

Time Complexity of Algorithms

- If running time T(n) is O(f(n)) then the function f measures time complexity
 - Polynomial algorithms: T(n) is $O(n^k)$; k = const
 - Exponential algorithm: otherwise
- Intractable problem: if no polynomial algorithm is known for its solution

Time complexity growth

f(n)	Number of data items processed per:			
	1 minute	1 day	1 year	1 century
n	10	14,400	5.26 ·10 ⁶	5.26·10 ⁸
$n \log_{10} n$	10	3,997	883,895	$6.72 \cdot 10^7$
$n^{1.5}$	10	1,275	65,128	$1.40 \cdot 10^6$
n^2	10	379	7,252	72,522
n^3	10	112	807	3,746
2^n	10	20	29	35

Beware exponential complexity

- \odot If a linear O(n) algorithm processes 10 items per minute, then it can process 14,400 items per day, 5,260,000 items per year, and 526,000,000 items per century
- If an exponential $O(2^n)$ algorithm processes 10 items per minute, then it can process only 20 items per day and 35 items per century...

Big-Oh vs. Actual Running Time

- Example 1: Let algorithms A and B have running times $T_A(n) = 20n$ ms and $T_B(n) = 0.1n \log_2 n$ ms
- In the "Big-Oh"sense, A is better than B...
- But: on which data volume can **A** outperform **B**? $T_{A}(n) < T_{B}(n)$ if $20n < 0.1n \log_{2}n$, or $\log_{2}n > 200$, that is, when $n > 2^{200} \approx 10^{60}$!
- Thus, in all practical cases B is better than A...

Big-Oh vs. Actual Running Time

- Example 2: Let algorithms A and B have running times $T_A(n) = 20n$ ms and $T_B(n) = 0.1n^2$ ms
- In the "Big-Oh" sense, A is better than B...
- But: on which data volumes **A** outperforms **B**? $T_A(n) < T_B(n)$ if $20n < 0.1n^2$, or n > 200
- Thus **A** is better than **B** in most practical cases except for n < 200 when **B** becomes faster...

Big-Oh: Scaling

For all $c > 0 \rightarrow cf$ is O(f) where f = f(n)

Proof: $cf(n) < (c+\varepsilon)f(n)$ holds for all n > 0 and $\varepsilon > 0$

- Constant factors are ignored. Only the powers and functions of n should be exploited
- It is this ignoring of constant factors that motivates for such a notation! In particular, f is O(f)
- Examples: $50n \in O(n)$ $0.05n \in O(n)$ $50000000n \in O(n)$ $0.0000005n \in O(n)$

Big-Oh: Transitivity

If h is O(g) and g is O(f), then h is O(f)

Informally: if h grows at most as fast as g, which grows at most as fast as f, then h grows at most as fast as f

Examples:
$$h \in O(g)$$
; $g \in O(n^2) \to h \in O(n^2)$
 $\log_{10} n \in O(n^{0.01})$; $n^{0.01} \in O(n) \to \log_{10} n \in O(n)$
 $2^n \in O(3^n)$; $n^{50} \in O(2^n) \to n^{50} \in O(3^n)$

Big-Oh: Rule of Sums

If $g_1 \in O(f_1)$ and $g_2 \in O(f_2)$, then $g_1 + g_2 \in O(\max\{f_1, f_2\})$

The sum grows as its fastest-growing term:

- if $g \in O(f)$ and $h \in O(f)$, then $g + h \in O(f)$
- if $g \in O(f)$, then $g + f \in O(f)$

Examples:

- if $h \in O(n)$ and $g \in O(n^2)$, then $g + h \in O(n^2)$
- if $h \in O(n \log n)$ and $g \in O(n)$, then $g + h \in O(n \log n)$

Rule of Sums

Big-Oh: Rule of Products

If $g_1 \in O(f_1)$ and $g_2 \in O(f_2)$, then $g_1g_2 \in O(f_1f_2)$

The product of upper bounds of functions gives an upper bound for the product of the functions:

- if $g \in O(f)$ and $h \in O(f)$, then $gh \in O(f^2)$
- if $g \in O(f)$, then $gh \in O(fh)$

Examples:

if $h \in O(n)$ and $g \in O(n^2)$, then $gh \in O(n^3)$ if $h \in O(\log n)$ and $g \in O(n)$, then $gh \in O(n \log n)$

Big-Oh: Limit Rule

```
Suppose L \leftarrow \lim_{n \to \infty} f(n)/g(n) exists (may be \infty)

Then if L = 0, then f is O(g)

if 0 < L < \infty, then f is \Theta(g)

if L = \infty, then f is \Omega(g)
```

To compute the limit, the standard **L'Hopital rule** of calculus is useful: if $\lim_{x\to\infty} f(x) = \infty = \lim_{x\to\infty} g(x)$ and f, g are positive differentiable functions for x>0, then $\lim_{x\to\infty} f'(x)/g(x)=\lim_{x\to\infty} f'(x)/g'(x)$ where f'(x) is the derivative

Examples 1.23, 1.24, p.19

• **Ex.1.23**: Exponential functions grow faster than powers: n^k is $O(b^n)$ for all b>1, n>1, and $k\ge 0$

Proof: by induction or by the limit L'Hopital approach

- **Ex. 1.24**: Logarithmic functions grow slower than powers: $\log_b n$ is $O(n^k)$ for all b>1, k>0
 - $-\log_b n$ is $O(\log n)$ for all b>1: $\log_b n = \log_b a \log_a n$
 - $-\log n$ is O(n)
 - $-n \log n \text{ is } O(n^2)$

