Binary Search Tree

- Left-to-right ordering in a tree:
- for every node x, the values of all the keys $k_{\text {left }}$ in the left subtree are smaller than the key $k_{\text {parent }}$ in x and
- the values of all the keys $k_{\text {right }}$ in the right subtree are larger than the key in x :

Lecture 10
COMPSCI 220 - AP G. Gimelfarb

Binary Search Tree

Compare the left-right ordering in a BST to the bottom-up ordering in a heap where the key of each parent node is greater than or equal to the key of any child node

BST: find / insert operations

- No duplicates! (attach them all to a single item)
- Basic operations:
- find: find a given search $\mathbf{k e y}$ or detect that it is not present in the tree
- insert: insert a node with a given key to the tree if it is not found
- findMin: find the minimum key
- findMax: find the maximum key
- remove: remove a node with a given key and restore the tree if necessary

Lecture 10
COMPSCI 220-AP G. Gimelfarb
find
find is a successful binary search
insert creates a new node at the point at which an unsuccessful search stops

Lecture 10 COMPSCI 220 - AP G. Gimelfarb

Binary Search Tree: running time

Time for find, insert, findMin, findMax, sort a single item: $\mathrm{O}(\log n)$ average-case and $\mathrm{O}(n)$ worst-case complexity

(just as in QuickSort)

BST of the depth about $\log n$

- First visit the left subtree
- Then visit the root
- Then visit the right subtree

[^0]COMPSCI 220 - AP G. Gimelfarb 5 (4

BST of the depth about n

Binary Search Tree: node removal

- remove is the most complex operation:
- The removal may disconnect parts of the tree
- The reattachment of the tree must maintain the binary search tree property
- The reattachment should not make the tree unnecessarily deeper as the depth specifies the running time of the tree operations

Lecture 10
COMPSCI 220 - AP G. Gimelfarb
8
$\sqrt{\square}$

BST: how to remove a node

If the node k to be removed has two children:

- Replace the item in this node with the item with the smallest key in the right subtree
- The smallest node is easily found as in findMin
- Remove the latter node from the right subtree
- This removal is very simple as the node with the smallest key does not have a left child

Lecture 10
COMPSCI 220-AP G. Gimelfarb
10

-4
1

Average-Case Performance of Binary Search Tree Operations

Internal path length of a binary tree is the sum of the depths of its nodes:

IPL $=0+1+1+2+2+3+3+3$

$$
=15
$$

Average internal path length $T(n)$ of the binary search trees with n nodes is $O(n \log n)$
Lecture 10
COMPSCI 220 - AP G. Gimelfarb
12

BST: an Example of Node Removal

$\stackrel{\boxed{4}}{\sqrt{D}}$

Average－Case Performance of Binary Search Tree Operations

－If the n－node tree contains the root，the i－node left subtree，and the（ $n-i-1$ ）－node right subtree：
$T(n)=n-1+T(i)+T(n-i-1)$
－The root contributes 1 to the path length of each of the other $n-1$ nodes
－Averaging over all $i ; 0 \leq i<n \rightarrow$ the same recurrence as for QuickSort： $T(n)=(n-1)+\frac{2}{n}(T(0)+T(1)+\ldots+T(n-1))$ so that $T(n)$ is $O(n \log n)$

[^1]COMPSCI 220 －AP G．Gimelfarb

Average－Case Performance of Binary Search Tree Operations

－Therefore，the average complexity of find or insert operations is $T(n) / n=O(\log n)$
－For n^{2} pairs of random insert／remove operations，an expected depth is $O\left(n^{0.5}\right)$
－In practice，for random input，all operations are about $O(\log n)$ but the worst－case performance can be $O(n)$ ！

[^2]
Balanced Trees

－Balancing ensures that the internal path lengths are close to the optimal $n \log n$
－The average－case and the worst－case complexity is about $O(\log n)$ due to their balanced structure
－But，insert and remove operations take more time on average than for the standard binary search trees
－AVL tree（1962：Adelson－Velskii，Landis）
－Red－black and AA－tree
－B－tree（1972：Bayer，McCreight）
Lecture 10
COMPSCI 220－AP G．Gimelfarb

AVL Tree

－An AVL tree is a binary search tree with the following additional balance property：
－for any node in the tree，the height of the left and right subtrees can differ by at most 1
－the height of an empty subtree is -1
－The AVL－balance guarantees that the AVL tree of height h has at least c^{h} nodes，$c>1$ ，and the maximum depth of an n－item tree is about $\log _{c} n$

[^3]COMPSCI 220－AP G．Gimelfarb

AVL Tree

－Let S_{h} be the size of the smallest AVL tree of the height h（it is obvious that $S_{0}=1, S_{1}=2$ ）
－This tree has two subtrees of the height $h-1$ and $h-2$ ，respectively，by the AVL－balance condition
－It follows that $S_{h}=S_{h-1}+S_{h-2}+1$ ，or $S_{h}=F_{h+3}-1$ where F_{i} is the i－th Fibonacci number

AVL Tree

－Therefore，for each n－node AVL tree：

$$
n \geq S_{h} \approx\left(\varphi^{h+3} / \sqrt{5}\right)-1
$$

where $\varphi=(1+\sqrt{5}) / 2 \cong 1.618$ ，or

$$
h \leq 1.44 \log _{2}(n+1)-1.328
$$

－The worst－case height is at most 44% more than the minimum height of the binary trees

Lecture 10

COMPSCI 220 －AP G．Gimelfarb

[^0]: Lecture 10

[^1]: Lecture 10

[^2]: Lecture 10
 COMPSCI 220－AP G．Gimelfarb

[^3]: Lecture 10

