
2 Exercises and Solutions

Most of the exercises below have solutions but you should try first to solve
them. Each subsection with solutions is after the corresponding subsection
with exercises.

2.1 Sorting and searching: exercises

1. You must find 1000 most expensive items from an unsorted price list con-
taining 107 different items. Two schemes of solution are as follows.

• Scheme A: repeat 1000 times the sequential search (with the linear
complexity O(n)).

• Scheme B: convert the list into an array (the same complexity O(n)
as for search), then sort the array (complexity O(n log n)) and fetch
1000 top items.

Which scheme would you prefer assuming that searching for 100 items in
the unsorted list takes 0.1 millisecond (ms) and sorting of 100 items also
takes 0.1 ms? Time for fetching data should not be taken into account.

2. Processing time of InsertionSort is c ·n2. To merge k pre-sorted subarrays
that contain together n items you have to compare the k top items in all
the subarrays to choose the current maximum item and place it into the
sorted array (assuming that all the items have to be sorted in ascending
order). Therefore, the time for merging is proportional to (k − 1) · n. Let
the processing time of the merge be c · (k − 1) · n where the scale factor
has the same value as for InsertionSort. Analyse whether it is possible to
accelerate sorting of n items in the following way:

• Split the initial array of size n into k subarrays of size n/k. The last
subarray may be longer to preserve the total number of items n but
do not go in such details in your analysis.

• Sort each subarray separately by InsertionSort.

• Merge the sorted subarrays into a final sorted array.

If you have found that the acceleration is possible, then find the optimum
value of k and compare the resulting time complexity of this sorting algo-
rithm to that of InsertionSort and MergeSort.

3. The processing time of a sorting algorithm is described by the following
recurrence equation (c is a positive constant):

T (n) = 3T (n/3) + 2cn;
T (1) = 0

Solve this equation to derive an explicit formula for T (n) assuming n = 3m

and specify the Big-Oh complexity of the algorithm.

1



4. Find out whether the above algorithm is faster or slower than usual Merge-
sort that splits recursively an array into only two subarrays and then
merges the sorted subarrays in linear time cn.

5. Time complexity of sorting n data items with insertionSort is O(n2),
that is, the processing time of insertionSort is cs · n2 where cs is a con-
stant scale factor.

Time complexity of merging k subarrays pre-sorted in ascending order and
containing n items in total is O(k ·n). The processing time is cm(k−1) ·n
because at each step t = 1, 2, . . . , n you compare k current top items in all
the subarrays (that is, (k − 1) comparisons), pick up the maximum item,
and place it in position (n− t + 1) in the final sorted array.

You are going to save time by splitting the initial array of size n into k
smaller subarrays, sorting each subarray by insertionSort, and merging
the sorted subarrays in a single sorted array.

Let the scale factors cs and cm be equal: cs = cm = c. Analyse whether
you can actually accelerate sorting of n items in the following way:

• Split the initial array of size n into k subarrays of size n
k . The last

subarray may be longer to preserve the total number of items n but
do not go into such detail in your analysis.

• Sort each subarray separately by InsertionSort.

• Merge the sorted subarrays into a final sorted array.

If the acceleration is possible, then find the optimum value of k giving
the best acceleration and compare the resulting time complexity of the
resulting sorting algorithm to that of InsertionSort and MergeSort.

6. You decided to improve insertion sort by using binary search to find the
position p where the new insertion should take place:

Algorithm ImprovedInsertionSort
Input/output: an integer array a = {a[0], . . . , a[n− 1]} of size n

begin ImprovedInsertionSort
1 for i← 1 while i < n step i← i + 1 do
2 stmp ← a[i]; p← BinarySearch(a, i− 1, stmp)
3 for integer j ← i− 1 while j ≥ p step j ← j − 1 do
4 a[j + 1]← a[j]
5 end for
6 a[p]← stmp

7 end for
end ImprovedInsertionSort

Here, stmp = a[i] is the current value to be inserted at each step i into
the already sorted part a[0], . . . , a[i− 1] of the array a. The binary search

2



along that part returns the position p such that stmp < a[p] and either
p = 0 or stmp ≥ a[p − 1]. After finding p, the data values in the subse-
quent positions j = i− 1, . . . , p are sequentially moved one position up to
i, . . . , p+1 so that the value stmp can be inserted into the proper position p.

