Symbol Table and Hashing

- (Symbol) table is a set of table entries, (k, v)
- Each entry contains:
- a unique key, k, and
- a value (information), v
- Each key uniquely identifies its entry
- Table searching:
- Given: a search key, k
- Find: the table entry, (k, v)

[^0]COMPSCI 220 - AP G. Gimelfarb

Symbol Table and Hashing

- Once the entry (k, v) is found:
- its value v, may be updated,
- it may be retrieved, or
- the entire entry, (k, v), may be removed from the table
- If no entry with key k exists in the table:
- a new entry with k as its key may be inserted to the table
- Hashing:
- a technique of storing values in the tables and
- searching for them in linear, $O(n)$, worst-case and extremely fast, $O(1)$, average-case time
Lecture 11
COMPSCI 220 - AP G. Gimelfarb

Basic Features of Hashing

- Hashing computes an integer, called the hash code, for each object
- The computation is called the hash function, $h(k)$
- It maps objects (e.g., keys k) to the array indices (e.g., 0,1 , ..., $i_{\text {max }}$)
- An object with a key k has to be stored at location $h(k)$
- The hash function must always return a valid index for the array

Lecture 11
COMPSCI 220 - AP G. Gimelfarb

Basic Features of Hashing

- Perfect hash function \rightarrow a different index value for every key. But such a function cannot be always found.
- Collision: if two distinct keys, $k_{1} \neq k_{2}$, map to the same table address, $h\left(k_{1}\right)=h\left(k_{2}\right)$
- Collision resolution policy: how to find additional storage to store one of the collided table entries
- Load factor λ - fraction of the already occupied entries (m occupied entries in the table of size $n \rightarrow \lambda=m / n$)

Lecture 11
COMPSCI 220-AP G. Gimelfarb \qquad

How Common Are Collisions?

- Von Mises Birthday Paradox:
if there are more than 23 people in a room, the chance is greater than 50% (!) that two or more of them will have the same birthday
- In the only 6.3% full table (since $23 / 365=0.063$) there is better than 50% chance of a collision!
- Therefore: 50% chance of collision if $\lambda=0.063$

Lecture 11
COMPSCI 220 - AP G. Gimelfarb
5 $\stackrel{4}{8}$

How Common Are Collisions?

- Probability $\mathrm{Q}_{N}(n)$ of no collision:
- that is, that none of the n items collides, being randomly tossed into a table with N slots:
$\mathrm{Q}_{N}(1)=1 \equiv \frac{N}{N} ; \quad \mathrm{Q}_{N}(2)=\mathrm{Q}_{N}(1) \frac{N-1}{N} \equiv \frac{N(N-1)}{N^{2}} ;$
$\mathrm{Q}_{N}(3)=\mathrm{Q}_{N}(2) \frac{N-2}{N} \equiv \frac{N(N-1)(N-2)}{N^{3}} ;$
$\mathrm{Q}_{N}(n)=\mathrm{Q}_{N}(n-1) \frac{N-n+1}{N} \equiv \frac{N(N-1) \ldots(N-n+1)}{N^{n}}$
Lecture 11
COMPSCI 220-AP G. Gimelfarb

Open Addressing with Linear Probing (OALP)

- The simplest collision resolution policy:
- Successive search for the first empty entry at a lower location
- If no such entry, then "wrap around" the table
- Lemma 3.33: The average number of probes for successful, $T_{\mathrm{ss}}(\lambda)$, and unsuccessful, $T_{\mathrm{us}}(\lambda)$, search in a hash table with load factor $\lambda=m / n$ is, respectively,
$T_{\mathrm{ss}}(\lambda)=0.5\left(1+\frac{1}{1-\lambda}\right)$ and $T_{\mathrm{us}}(\lambda)=0.5\left(1+\left(\frac{1}{1-\lambda}\right)^{2}\right)$
- Drawbacks: clustering of keys in the table

Lecture 11
COMPSCI 220 - AP G. Gimelfarb

Open Addressing with Double Hashing (OADH)

