TUTORIAL-2

Example-1: Suppose we are analyzing two types of algorithms (say algorithm-A & algorithm-B). The running time of algorithm-A is $0.01*(\log_2 n)^2$ ms and algorithm-B is 2 ms. We want to find out for what value of n (here n is input size) the algorithm-B is faster.

Faster algorithm means the algorithm which takes less amount of time to execute. In this case to become the algorithm faster,

 $2 < 0.01*(\log_2 n)^2$

 $0.01*(\log_2 n)^2 > 2$

 $\log_2 n > v2*10$

 $n > 2^{v2*10}$

n > 18080

So, the algorithm-B is faster for the values greater than 18080.

Example-2: Suppose we have an algorithm with a complexity of $O(\log_{10} \log_{10} n)$. The running time of the algorithm is 10 ms for input size $n=10^3$. What should be the running time of that algorithm for $n=10^{17}$?

We can calculate the running time from the complexity of the algorithm using the function, $T(n) = k^* \log_{10} \log_{10} n$

For T(n) = 10 ms and $n = 10^3$.

 $k = 10/(\log_{10}\log_{10} 10^3) = 10/3$

When $n=10^{17}$ T(n) = k* log₁₀log₁₀ n = (10/3) * log₁₀log₁₀ 10¹⁷ = 25.76 ms.

Example-3: Suppose we have an algorithm of running time $T(n) = \log_n n$. We have to select the value of m either 5 or 7. What value of m should we select to get lowest running time of the algorithm ?

We can write $\log_m n = \ln n / \ln m$

 $T(n) = \ln n / \ln m$

For m=5, $T(n) = 0.6062*\ln n$

For m=7, T(n) =0.5139*ln n

So we will select m=7 to get lowest running time.

Example-4: We want to calculate the running time and Big-oh of the following algorithm.

for(int i= n; i > 0: i= i/2) for(int j= 0; j < i: j++) System.out.println("415.220");

Let us assume that $n = 2^m$ where m is a constant.

In this example we should calculate the number of execution of println() method considering both the loop at a time because the inner loop variable j is dependent on outer loop variable i.

For i= n the inner loop will execute for n (=2^m) times. For i= n/2 the inner loop will execute for n/2 (=2^{m-1}) times. For i= n/4 the inner loop will execute for n/4 (=2^{m-2}) times.

For i= 1 the inner loop will execute for $1 (=2^0)$ times.

Total number of execution of println() method is

 $2^{0} + 2^{1} + 2^{2} + \dots + 2^{m-1} + 2^{m} = 2^{m+1} - 1 = 2^{*} 2^{m} - 1 = 2n - 1$

Running time of the above algorithm T(n) = k(2n-1) where k is the constant time required to execute println() method one time .

T(n) is O(n).