Answer the following questions regarding time complexity of the proposed
algorithm. Hint: to answer the questions you may need the formulae for
the sum of integers from 1 to n: 1 + 2 + . . . + n = n(n+1)

2 and for the sum
of their logarithms by the base 2: log2 1 + log2 2 + . . . + log2 n ≡ log2 n! ≥
n log2 n− 1.44n (see also Appendix ??).

(a) Determine how many data moves in total should be done in average
to sort an array a of the size n.

(b) Determine how many data moves in total should be done in the worst
case to sort the array a.

(c) Determine how many comparisons should be done by BinarySearch
in average to sort the array a.

(d) Determine how many comparisons should be done by BinarySearch
in the worst case to sort the array a.

(e) What is the worst-case complexity of ImprovedInsertionSort if you
take account of only the comparisons made by BinarySearch?

(f) What is the worst-case complexity of ImprovedInsertionSort if only
moves of the data values are taken into account?

7. Find the best way for selecting p most popular persons in an unordered
database containing entries for n different persons all over the world. Each
entry i of the data base has a non-negative integer key ki that numerically
specifies how popular is that person. For instance, the key that is less than
all other keys characterises the least popular person, and the key that is
greater than all other keys belongs to the top-rank “star”. You have two
options:

(i) repeat p times a sequential search through the whole data base and
select each time the top-most key while skipping all the already found
keys or

(ii) sort first the whole data base using the QuickSort method and then
select the p entries with the top-most keys.

You found the sequential search and QuickSort have processing times
T (n) = 0.1n ms and T (n) = 0.1n log10 n ms, respectively, and the time for
selecting an entry from a sorted data base is negligibly small with respect
to the sorting time.

Which option, (i) or (ii), would you recommend for any particular pair
of the values of n and p in order to minimise running time? If your data
base contains 106 entries and you have to select 100 most popular persons,
then which option will be the best?

3



8. Specify the worst-case and average-case Big-Oh complexity of the following
algorithms, assuming an input array of size N : InsertionSort, HeapSort,
MergeSort, QuickSort, SequentialSearch, BinarySearch.

9. Convert an array [10, 26, 52, 76, 13, 8, 3, 33, 60, 42] into a maximum heap.

10. Convert the above array into a well-balanced binary search tree. Explain
what is the basic difference between a heap and a binary search tree?

11. You have to split an unsorted integer array, Wn, of size n into the two
subarrays, Uk and Vn−k, of sizes k and n − k, respectively, such that all
the values in the subarray Uk are smaller than the values in the subarray
Vn−k . You may use the following two algorithms:

A. Sort the array Wn with QuickSort and then simply fetch the smallest
k items from the positions i = 0, 1, . . . , k − 1 of the sorted array to
form Uk (you should ignore time of data fetching comparing to the
sorting time).

B. Directly select k smallest items with QuickSelect from the unsorted
array (that is, use QuickSelect k times to find items that might be
placed to the positions i = 0, 1, . . . , k − 1 of the sorted array).

Let processing time of QuickSort and QuickSelect be Tsort(n) = csortn log2 n
and Tslct(n) = cslctn, respectively. Choose the algorithm with the smallest
processing time for any particular n and k.

Assume that in the previous case QuickSort spends 10.24 microseconds to
sort n = 1024 unsorted items and QuickSelect spends 1.024 microseconds
to select a single i-smallest item from n = 1024 unsorted items. What
algorithm, A or B, must be chosen if n = 220 and k = 29 ≡ 512?

2.2 Sorting and searching: solutions

1. The scaling factors for the linear search and the sort are 0.1
100 = 0.001 and

0.1
100 log 100 = 1

200 = 0.0005, respectively (you may use any convenient base
of the logarithm for computing the running time). Then the overall time
for the scheme A is TA = 0.001 · 107 · 103 = 107 ms, or 104 seconds. The
overall time for B consists of the time to convert the list into an array:
TB,1 = 0.001 · 107 ms, or 10 seconds, and the time for sorting the array:

TB,2 = 0.0005 · 107 · log(107) = 35 · 103ms = 35s.

