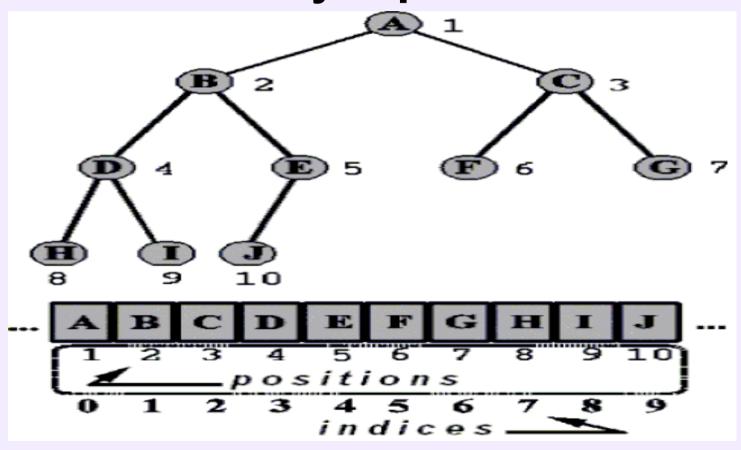


Algorithm HeapSort

- J. W. J. Williams (1964): a special binary tree called heap to obtain an O(n log n) worst-case sorting
- Basic steps:
 - Convert an array into a heap in linear time O(n)
 - Sort the heap in $O(n \log n)$ time by deleting n times the maximum item because each deletion takes the logarithmic time $O(\log n)$

Complete Binary Tree: linear array representation



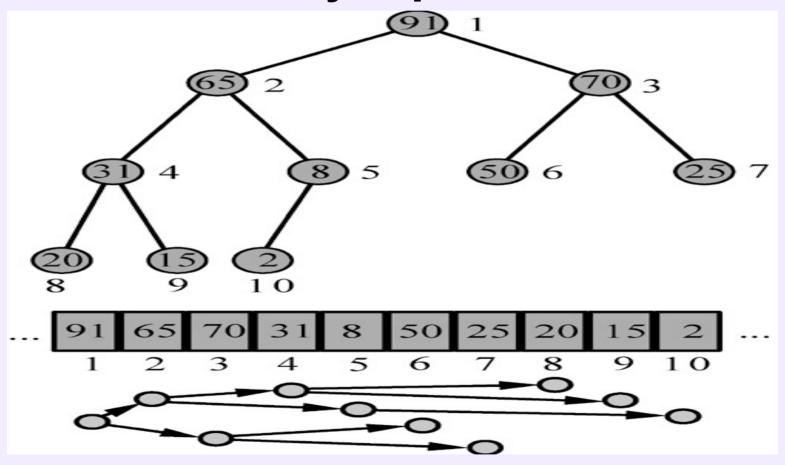
Complete Binary Tree

- A complete binary tree of the height h contains between 2^h and $2^{h+1}-1$ nodes
- A complete binary tree with the n nodes has the height $\lfloor \log_2 n \rfloor$
- Node positions are specified by the level-order traversal (the root position is 1)
- If the node is in the position *p* then:
 - the parent node is in the position $\lfloor p/2 \rfloor$
 - the left child is in the position 2p
 - the right child is in the position 2p + 1

Binary Heap

- A heap consists of a complete binary tree of height h with numerical keys in the nodes
- The defining feature of a heap:
 the key of each parent node is greater than or equal to the key of any child node
- The root of the heap has the maximum key

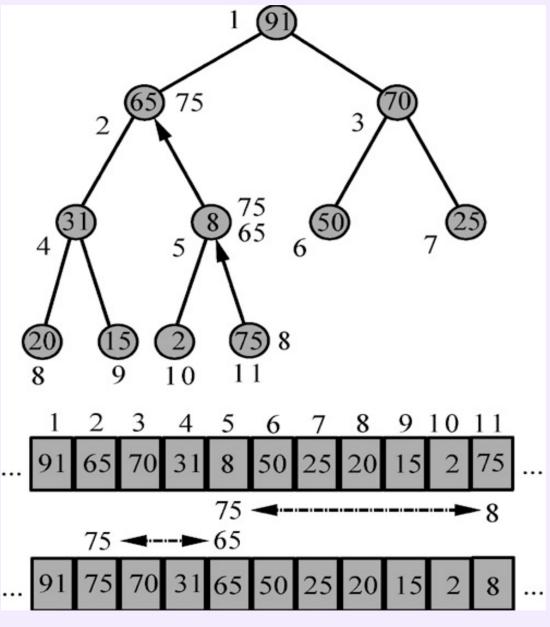
Binary Heap: linear array representation



Binary Heap: insert a new key

- **Heap** of k keys \rightarrow into a heap of k+1 keys
- Logarithmic time $O(\log k)$ to insert a new key:
 - Create a new leaf position k+1 in the heap
 - Bubble (or percolate) the new key up by swapping it with the parent if the parent key is smaller than the new key

