
Tutorial-1 
 
How to calculate Running time of an algorithm?  
 
We can calculate the running time of an algorithm reliably by running the 
implementation of the algorithm on a computer. 
 
Alternatively we can calculate the running time by using a technique 
called algorithm analysis. We can estimate an algorithm’s performance 
by counting the number of basic operations required by the algorithm to 
process an input of a certain size. 
 
Basic Operation: The time to complete a basic operation does not 
depend on the particular values of its operands. So it takes a constant 
amount of time. 
Examples: Arithmetic operation (addition, subtraction, multiplication, 
division), Boolean operation (AND, OR, NOT), Comparison operation, 
Module operation, Branch operation etc.  
 
 
Input Size: It is the number of input processed by the algorithm. 
Example: For sorting algorithm the input size is measured by the number 
of records to be sorted. 
 
Growth Rate: The growth rate of an algorithm is the rate at which the  
running time (cost) of the algorithm grows as the size of the input grows. 
The growth rate has a tremendous effect on the resources consumed by 
the algorithm.  
 
Consider the following simple algorithm to solve the problem of finding 
the 1st element in an array of n integers. 
 
public int findFirstElement(int[] a){ 
   int firstElement = a[0]; 
   return  firstElement; 
} 
 
It is clear that no matter how large the array is, the time to copy the value 
from the first position of the array is always constant (say k). So the time 
T to run the algorithm as a function of n, T(n) = k .  Here T(n) does not 
depend on the array size n. We always assume T(n) is a non-negative 
value. 
 

 
Consider another following algorithm to solve the problem of finding the 
smallest element in an array of n integers.  
 
public int findSmallElement(int[] a){ 
   int smElement = a[0]; 
   for(int i=0; i<n ; i++) 
      if(a[i] < smElement) 
 smElement=a[i]; 
   return  smElement; 
} 
 
 
Here the basic operation is to compare between two integers and each 
comparison operation takes a fixed amount of time (say k) regardless of 
the value of the two integers or their position in the array. In this 
algorithm the comparison operation is repeated n times due to for loop.  
So the running time of the above algorithm, T(n) = kn. The above 
algorithm is said to have linear growth rate.  
 
Since for calculation of running time we want a reasonable approximation 
we have ignored the time required to increment the variable i , the time 
for actual assignment when a smaller value is found or time taken to 
initialize the variable smElement. 
 
Consider another algorithm to solve the problem of finding the smallest 
element from a two dimensional array n rows and n columns. 
 
public int findSmallElement(int[][] a){ 
   int smElement = a[0][0]; 
   for(int i=0; i<n ; i++) 
        for(int j=0; j<n ; j++) 
        if(a[i][j] < smElement) 
      smElement=a[i][j]; 
   return  smElement; 
} 
 
The total number of comparison operation occurs n*n=n 2 times. So the 
running time of the algorithm, T(n) = kn2. The above algorithm is said to 
have quadratic growth rate.  
 
 
 



Contiguous Subsequence Sums Example: 
 
int[] a= {3, 4, 1, 3, 2, 7, 4, 4, 2, 6, 1, 4} 
We shall compute all contiguous subsequence of length 5 for the array.  
Array size n=12, subsequence length m=5. 
Total number of subsequence = n – m + 1 = 12-5 +1=8.  
 
# Using Brute force algorithm: 
 
S0 = a[0] + a[1] + a[2] + a[3] + a[4] = 3+4+1+3+2=13 
 
S1 = a[1] + a[2] + a[3] + a[4] + a[5]=4+1+3+2+7=17 
 
S2 = a[2] + a[3] + a[4] + a[5] + a[6]=1+3+2+7+4=17 
 
S3 = a[3] + a[4] + a[5] + a[6] + a[7]=3+2+7+4+4=20 
 
S4 = a[4] + a[5] + a[6] + a[7] + a[8]=2+7+4+4+2=19 
 
S5 = a[5] + a[6] + a[7] + a[8] + a[9]=7+4+4+2+6=23 
 
S6 = a[6] + a[7] + a[8] + a[9] + a[10]=4+4+2+6+1=17 
 
S7 = a[7] + a[8] + a[9] + a[10] + a[11]=4+2+6+1+4=17 
 
Using Brute force algorithm total number of additions =8*4=32. 
 
# Using previous subsequence(S k+1=Sk + a[k+m] – a[k]) 
 
S0 = a[0] + a[1] + a[2] + a[3] + a[4] = 3+4+1+3+2=13 
 
S1 = S0 + a[5] -a[0] = 13+7-3=17 
 
S2 = S1 + a[6] - a[1] = 17+4-4=17 
 
S3 = S2+ a[7] - a[2] = 17+4-1=20 
 
S4 = S3+ a[8] – a[3] = 20+2-3=19 
 
S5 = S4+ a[9] – a[4] = 19+6-2= 23  
 
S6 = S5 + a[10] –  a[5] = 23+1-7= 17  
 

S7 = S6+ a[11] – a[6] = 17+4-4= 17   
 
Total number of additions =18 
 
Running Time Calculation Examples: 
 

a) for(int i=0; i<n; i++) 
               System.out.println(“Algorithm analysis”);  
         for(int j=n; j>0; j--) 
               System.out.println(“Algorithm analysis”);  
 
The println() method takes a constant amount of time say c. 
The println() method will be called n times due to 1st for loop and n times 
due to 2nd for loop. So total running time of the above algorithm  
T(n) = (n+n)*c = 2nc 
 

b) for(int i=n; i>0; i--) 
         for(int j=n ; j>i; j--) 
             System.out.println(“Algorithm analysis”); 

 
The loop variable for the outer loop is assigned to the values 
 n, n -1, n-2, …………., 1 resulting a total of n iterations. The inner loop 
is executed (n-i) times. The total number of calls to the println() method 
is (n -n) + (n - (n -1)) + (n - (n-2)) +…………+ (n-1) = 0+1+2+……….+n -1 
=(n-1)*n/2. 
T(n) = c* (n-1)*n/2. 
 

c) for(int i=1; i< n; i=i*2) 
         System.out.println(“Algorithm analysis”); 

 
The loop variable i is assigned to the values 1, 2, 4,……n. For simplicity 
of our calculation let as assume that n is a power of 2. Suppose  the loop 
will be terminated aft er k number of iterations. So, n = 2k  ie. log2n = k. 
Running time of the above algorithm, T(n) = c*k = c*log2n. 
 

d) for (int i=0; i<=n; i++) 
          if(i %10 == 0) 
              for (int j=0; j<i; j++) 
     System.out.println(“Algorithm analysis”);  
 

The inner loop will be executed only when i is a multiple on 10 ie. i=0, 
10, 20, ……., (n/10)*10. The total number of calls to the println() method 



is  0 + 10 + 20 + 30 + ……….+ (n/10)*10 = 
10*(0+1+2+3+….+n/10)=10*(n/10)*(n/10 + 1)/2. 
Running time of the above algorithm, T(n) = c*10*(n/10)*(n/10 + 1)/2. 
 
 
   
 
 

 
 

 
 
 
 

 
 
 
 
 
 
 
  
     