Therefore, the scheme of choice is B.

2. Let an array of size n be split into k subarrays of size n
k . Then the total

time to separately sort the subarrays is k · c ·
(

n
k

)2 = c · n2

k . Time for
merging k presorted subarrays is c · (k − 1) · n. Thus the total time is
proportional to n2

k + n · (k − 1).

If k = 1 the sorting is O(n2). If k = n the sorting is also O(n2). This
suggests that the computational complexity may be less somewhere in be-
tween these bounds.

4



Those who know the calculus may easily derive the optimum k by dif-
ferentiating the expression n

k + k − 1 by k and setting it equal to zero:
− n

k2 + 1 = 0, or k =
√

n. Those who do not like mathematics may ex-
ploit the inverse symmetry between the terms n

k and k in this sum. These
terms have the fixed product n = n

k ·k, so they should be set equal for the
optimum point: n

k = k, or k =
√

n. Both variants of getting the result are
acceptable.

The resulting time complexity of this sorting is O(n1.5) so that the algo-
rithm is better than InsertionSort but worse than MergeSort.

3. The implicit formula T (3m) = 3T (3m−1) + 2c3m can be reduced to

T (3m)
3m

=
T (3m−1)

3m−1
+ 2c

thus by telescoping:

T (3m)
3m = T (3m−1)

3m−1 + 2c
T (3m−1)

3m−1 = T (3m−2)
3m−2 + 2c

· · · · · ·
T (31)

31 = T (30)
30 + 2c

T (1) = 0

so that T (3m)
3m = 2cm, or T (n) = 2cn log3 n

Another solution: by math induction

T (31) = 3 · T (1) + 2 · 3c = 2 · 3c
T (32) = 2 · 32c + 2 ∗ 32c = 2 · 2 · 32c
T (33) = 2 · 2 · 33c + 2 · 33c = 2 · 3 · 33c

Let us assume that T (3k) = 2ck · 3k holds for k = 1, . . . ,m− 1. Then

T (3m) = 3 · 2 · (m− 1) · 3m−1c + 2 · 3mc = 2 ·m · 3mc

so that the assumption is valid by induction for all values m. The “Big-
Oh” complexity of this algorithm is O(n log n).

4. For Mergesort, T (n) = cn log2 n, therefore, to compare the algorithms one
must derive whether cn log2 n is greater or lesser than 2cn log3 n, that is,
whether log2 n is greater or lesser than 2 log3 n = 2 log3 2 · log2 n. Because
2 log3 2 = 1.262 > 1.0, the algorithm under consideration is slightly slower
than Mergesort.

5. Let an array of size n be split into k subarrays of size n
k . Then the total

time to separately sort the subarrays is k · c ·
(

n
k

)2 = c · n2

k . Time for
merging k presorted subarrays is c · (k − 1) · n. Thus the total time is
proportional to n2

k + n · (k − 1).

5



If k = 1 the sorting is O(n2). If k = n the sorting is also O(n2). This
suggests that the computational complexity may be less somewhere in be-
tween these bounds.

Those who know the calculus may easily derive the optimum k by dif-
ferentiating the expression n

k + k − 1 by k and setting it equal to zero:
− n

k2 + 1 = 0, or k =
√

n. Those who do not like mathematics may ex-
ploit the inverse symmetry between the terms n

k and k in this sum. These
terms have the fixed product n = n

k ·k, so they should be set equal for the
optimum point: n

k = k, or k =
√

n. Both variants of getting the result are
acceptable.

The resulting time complexity of this sorting is O(n1.5) so that the algo-
rithm is better than InsertionSort but worse than MergeSort.

6. Time complexity of the proposed algorithm depends both on data moves
and data comparisons for searching a position of every item.