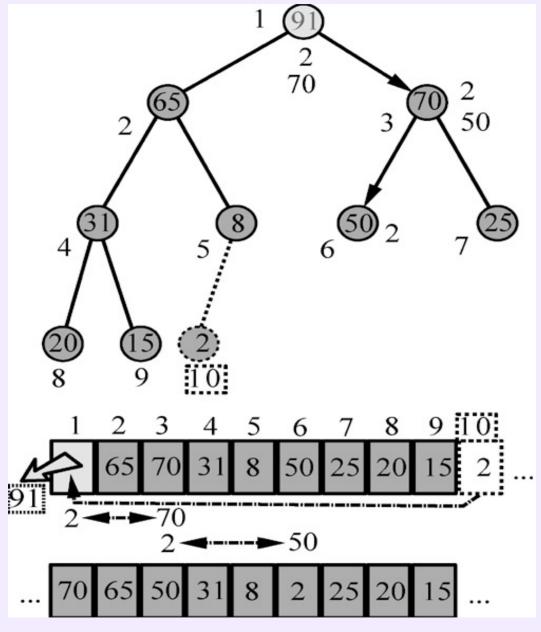
Binary Heap: an example of inserting a key



Binary Heap: delete the maximum key

- Heap of k keys \rightarrow into a heap of k-1 keys
- Logarithmic time O(log k) to delete the root (or maximum) key:
 - Remove the root key
 - Delete the leaf position k and move its key into the root
 - Bubble (percolate) the root key down by swapping it with the largest child if that child is greater

Binary Heap: an example of deleting the maximum key



Linear Time Heap Construction

- Do not use *n* insertions $\rightarrow O(n \log n)$ time!
- Alternative O(n) procedure uses a recursively defined heap structure:

Left subheap

Right subheap

- form recursively the left and right subheaps
- percolate the root down to establish the heap order everywhere

Non-recursive Heap Building

- Nodes percolate down in reverse level order
 - Each node p is processed after its descendants have been already processed
 - Leaves need not be percolated down
- Worst-case time T(h) to build a heap of height h:

$$T(h) = 2T(h-1) + ch \rightarrow T(h) = O(2^h)$$

- Form two subheaps of height at most h-1
- Percolate the root down a path of length at most h

Time to Build a Heap

$$T(h) = 2T(h-1) + ch$$
$$2T(h-1) = 2^{2}T(h-2) + 2c(h-1)$$

$$2^{h-2}T(2) = 2^{h-1}T(1) + 2^{h-2}c \cdot 2$$
$$2^{h-1}T(1) = 2^{h}T(0) + 2^{h-1}c \cdot 1 = 2^{h-1}c \cdot 1$$

$$T(h) = c \cdot \left(1 \cdot 2^{h-1} + 2 \cdot 2^{h-2} + \dots + (h-2) \cdot 2^2 + (h-1) \cdot 2^1 + h \cdot 2^0\right)$$
$$= c \cdot \left(2^{h+1} - h - 1\right)$$

Worst-case Time Complexity

- A heap of n nodes is of height $h = \lfloor \log_2 n \rfloor$ so that $2^h \le n \le 2^{h+1}-1$
- Therefore, the time for converting an array into a heap is linear: $T(h) = O(2^h)$, or T(n) = O(n)
- To sort a heap, the maximum element is deleted n times, so that the worst-case time complexity of HeapSort is O(n log n)
 - Each deletion takes logarithmic time $O(\log n)$

p/i	1/0	2/1	3/2	4/3	5/4	6/5	7/6	8/7	9/8	10/9
a	70	65	50	20	2	91	25	31	15	8
H E A					8					2
Ā				31				20		
i F			91			50				
Y	91		70							
h	91	65	70	31	8	50	25	20	15	2

a_1	2	65	70	31	8	50	25	20	15	91
Restore the heap	70		2							
(R.h.)			50			2				
H_9	70	65	50	31	8	2	25	20	15	
a_2	15	65	50	31	8	2	25	20	70	81
R.h.	65	15								
		31		15						
				20				15		
h_8	65	31	50	20	8	2	25	15		

\mathbf{a}_3	15	31	50	20	8	2	25	65	70	81
R.h.	50		15							
			25				15			
h ₇	50	31	25	20	8	2	15			
a_4	15	31	25	20	8	2	50	65	70	81
R.h.	31	15								
		20		15						
\mathbf{h}_{6}	31	20	25	15	8	2				

\mathbf{a}_{5}	2	20	25	15	8	31	50	65	70	91
R. h.	25		2							
h ₅	25	20	2	15	8					
\mathbf{a}_{6}	8	20	2	15	25	31	50	65	70	81
R. h.	20	8								
		15		8						
h ₄	20	15	2	8						

\mathbf{a}_7	8	15	2	20	25	31	50	65	70	91
R. h.	15	8								
h_3	15	8	2							
$\mathbf{a_8}$	2	8	15	20	25	31	50	65	70	91
R. h.	8	2								
h ₂	8	2								
\mathbf{a}_9	2	8	15	20	25	31	50	65	70	81

sorted array

