TUTORIAL-7

AUTOMATA

Finite automata are a useful model for many important kinds of hardware and software.

- 1. Software for designing and checking the behaviour of digital circuits.
- 2. The "lexical analyzer" of a typical compiler i.e. the compiler component that breaks the input text into logical units such as identifiers, keywords, and punctuation.
- 3. Software for scanning large bodies of text such as collection of web pages, to find occurrences of words, phrases or other patterns.
- 4. Software for verifying systems of all types that have a finite number of distinct states, such as communications protocols or protocols for secure exchange of information.

Two types of Finite automata :

Deterministic Finite Automata(DFA):

- a) Single start state
- b) Exactly one transition (change of state) for each input symbol
- c) May have multiple accept state.

Nondeterministic Finite Automata(NFA):

- d) May have multiple start state
- e) May have more than one transition for each input symbol
- f) May have multiple accept state.

Example: What should be the value of S,F,Q, Σ , ∂ for the following DFA.

Start state, S={3} Set of accepting states, F={2,5} Finite set of machine states, Q={1,2,3,4,5} Input alphabet, $\Sigma = \{0,1\}$

Transition function, ∂ is represented by the following transition table:

∂	0	1
1	Φ	Φ
2	{1}	{1}
3	{2}	{4}
4	{5}	{1}
5	{5}	{3}

Example: Draw the following DFA, given S={3}, F={2,4}, Q={1,2,3,4}, $\Sigma = \{9, k, \$\}$ and ∂ is represented by the following transition table.

∂	9	К	\$
1	{1}	{3}	{2}
2	{4}	{1}	{3}
3	{4}	{3}	{1}
4	{2}	{1}	{2}

Example: What should be the value of S,F,Q, \sum , ∂ for the following NFA.

Start state, $S=\{1,4\}$

Set of accepting states, $F=\{2,3\}$ Finite set of machine states, $Q=\{1,2,3,4,5,6\}$ Input alphabet, $\Sigma = \{a,b\}$

Transition function, ∂ is represented by the following transition table:

∂	a	b
1	{2}	{2}
2	{3}	Φ
3	<i>{</i> 6 <i>}</i>	<i>{</i> 6 <i>}</i>
4	{5}	{1}
5	{5,1}	{2,3}
6	{5}	{5}

Example: Draw the NFA for the following parameters.

S={3,4}, F={2,4}, Q={1,2,3,4}, Σ ={9,k,+,5} and ∂ is represented by the following transition table.

∂	9	k	+	5
1	{1}	{2,3}	{2}	{1,2,3}
2	{1,4}	Φ	{1,3}	Φ
3	{3,4}	{3}	Φ	{3}
4	{2}	Φ	Φ	Φ

Example: For each of the following three automata, indicate in the table(true/false) whether the machine accepts the input.

A1

Input	A1	A2	A3
abaa	true	false	false
ababbaaa	true	false	true