(a) Because the position of inserting the i-th item may equiprobably be
from 0 to i, in average about i/2 data moves should be done. In total:

1
2
(0 + 1 + . . . + i) =

n(n + 1)
4

(b) Twice more: n(n+1)
2 moves in the worst case

(c) The binary search in the sorted part of i items takes 1
2 log2 i steps in

the average. Thus in total the average number of comparisons is

1
2
[log2 1 + log2 2 + ... + log2 n] =

1
2

log2(n!) ≈ n

2
log2(n)

(d) Twice more, or n log2 n comparisons in the worst case

(e) With respect to comparisons only, it has complexity O(n log n)

(f) With respect to moves, it is still O(n2)

7. Time for the options (i) and (ii) is T (n) = cpn T (n) = cn log10 n, respec-
tively. Thus, the second option is better when p > log10 n. To minimise
average running time, one has to choose the first option if log10n ≤ p and
the second option otherwise. Because log10106 = 6 < 100, the second
option is the best.

6



8.

Algorithm Worst-case Average-case

Insertion sort O(n2) O(n2)

Heapsort O(n log n) O(n log n)

Mergesort O(n log n) O(n log n)

Quicksort O(n2) O(n log n)

Sequential search O(n) O(n)

Binary search O(log n) O(log n)

9. The maximum heap is created from a given array of n integer keys by
percolating the keys down starting from the largest non-leaf position p =
bn/2c (abbreviation PD:k stands for the percolation down starting from
the position k):

Position 1 2 3 4 5 6 7 8 9 10
Array 10 26 52 76 13 8 3 33 60 42
PD:5 10 26 52 76 42 8 3 33 60 13
PD:4 10 26 52 76 42 8 3 33 60 13
PD:3 10 26 52 76 42 8 3 33 60 13
PD:2 10 76 52 26 42 8 3 33 60 13

10 76 52 60 42 8 3 33 26 13
PD:1 76 10 52 60 42 8 3 33 26 13

76 60 52 10 42 8 3 33 26 13
76 60 52 33 42 8 3 10 26 13

Max. heap 76 60 52 33 42 8 3 10 26 13

The initial array and the percolation steps of creating the maximum heap
are shown in figures below.

Initial array:

7



Percolation down from the position 5 (PD:5):

Percolation down from the position 2 (PD:2):

8



Percolation down from the position 1 (PD:1):

10. The depth-first traversal of a binary search tree puts all the items attached
to the nodes into sorted order. Therefore, to convert the array into such a
tree, one should sort the array, and place the sorted elements in line with
the traversal of the tree. In our case, the depth-first traversal from left
to right gives the following sequence of the nodes relating to the sorted
array:

Node : 8 4 9 2 5 10 1 6 3 7
Element : 3 8 10 13 33 26 42 52 60 76

so that the well-balanced binary search tree similar to the heap is as
follows:

9



A binary search tree satisfies the following search order priority: for every
node x in the tree, the values of all the keys in the left subtree are smaller
than or equal to the key in x and the values of all the keys in the right
subtree are greater than the key in x. In a heap, the key of each parent
node is greater than or equal to the key of any child node.

11. The algorithms A and B spend time TA = csortn log2 n and TB = cslctkn,
respectively, to select the desired k items. Therefore, the algorithm B out-
performs the algorithm A if cslctkn ≤ csortn log2 n, i.e. if k ≤ csort

cslct
log2 n.

In accord with the given conditions, csort1024 log2 1024 = 10240csort =
10.24 microseconds for QuickSort, so that csort = 10−3 microseconds per
item. For QuickSelect, cslct1024 = 1.024microseconds, so that cslct = 10−3

microseconds per item. Because k = 512 � 10−3

10−3 log2 220 = 20. the
algorithm of choice for k = 512 and n = 220 is A.

2.3 Symbol tables and hashing: exercises

1. The NZ Inland Revenue Department assigns a unique 8-digit decimal IRD
number in the range [00,000,000 ... 99,999,999] to every person paying
taxes. Provided that the amount of random access memory (RAM) avail-
able is not restricted, you can sort an arbitrary large database of the IRD
numbers using an integer array of size 100,000,000. Each element of the
array is a counter that counts how many times the IRD number occurs in
the database (zero if the IRD number is absent).

