Time Complexity of Algorithms

- If running time $T(n)$ is $O(f(n))$ then the function f measures time complexity
- Polynomial algorithms: $T(n)$ is $O\left(n^{k}\right) ; k=$ const
- Exponential algorithm: otherwise
- Intractable problem: if no polynomial algorithm is known for its solution

Time complexity growth

$f(n)$	Number of data items processed per:			
	1 minute	1 day	1 year	1 century
n	$\mathbf{1 0}$	$\mathbf{1 4 , 4 0 0}$	$\mathbf{5 . 2 6} \cdot \mathbf{1 0}^{6}$	$\mathbf{5 . 2 6} \cdot \mathbf{1 0}$
$n \log _{10} n$	10	3,997	883,895	$6.72 \cdot 10^{7}$
$n^{1.5}$	10	1,275	65,128	$1.40 \cdot 10^{6}$
n^{2}	10	379	7,252	72,522
n^{3}	10	112	807	3,746
2^{n}	10	20	29	35

Lecture 4

Beware exponential complexity

© If a linear $O(n)$ algorithm processes 10 items per minute, then it can process 14,400 items per day, $5,260,000$ items per year, and 526,000,000 items per century
© If an exponential $O\left(2^{n}\right)$ algorithm processes 10 items per minute, then it can process only 20 items per day and 35 items per century...

Big-Oh vs. Actual Running Time

- Example 1: Let algorithms \mathbf{A} and B have running times $T_{\mathrm{A}}(n)=20 n \mathrm{~ms}$ and $T_{\mathrm{B}}(n)=0.1 n \log _{2} n \mathrm{~ms}$
- In the "Big-Oh"sense, \mathbf{A} is better than $\mathbf{B} . .$.
- But: on which data volume can \mathbf{A} outperform \mathbf{B} ?

$$
\begin{aligned}
& T_{\mathrm{A}}(n)<T_{\mathrm{B}}(n) \text { if } 20 n<0.1 n \log _{2} n, \\
& \text { or } \log _{2} n>200 \text {, that is, when } n>2^{200} \approx 10^{60}!
\end{aligned}
$$

- Thus, in all practical cases B is better than $\mathbf{A} .$.

Big-Oh vs. Actual Running Time

- Example 2: Let algorithms A and B have running times $T_{\mathrm{A}}(n)=20 \mathrm{nms}$ and $T_{\mathrm{B}}(n)=0.1 n^{2} \mathrm{~ms}$
- In the "Big-Oh" sense, \mathbf{A} is better than $\mathbf{B} . .$.
- But: on which data volumes \mathbf{A} outperforms \mathbf{B} ?

$$
T_{\mathrm{A}}(n)<T_{\mathrm{B}}(n) \text { if } 20 n<0.1 n^{2}, \text { or } n>200
$$

- Thus \mathbf{A} is better than \mathbf{B} in most practical cases except for $n<200$ when \mathbf{B} becomes faster...

Big-Oh: Scaling

For all $c>0 \rightarrow c f$ is $O(f)$ where $f \equiv f(n)$

Proof: $c f(n)<(c+\varepsilon) f(n)$ holds for all $n>0$ and $\varepsilon>0$

- Constant factors are ignored. Only the powers and functions of n should be exploited
- It is this ignoring of constant factors that motivates for such a notation! In particular, f is $O(f)$
$\begin{aligned} \text { - Examples: } 50 n \in O(n) & 0.05 n \in O(n) \\ 50000000 n \in O(n) & 0.0000005 n \in O(n)\end{aligned}$

Big-Oh: Transitivity

If h is $O(g)$ and g is $O(f)$, then h is $O(f)$

Informally: if h grows at most as fast as g, which grows at most as fast as f, then h grows at most as fast as f
Examples: $h \in O(g) ; g \in O\left(n^{2}\right) \rightarrow h \in O\left(n^{2}\right)$

$$
\begin{aligned}
& \log _{10} n \in O\left(n^{0.01}\right) ; n^{0.01} \in O(n) \rightarrow \log _{10} n \in O(n) \\
& 2^{n} \in O\left(3^{n}\right) ; n^{50} \in O\left(2^{n}\right) \rightarrow n^{50} \in O\left(3^{n}\right)
\end{aligned}
$$

Big-Oh: Rule of Sums

If $g_{1} \in O\left(f_{1}\right)$ and $g_{2} \in O\left(f_{2}\right)$, then $g_{1}+g_{2} \in O\left(\max \left\{f_{1}, f_{2}\right\}\right)$

The sum grows as its fastest-growing term:

- if $g \in O(f)$ and $h \in O(f)$, then $g+h \in O(f)$
- if $g \in O(f)$, then $g+f \in O(f)$

Examplos:

- if $h \in O(n)$ and $g \in O\left(n^{2}\right)$, then $g+h \in O\left(n^{2}\right)$
- if $h \in O(n \log n)$ and $g \in O(n)$, then $g+h \in$ $O(n \log n)$

Rule of Sums

Big-Oh: Rule of Products

If $g_{1} \in O\left(f_{1}\right)$ and $g_{2} \in O\left(f_{2}\right)$, then $g_{1} g_{2} \in O\left(f_{1} f_{2}\right)$

The product of upper bounds of functions gives an upper bound for the product of the functions:

- if $g \in O(f)$ and $h \in O(f)$, then $g h \in O\left(f^{2}\right)$
- if $g \in O(f)$, then $g h \in O(f h)$

Examples:

if $h \in O(n)$ and $g \in O\left(n^{2}\right)$, then $g h \in O\left(n^{3}\right)$
if $h \in O(\log n)$ and $g \in O(n)$, then $g h \in O(n \log n)$

Big-Oh: Limit Rule

Suppose $L \leftarrow \lim _{n \rightarrow \infty} f(n) / g(n)$ exists (may be ∞)
Then if $L=0$, then f is $O(g)$
if $0<L<\infty$, then f is $\Theta(g)$
if $L=\infty$, then f is $\Omega(g)$
To compute the limit, the standard L'Hopital rule of calculus is useful: if $\lim _{x \rightarrow \infty} f(x)=\infty=\lim _{x \rightarrow \infty} g(x)$ and f, g are positive differentiable functions for $x>0$, then $\lim _{x \rightarrow \infty} f(x) / g(x)=$ $\lim _{x \rightarrow \infty} f^{\prime}(x) / g^{\prime}(x)$ where $f^{\prime}(x)$ is the derivative

Examples 1.23, 1.24, p. 19

- Ex.1.23: Exponential functions grow faster than powers: n^{k} is $O\left(b^{n}\right)$ for all $b>1, n>1$, and $k \geq 0$
Proof: by induction or by the limit L'Hopital approach
- Ex. 1.24: Logarithmic functions grow slower than powers: $\log _{b} n$ is $O\left(n^{k}\right)$ for all $b>1, k>0$
$-\log _{b} n$ is $O(\log n)$ for all $b>1: \log _{b} n=\log _{b} a \log _{a} n$
$-\log n$ is $O(n)$
$-n \log n$ is $\mathrm{O}\left(n^{2}\right)$

