TUTORIAL-6

Example-1: Draw depth-first search (DFS) tree of the following digraph originating from vertex 0 and label the vertices with pre-order and post-order labels.

DFS Tree

Example-2: Write down all Tree arcs, Back arcs, Cross arcs and Forward arcs for the above digraph.

Tree arcs (arcs those make the tree): $(0,1),(1,6),(0,2),(2,4),(4,5),(0,3)$
Back $\operatorname{arcs}($ an arc from descendent to ancestor) : $(2,0),(5,2),(5,4),(5,0)$
Cross arcs(an arc neither from ancestor to descendent nor descendent to ancestor): $(3,1),(3,5),(3,6),(5,6)$
Forward arcs (an arc from ancestor to descendent): (0,6), (0,4)
NB: For an arc (p, q), node p will become ancestor of node q if node p is seen before node q and p is finished after q.

Node p will becomedescendent of node q if node p is seen after node q and p is finished before q .

Example-3: Write the time stamps for all the nodes of the above DFS Tree.

Node	Time Seen	Time Finished
0	0	13
1	1	4
2	5	10
3	11	12
4	6	9
5	7	8
6	2	3

Example-4: What is the order, size, diameter and girth of the following graph.

Order (no. of vertex) $=7$
Size (no. of edges) $=8$
Diameter (largest distance between any pair of nodes) $=3$
Girth (length of shortest cycle) $=4$

BFS Tree

DFS Tree

Example-5: Give the depth-first search (DFS) tree of the following digraph originating from vertex 0 and label the vertices with pre-order and post-order labels.

DFS Tree

5,1

Example-6: Write down the strongly connected components of the digraph whose adjacency list is given below.

```
0: 1,3
1:
2: 0
3: 1,2
4: 3, 5,2
5: 3,4
```

To find out strongly connected components we need to draw the corresponding digraph of the above adjacency list.

Strongly connected components are: $\{0,3,2\},\{4,5\},\{1\}$
N.B: For finding strongly connected component, first we should look for largest length cycle (i.e to include as many node as possible in the cycle). In this case the cycle $\{0,3,2\}$ Then we should look for next larger length cycle which is in this case $\{4,5\}$. The next one is $\{1\}$ which includes only one node. We must cover all the nodes. If we can't find any cycle, we have to include single node. But we can't repeat any node.

