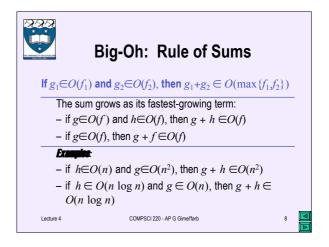
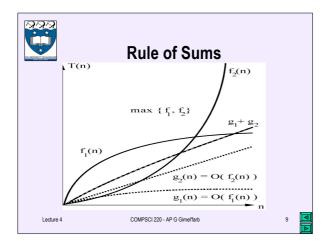


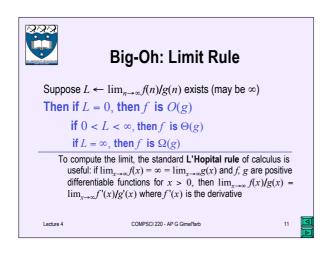
Time complexity growth

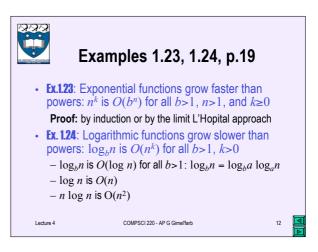
f(n)	Number of data items processed per:			
	1 minute	1 day	1 year	1 century
n	10	14,400	5.26.106	5.26·10 ⁸
$n \log_{10} n$	10	3,997	883,895	6.72·10 ⁷
n ^{1.5}	10	1,275	65,128	1.40.106
<i>n</i> ²	10	379	7,252	72,522
<i>n</i> ³	10	112	807	3,746
2 ⁿ	10	20	29	35
Lecture 4	co	MPSCI 220 - AP G Gim	el'farb	2


Big-Oh: Scaling


For all $c > 0 \rightarrow cf$ is O(f) where $f \equiv f(n)$

Proof. cf(n)	$(c+\varepsilon)f(n)$) holds for all n	> 0 and $\varepsilon > 0$
FI UUI. C/(//) > (C + c) / (n) HORUS IOF All n	


- Constant factors are ignored. Only the powers and functions of *n* should be exploited
- It is this ignoring of constant factors that motivates for such a notation! In particular, f is O(f)
- Examples: $50n \in O(n)$ $0.05n \in O(n)$ $5000000n \in O(n)$ $0.0000005n \in O(n)$ Lecture 4 COMPSCI 220 - AP G Gimelfarb


Big-Oh: Transitivity							
If h is $O(g)$) and g is $O(f)$, then h is $O(f)$						
	grows at most as fast as <i>g</i> , which grows s fast as <i>f</i> , then <i>h</i> grows at most as fast						
Examples: h \in	$O(g); g \in O(n^2) \rightarrow h \in O(n^2)$	_					
$\log_{10} n \in$	$O(n^{0.01}); n^{0.01} \in O(n) \to \log_{10} n \in O(n)$						
$2^n \in O(3)$	n); $n^{50} \in O(2^n) \rightarrow n^{50} \in O(3^n)$						
Lecture 4	COMPSCI 220 - AP G Gimelfarb 7	V					

Big-Oh: Rule of Products					
If $g_1 \in O(f_1)$ and $g_2 \in O(f_2)$, then $g_1 g_2 \in O(f_1 f_2)$)				
The product of upper bounds of functions gives an upper bound for the product of the functions:					
- if $g \in O(f)$ and $h \in O(f)$, then $gh \in O(f^2)$					
- if $g \in O(f)$, then $gh \in O(fh)$					
Examples:	_				
if $h \in O(n)$ and $g \in O(n^2)$, then $gh \in O(n^3)$					
if $h \in O(\log n)$ and $g \in O(n)$, then $gh \in O(n \log n)$					
Lecture 4 COMPSCI 220 - AP G Gimelfarb 1) M				