(a) What is the Big-Oh complexity of this algorithm, which is called a
bucket sort, for sorting a database of size N?

(b) What is the Big-Oh complexity of checking whether a given IRD
number is present or absent in the sorted database?

(c) What is the Big-Oh complexity of updating the database by deleting
or inserting a particular number?

(d) Explain, why the bucket sort cannot serve as a general sorting algo-
rithm?

2. Convert an array [10, 26, 52, 76, 13, 8, 3, 33, 60, 42] into a hash table of size
13 using modulo-based hash addressing: 〈address〉 = 〈data value〉 mod 13
and linear probing to resolve collisions. Hint: Modulo operation m mod n
returns the residual of the integer division m/n: e.g., if m = 17, n = 13
then 17/13 = 1 and 17mod 13 = 4. The operation is denoted m%n in
Java.

3. Convert the above array into a hash table of size 13 using modulo-based
hash addressing: 〈address〉 = 〈data value〉mod 13 and double hashing with
the backward step max{1, 〈data value〉/13} to resolve collisions.

4. Convert the above array into a hash table of size 13 using modulo-based
hash addressing 〈address〉 = 〈data value〉mod 13 and chaining to resolve
collisions.

10



2.4 Symbol tables and hashing: solutions

1. The bucket sort has the following properties.

(a) It has complexity O(N) for sorting an arbitrary database of size N .

(b) Complexity of checking whether a given IRD number is present or
absent in the sorted database is O(1).

(c) Complexity of updating the database by deleting or inserting a par-
ticular number is O(1).

(d) The bucket sort cannot serve as a general sorting algorithm because
in the general case the range of data to be sorted is not restricted.

2. The initially empty hash table of size 13 is formed using the hash address
h(k) = kmod 13 and linear probing (with the probe decrement ∆ = −1)
as follows:

Key k Address h(k) Collision resolution
10 10 no collision
26 0 no collision
52 0 collision; probing: (0− 1)mod 13 = 12

12 no collision
76 11 no collision
13 0 collision; probing: (0− 1)mod 13 = 12

12 collision; probing: 12− 1 = 11
11 collision; probing: 11− 1 = 10
10 collision; probing: 10− 1 = 9
9 no collision

8 8 no collision
3 3 no collision
33 7 no collision
60 8 collision; probing: 8− 1 = 7

7 collision; probing: 7− 1 = 6
6 no collision

42 3 collision; probing: 3− 1 = 2
2 no collision

The final hash array is

address 0 1 2 3 4 5 6 7 8 9 10 11 12
key 26 – 42 3 – – 60 33 8 13 10 76 52

3. The initially empty hash table of size 13 is formed using the hash address
h(k) = kmod 13 and double hashing probing (with the probe decrement
∆(k) = max{k/13, 1}) as follows:

11



Key k Address h(k) ∆(k) Collision resolution
10 10 no collision
26 0 no collision
52 0 4 collision; probing: (0− 4)mod 13 = 9

9 no collision
76 11 no collision
13 0 1 collision; probing (0− 1)mod 13 = 12

12 no collision
8 8 no collision
3 3 no collision
33 7 no collision
60 8 4 collision; probing (8− 4) = 4

4 no collision
42 3 3 collision; probing (3− 3) = 0

0 collision; probing (0− 3)mod 13 = 10
10 collision; probing (10− 3) = 7
7 collision; probing (7− 3) = 4
4 collision; probing (4− 3) = 1
1 no collision

The final hash array is

address 0 1 2 3 4 5 6 7 8 9 10 11 12
key 26 42 – 3 60 – – 33 8 52 10 76 13

4. The initially empty hash table of size 13 is formed using the hash address
h(k) = kmod 13 and external chaining as follows:

Key k 10 26 52 76 13 8 3 33 60 42
h(k) 10 0 0 11 0 8 3 7 8 3
Chain 10 26 26 76 26 8 3 33 8 3

52 52 60 42
13

The final hash array with the chains of keys is

address 0 1 2 3 4 5 6 7 8 9 10 11 12
chain 26 – – 3 – – – 33 8 – 10 76 –

52 42 60
13

12


