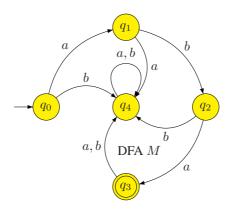
## **Computer Science 220S1T (2008)**

## Assignment 3: Automata and Pattern Matching Due date: June 3, 2008; 8:30pm (ADB time)

## Questions

1. A) Design an NFA N accepting the language  $L = \{a^n b a^m : n, m > 0\}$ .

[10 marks]


B) Design a DFA M such that L(M) = L(N).

[10 marks]

2. A) Describe an algorithm which tests whether an arbitrary DFA M accepts only finitely many strings.

[5 marks]

C) Use the algorithm in A) to test whether the following DFA



accepts infinitely many strings.

[10 marks]

[5 marks]

3. Show that there is an algorithm which receives as input a DFA M over the alphabet  $\{a, b\}$  and decides whether  $L(M) = \{a\}$  or  $L(M) \neq \{a\}$ . Clearly state all results you use.

[20 marks]

4. A) Construct an NFA N recognising the language  $\{uababv : u, v \in \{a, b\}^*\}$ .

[15 marks]

B) Construct a infinite sequence of strings  $s_1, s_2, \ldots$  each of which is accepted by the NFA N at A); justify your answer.

[5 marks]

5. Show that there exist infinitely many DFA's each of which recognises exactly the language  $\{\varepsilon, a, b\}$ .

[10 marks]