- Better collision resolution policy reducing the clustering:
- hash the collided key again with a different hash function
- use the result of the second hashing as an increment for probing table locations (including wraparound)
- Lemma 3.35: Assuming that OADH provides nearly uniform hashing, the average number of probes for successful, $T_{\text {ss }}(\lambda)$, and unsuccessful, $T_{\text {us }}(\lambda)$, search is, respectively, $T_{\mathrm{ss}}(\lambda)=\frac{1}{\lambda} \ln \left(\frac{1}{1-\lambda}\right)$ and $T_{\mathrm{us}}(\lambda)=\frac{1}{1-\lambda}$

Lecture 11
COMPSCI 220-AP G. Gimelfarb
10

Two More Collision Resolution Techniques

- Open addressing has a problem if significant number of items need to be deleted:
- Logically deleted items must remain in the table until the table can be re-organised
- Two techniques to attenuate this drawback:
- Chaining
- Hash bucket

Chaining and Hash Bucket

- Chaining: all keys collided at a single hash address are placed on a linked list, or chain, started at that address
- Hash bucket: a big hash table is divided into a number of small sub-tables, or buckets
- the hush function maps a key into one of the buckets
- the keys are stored in each bucket sequentially in increasing order

Lecture 11
COMPSCI 220 - AP G. Gimelfarb
13
$\stackrel{\square}{\square}$

Choosing a hash function

- Four basic methods:
- division, folding, middle-squaring, and truncation
- Division:
- choose a prime number as the table size n
- convert keys, k, into integers
- use the remainder $h(k)=k \bmod n$ as a hash value of k
- get the double hashing decrement using the quotient $\Delta k=\max \{1,(k / n) \bmod n\}$

Choosing a hash function

- Folding:

- divide the integer key, k, into sections
- add, subtract, and / or multiply them together for combining into the final value, $h(k)$
Ex.: $k=013402122 \rightarrow 013,402,122 \rightarrow h(k)=013+402+122=537$
- Middle-squaring:
- choose a middle section of the integer key, k
- square the chosen section
- use a middle section of the result as $h(k)$

Ex.: $k=013402122 \rightarrow$ mid: $402 \rightarrow 402^{2}=161404 \rightarrow$ mid: $h(k)=6140$

Lecture 11
COMPSCI 220-AP G. Gimelfarb
$\frac{\boxed{4}}{\sqrt{D}}$
\qquad
気

Choosing a hash function

Truncation:

- delete part of the key, k
- use the remaining digits (bits, characters) as $h(k)$

Example:
$k=013402122 \rightarrow$ last 3 digits: $h(k)=122$

- Notice that truncation does not spread keys uniformly into the table; thus it is often used in conjunction with other methods

Efficiency of Search in Hash Tables

Load factor λ : if a table of size n has exactly m occupied entries, then $\ddot{e}=m / n$

- Average numbers of probe addresses examined for a successful ($T_{\text {ss }}(\lambda)$) and unsuccessful $\left(T_{\text {us }}(\lambda)\right)$ search:

	OALP: $\lambda<0.7$	OADH: $\lambda<0.7$	SC
$T_{\text {ss }}(\lambda)$	$0.5(1+1 /(1-\lambda))$	$(1 / \lambda) \ln (1 /(1-\lambda))$	$1+\lambda / 2$
$T_{\text {us }}(\lambda)$	$0.5\left(1+(1 /(1-\lambda))^{2}\right)$	$1 /(1-\lambda)$	λ
SC - separate chaining; λ may be higher than 1			

Lecture 11
COMPSCI 220 - AP G. Gimelfarb

Table Data Type Representations: Comparative Performance

Operation	Representation		
	Sorted array	AVL tree	Hash table
Initialize	$O(n)$	$O(1)$	$O(n)$
Is full?	$O(1)$	$O(1)$	$O(1)$
Search*)	$O(\log n)$	$O(\log n)$	$O(1)$
Insert	$O(n)$	$O(\log n)$	$O(1)$
Delete	$O(n)$	$O(\log n)$	$O(1)$
Enumerate	$O(n)$	$O(n)$	$O(n \log n)^{* *)}$

${ }^{*}$) also: Retrieve, Update **)To enumerate a hash table, entries must first be sorted in ascending order of keys that takes $O(n \log n)$ time Lecture 11 COMPSCI 220 - AP G. Gimelfarb

[^0]: Lecture 11

