Computer Science 220S1T (2008)

Assignment 3: Automata and Pattern Matching Due date: June 3, 2008; 8:30pm (ADB time)

Questions

1. A) Design an NFA N accepting the language $L=\left\{a^{n} b a^{m}: n, m>0\right\}$.

[10 marks]
B) Design a DFA M such that $L(M)=L(N)$.
\square
[10 marks]
2. A) Describe an algorithm which tests whether an arbitrary DFA M accepts only finitely many strings.

[10 marks]
B) What is the runtime of your algorithm?

C) Use the algorithm in A) to test whether the following DFA

accepts infinitely many strings.
\square
C) Determine $L(M)$. Justify your answer.
3. Show that there is an algorithm which receives as input a DFA M over the alphabet $\{a, b\}$ and decides whether $L(M)=\{a\}$ or $L(M) \neq\{a\}$. Clearly state all results you use.

[20 marks]
4. A) Construct an NFA N recognising the language $\left\{u a b a b v: u, v \in\{a, b\}^{*}\right\}$.
B) Construct a infinite sequence of strings s_{1}, s_{2}, \ldots each of which is accepted by the NFA N at A); justify your answer.
[5 marks]
5. Show that there exist infinitely many DFA's each of which recognises exactly the language $\{\varepsilon, a, b\}$.
