Tutorial-1

How to calculate Running time of an algorithm?

We can calculate the running time of an algorithm reliably by running the implementation of the algorithm on a computer.

Alternatively we can calculate the running time by using a technique called algorithm analysis. We can estimate an algorithm's performance by counting the number of basic operations required by the algorithm to process an input of a certain size.

Basic Operation: The time to complete a basic operation does not depend on the particular values of its operands. So it takes a constant amount of time.
Examples: Arithmetic operation (addition, subtraction, multiplication, division), Boolean operation (AND, OR, NOT), Comparison operation, Module operation, Branch operation etc.

Input Size: It is the number of input processed by the algorithm. Example: For sorting algorithm the input size is measured by the number of records to be sorted.

Growth Rate: The growth rate of an algorithm is the rate at which the running time (cost) of the algorithm grows as the size of the input grows. The growth rate has a tremendous effect on the resources consumed by the algorithm.

Consider the following simple algorithm to solve the problem of finding the $1^{\text {st }}$ element in an array of n integers.

```
public int findFirstElement(int[] a){
    int firstElement = a[0];
    return firstElement;
}
```

It is clear that no matter how large the array is, the time to copy the value from the first position of the array is always constant (say k). So the time T to run the algorithm as a function of $n, T(n)=k$. Here $T(n)$ does not depend on the array size n. We always assume $T(n)$ is a non-negative value.

Consider another following algorithm to solve the problem of finding the smallest element in an array of n integers.

```
public int findSmallElement(int[] a){
    int smElement = a[0];
    for(int i=0; i<n ; i++)
        if(a[i] < smElement)
            smElement=a[i];
    return smElement;
}
```

Here the basic operation is to compare between two integers and each comparison operation takes a fixed amount of time (say k) regardless of the value of the two integers or their position in the array. In this algorithm the comparison operation is repeated n times due to for loop. So the running time of the above algorithm, $\mathrm{T}(\mathrm{n})=\mathrm{kn}$. The above algorithm is said to have linear growth rate.

Since for calculation of running time we want a reasonable approximation we have ignored the time required to increment the variable i, the time for actual assignment when a smaller value is found or time taken to initialize the variable smElement.

Consider another algorithm to solve the problem of finding the smallest element from a two dimensional array n rows and n columns.

```
public int findSmallElement(int[][] a)\{
    int smElement \(=\mathrm{a}[0][0]\);
    for(int \(\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++\) )
            for(int \(\mathrm{j}=0 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++\) )
                if(a[i][j] < smElement)
                    smElement=a[i][j];
    return smElement;
\}
```

The total number of comparison operation occurs $n * n=n^{2}$ times. So the running time of the algorithm, $\mathrm{T}(\mathrm{n})=\mathrm{kn}^{2}$. The above algorithm is said to have quadratic growth rate.

Contiguous Subsequence Sums Example:

$\operatorname{int}[] \mathrm{a}=\{3,4,1,3,2,7,4,4,2,6,1,4\}$
We shall compute all contiguous subsequence of length 5 for the array.
Array size $n=12$, subsequence length $m=5$.
Total number of subsequence $=\mathrm{n}-\mathrm{m}+1=12-5+1=8$.

\# Using Brute force algorithm:

$\mathrm{S} 0=\mathrm{a}[0]+\mathrm{a}[1]+\mathrm{a}[2]+\mathrm{a}[3]+\mathrm{a}[4]=3+4+1+3+2=13$
$\mathrm{S} 1=\mathrm{a}[1]+\mathrm{a}[2]+\mathrm{a}[3]+\mathrm{a}[4]+\mathrm{a}[5]=4+1+3+2+7=17$
$\mathrm{S} 2=\mathrm{a}[2]+\mathrm{a}[3]+\mathrm{a}[4]+\mathrm{a}[5]+\mathrm{a}[6]=1+3+2+7+4=17$
$\mathrm{S} 3=\mathrm{a}[3]+\mathrm{a}[4]+\mathrm{a}[5]+\mathrm{a}[6]+\mathrm{a}[7]=3+2+7+4+4=20$
$\mathrm{S} 4=\mathrm{a}[4]+\mathrm{a}[5]+\mathrm{a}[6]+\mathrm{a}[7]+\mathrm{a}[8]=2+7+4+4+2=19$
$\mathrm{S} 5=\mathrm{a}[5]+\mathrm{a}[6]+\mathrm{a}[7]+\mathrm{a}[8]+\mathrm{a}[9]=7+4+4+2+6=23$
$\mathrm{S} 6=\mathrm{a}[6]+\mathrm{a}[7]+\mathrm{a}[8]+\mathrm{a}[9]+\mathrm{a}[10]=4+4+2+6+1=17$
$\mathrm{S} 7=\mathrm{a}[7]+\mathrm{a}[8]+\mathrm{a}[9]+\mathrm{a}[10]+\mathrm{a}[11]=4+2+6+1+4=17$
Using Brute force algorithm total number of additions $=8 * 4=32$.
\# Using previous subsequence $\left(\mathbf{S}_{\mathrm{k}+1}=\mathbf{S}_{\mathbf{k}}+\mathbf{a}[\mathbf{k}+\mathbf{m}]-\mathbf{a}[\mathbf{k}]\right)$
$S_{0}=\mathrm{a}[0]+\mathrm{a}[1]+\mathrm{a}[2]+\mathrm{a}[3]+\mathrm{a}[4]=3+4+1+3+2=13$
$S_{1}=S_{0}+a[5]-a[0]=13+7-3=17$
$\mathrm{S}_{2}=\mathrm{S}_{1}+\mathrm{a}[6]-\mathrm{a}[1]=17+4-4=17$
$S_{3}=S_{2}+a[7]-\mathrm{a}[2]=17+4-1=20$
$S_{4}=S_{3}+a[8]-a[3]=20+2-3=19$
$S_{5}=S_{4}+\mathrm{a}[9]-\mathrm{a}[4]=19+6-2=23$
$\mathrm{S}_{6}=\mathrm{S}_{5}+\mathrm{a}[10]-\mathrm{a}[5]=23+1-7=17$
$\mathrm{S}_{7}=\mathrm{S}_{6}+\mathrm{a}[11]-\mathrm{a}[6]=17+4-4=17$
Total number of additions $=18$
Running Time Calculation Examples:
a) for(int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$)

