2. Scan through a to accumulate in the counters $t[i]$; $i=0, \ldots, q_{\text {max }}-1$, how many times each item $i+1$ is found in a
3. Loop through $0 \leq i \leq q_{\max }-1$ and output $t[i]$ copies of integer $i+1$ at each step

Bucket Sort (Exercise 2.6.2)

Worst- and average-case time complexity of bucket sort is $\Theta(n)$ provided that $q_{\max }$ is fixed

- $\quad q_{\text {max }}+n$ elementary operations to first set t to zero and then count how many times $t[i]$ each item $i+1$ is found in a
- $\quad q_{\text {max }}+n$ elementary operations to successively output the sorted array a by repeating $t[i]$ times each entry $i+1$
Theorem 2.30 does not hold under additional constraints!

Data Search: Efficiency

- Data record \Leftrightarrow Specific key
- Goal: to find all records with Keys matching a given search key
- Purpose:
- to access information in the record for processing, or
- to update information in the record, or
- to insert a new record or to delete the record

Types of Search

- Static search: unalterable databases
- Given a data structure D of records and a search key k, either return the record associated with k in D or indicate that k is not found, without altering D
- If k occurs more than once, return any occurrence
- Examples: searching a phone directory or a dictionary
- Dynamic search: alterable databases
- Records may be inserted or removed

Static Sequential Search (SSS)

- Lemma 3.3: Both successful and unsuccessful SSS have worst- and average-case complexity $\Theta(n)$
- Proof: the unsuccessful search explores each of n keys, so the worst- and average-case time is $\Theta(n)$; the successful search examines n keys in the worst case and $n / 2$ on the average, which is still $\Theta(n)$
- Sequential search is the only option for an unsorted array and for linked-list data structures of records

Static Binary Search $O(\log n)$

- Ordered array: $\mathbf{k e y}_{0}<\boldsymbol{k e y}_{1}<\ldots<\boldsymbol{k e y}_{n-1}$
- Compare the search $\mathbf{k e y}$ with the record $\mathbf{k e y} \boldsymbol{y}_{i}$ at the middle position $i=\lfloor(n-1) / 2\rfloor$
- if $\mathbf{k e y}=\boldsymbol{k e y}_{i}$, return i
- if key < $\mathbf{k e y}_{i}$ or $\mathbf{k e y}$ < $\boldsymbol{k e y}_{i}$, then it must be in the 1st or in the 2nd half of the array, respectively
- Apply the previous two steps to the chosen half of the array iteratively (repeating halving principle)

Pseudocode of Binary Search

begin BinarySearch (an integer array a of size n, a search key) low $\leftarrow 0$; high $\leftarrow \mathrm{n}-1$
while low \leq high do middle $\leftarrow\lfloor($ low + high $) / 2\rfloor$ if a [middle] < key then low \leftarrow middle +1 else if a [middle] > key then high \leftarrow middle - 1 else return middle end if
end while
return ItemNotFound
end BinarySearch

Binary Search: \quad low $=0 \quad$ middle $=3 \quad$ high $=6$ detailed analysis

Comparison structure: the binary (search) tree

Worst-Case Complexity $\Theta(\log n)$ of Binary Search

- Let $n=2^{k}-1 ; k=1,2, \ldots$, then the binary tree is complete (each internal node has 2 children)
- The tree height is $k-1$ since the tree is balanced
- Each tree level l contains 2^{l} nodes for $l=0$ (the root), $1, \ldots, k-2, k-1$ (the leaves)
- $l+1$ comparisons to find a key of level l
- The worst case: $k=\log _{2}(n+1)$ comparisons so that the time complexity is $\Theta(\log n)$

Average-Case Complexity $\Theta(\log n)$ of Binary Search

Lemma 3.9: The average-case complexity of binary search in a balanced binary tree is $\Theta(\log n)$
Proof: $k=\left\lceil\log _{2}(n+1)\right\rceil-1$ is the depth of the tree
At least half of the nodes in the tree have the depth at least $k-1$
The average depth over all nodes is at least $k / 2$ which is $\Omega(\log n)$
Expected search time for an arbitrary binary search tree
is equal to the average tree height $\Theta(\log n)$

Interpolation Search

- Improvement of binary search if it is possible to guess where the desired key sits
- Example: the search for C or X in a phone directory
- Practical if the sorted keys are almost uniformly distributed over their range
- BS: the middle position $m=\left\lfloor\frac{l+r}{2}\right\rfloor=l+\lceil 0.5(r-l)\rceil$
- IS: the predicted position

$$
m=l+\lceil\rho(r-l)\rceil \equiv l+\left\lceil\frac{k-A[l]}{A[r]-A[l]}(r-l)\right\rceil
$$

Dynamic Binary Tree Search

- Static binary search is converted into a dynamic binary tree search by allowing for insertion and deletion of data records
- Binary tree search makes actual use of the binary search tree data structure
- The data structure is constructed by linking data records
- Any node of a binary search tree may be removed

