
- Introduction to Algorithm Analysis COMPSCI 220

- A/P Georgy Gimel'farb - Lecture 4 1

Lecture 4 COMPSCI 220 - AP G Gimel'farb 1

Time Complexity of Algorithms

• If running time T(n) is O(f(n)) then the function
f measures time complexity
– Polynomial algorithms: T(n) is O(nk); k = const
– Exponential algorithm: otherwise

• Intractable problem: if no polynomial algorithm
is known for its solution

Lecture 4 COMPSCI 220 - AP G Gimel'farb 2

Time complexity growth

352920102n

3,74680711210n3

72,5227,25237910n2

1.40⋅10665,1281,27510n1.5

6.72⋅107883,8953,99710n log10n
5.26⋅1085.26⋅10614,40010n
1 century1 year1 day1 minute

Number of data items processed per:f(n)

Lecture 4 COMPSCI 220 - AP G Gimel'farb 3

Beware exponential complexity

☺If a linear O(n) algorithm processes 10 items
per minute, then it can process 14,400 items per
day, 5,260,000 items per year, and 526,000,000
items per century
☻If an exponential O(2n) algorithm processes 10

items per minute, then it can process only 20
items per day and 35 items per century...

Lecture 4 COMPSCI 220 - AP G Gimel'farb 4

Big-Oh vs. Actual Running Time

• Example 1: Let algorithms A and B have running
times TA(n) = 20n ms and TB(n) = 0.1n log2n ms

• In the “Big-Oh”sense, A is better than B…
• But: on which data volume can A outperform B?
 TA(n) < TB(n) if 20n < 0.1n log2n,

 or log2n > 200, that is, when n >2200 ≈ 1060 !

• Thus, in all practical cases B is better than A…

Lecture 4 COMPSCI 220 - AP G Gimel'farb 5

Big-Oh vs. Actual Running Time

• Example 2: Let algorithms A and B have running
times TA(n) = 20n ms and TB(n) = 0.1n2 ms

• In the “Big-Oh” sense, A is better than B…
• But: on which data volumes A outperforms B?
 TA(n) < TB(n) if 20n < 0.1n2, or n > 200
• Thus A is better than B in most practical cases

except for n < 200 when B becomes faster…

Lecture 4 COMPSCI 220 - AP G Gimel'farb 6

Big-Oh: Scaling

For all c > 0 → cf is O(f) where f ≡ f(n)
Proof: cf(n) < (c+ε)f(n) holds for all n > 0 and ε > 0
• Constant factors are ignored. Only the powers and

functions of n should be exploited

• It is this ignoring of constant factors that motivates for
such a notation! In particular, f is O(f)

• Examples: 50n ∈ O(n) 0.05n ∈ O(n)
 50000000n ∈ O(n) 0.0000005n ∈ O(n)

- Introduction to Algorithm Analysis COMPSCI 220

- A/P Georgy Gimel'farb - Lecture 4 2

Lecture 4 COMPSCI 220 - AP G Gimel'farb 7

Big-Oh: Transitivity

If h is O(g) and g is O(f), then h is O(f)
Informally: if h grows at most as fast as g, which grows

at most as fast as f, then h grows at most as fast
as f

Examples: h ∈ O(g); g ∈ O(n2) → h ∈ O(n2)
 log10n ∈ O(n0.01); n0.01∈ O(n) → log10n ∈ O(n)
 2n ∈ O(3n); n50∈ O(2n) → n50∈ O(3n)

Lecture 4 COMPSCI 220 - AP G Gimel'farb 8

Big-Oh: Rule of Sums

If g1∈O(f1) and g2∈O(f2), then g1+g2 ∈ O(max{f1,f2})

The sum grows as its fastest-growing term:
– if g∈O(f) and h∈O(f), then g + h ∈O(f)
– if g∈O(f), then g + f ∈O(f)
Examples:

– if h∈O(n) and g∈O(n2), then g + h ∈O(n2)
– if h ∈ O(n log n) and g ∈ O(n), then g + h ∈

O(n log n)

Lecture 4 COMPSCI 220 - AP G Gimel'farb 9

Rule of Sums

Lecture 4 COMPSCI 220 - AP G Gimel'farb 10

Big-Oh: Rule of Products

If g1∈O(f1) and g2∈O(f2), then g1g2∈O(f1 f2)
The product of upper bounds of functions gives an

upper bound for the product of the functions:
– if g∈O(f) and h∈O(f), then gh∈O(f 2)
– if g∈O(f), then gh∈O(f h)
Examples:

if h∈O(n) and g∈O(n2), then gh∈O(n3)
if h∈O(log n) and g∈O(n), then gh∈O(n log n)

Lecture 4 COMPSCI 220 - AP G Gimel'farb 11

Big-Oh: Limit Rule

Suppose L ← limn→∞ f(n)/g(n) exists (may be ∞)

Then if L = 0, then f is O(g)
 if 0 < L < ∞, then f is Θ(g)
 if L = ∞, then f is Ω(g)

To compute the limit, the standard L’Hopital rule of calculus is
useful: if limx→∞ f(x) = ∞ = limx→∞g(x) and f, g are positive
differentiable functions for x > 0, then limx→∞ f(x)/g(x) =
limx→∞ f '(x)/g'(x) where f '(x) is the derivative

Lecture 4 COMPSCI 220 - AP G Gimel'farb 12

Examples 1.23, 1.24, p.19

• Ex.1.23: Exponential functions grow faster than
powers: nk is O(bn) for all b>1, n>1, and k≥0
Proof: by induction or by the limit L’Hopital approach

• Ex. 1.24: Logarithmic functions grow slower than
powers: logbn is O(nk) for all b>1, k>0
– logbn is O(log n) for all b>1: logbn = logba logan
– log n is O(n)
– n log n is O(n2)