System.out.println("Algorithm analysis"); for(int $\mathrm{j}=\mathrm{n} ; \mathrm{j}>0$; $\mathrm{j}-\mathrm{-})$

System.out.println("Algorithm analysis");
The println() method takes a constant amount of time say c .
The println () method will be called n times due to $1^{\text {st }}$ for loop and n times due to $2^{\text {nd }}$ for loop. So total running time of the above algorithm $\mathrm{T}(\mathrm{n})=(\mathrm{n}+\mathrm{n}) * \mathrm{c}=2 \mathrm{nc}$
b) for(int $\mathrm{i}=\mathrm{n}$; $\mathrm{i}>0$; $\mathrm{i}-\mathrm{-})$
for(int $\mathrm{j}=\mathrm{n} ; \mathrm{j}>\mathrm{i} ; \mathrm{j}-$)
System.out.println("Algorithm analysis");
The loop variable for the outer loop is assigned to the values $\mathrm{n}, \mathrm{n}-1, \mathrm{n}-2, \ldots \ldots \ldots \ldots ., 1$ resulting a total of n iterations. The inner loop is executed ($\mathrm{n}-\mathrm{i}$) times. The total number of calls to the println() method is $(\mathrm{n}-\mathrm{n})+(\mathrm{n}-(\mathrm{n}-1))+(\mathrm{n}-(\mathrm{n}-2))+\ldots \ldots \ldots \ldots+(\mathrm{n}-1)=0+1+2+$ \qquad $+n-1$ $=(\mathrm{n}-1) * \mathrm{n} / 2$. $\mathrm{T}(\mathrm{n})=\mathrm{c}^{*}(\mathrm{n}-1)^{*} \mathrm{n} / 2$.
c) for(int $\mathrm{i}=1$; $\mathrm{i}<\mathrm{n}$; $\mathrm{i}=\mathrm{i} * 2$)

System.out.println("Algorithm analysis");
The loop variable i is assigned to the values $1,2,4, \ldots \ldots$. . . For simplicity of our calculation let as assume that n is a power of 2 . Suppose the loop will be terminated after k number of iterations. So, $n=2^{k}$ ie. $\log _{2} n=k$. Running time of the above algorithm, $\mathrm{T}(\mathrm{n})=\mathrm{c} * \mathrm{k}=\mathrm{c}^{*} \log _{2} \mathrm{n}$.
d) for (int $\mathrm{i}=0$; $\mathrm{i}<=\mathrm{n}$; $\mathrm{i}++$)

$$
\text { if(i } \% 10=0)
$$

$$
\text { for (int } \mathrm{j}=0 ; \mathrm{j}<\mathrm{i} ; \mathrm{j}++ \text {) }
$$

System.out.println("Algorithm analysis");
The inner loop will be executed only when iis a multiple on $10 \mathrm{ie} . \mathrm{i}=0$, $10,20, \ldots \ldots .,(n / 10) * 10$. The total number of calls to the println() method
is $0+10+20+30+\ldots \ldots \ldots+(\mathrm{n} / 10)^{*} 10=$ $10 *(0+1+2+3+\ldots+\mathrm{n} / 10)=10 *(\mathrm{n} / 10) *(\mathrm{n} / 10+1) / 2$.
Running time of the above algorithm, $\mathrm{T}(\mathrm{n})=\mathrm{c}^{*} 10 *(\mathrm{n} / 10) *(\mathrm{n} / 10+1) / 2$.

