Minimum Spanning Trees

Prim Kruskal NP-complete problems

Lecturer: Georgy Gimel'farb

COMPSCI 220 Algorithms and Data Structures

@ Minimum spanning tree problem
® Prim’'s MST Algorithm
© Kruskal's MST algorithm

@ Other graph/network optimisation problems

2/60

Minimum Spanning Tree

Minimum spanning tree (MST) of a weighted graph G:

A spanning tree, i.e., a subgraph, being a tree and containing all
vertices, having minimum total weight (sum of all edge weights).

The MST with the total weight 9

3/60

Finding Minimum Spanning Tree

Many applications:
e Electrical, communication, road
etc network design.
e Data coding and clustering.

e Approximate NP-complete
graph optimisation.
e Travelling salesman problem:
the MST is within a factor of
two of the optimal path.

e Image analysis.

http://www.geeksforgeeks.org/applications-of-minimum-spanning-tree/

4 /60

Finding Minimum Spanning Tree

Two efficient greedy Prim's and Kruskal's MST algorithms:

e Each algorithm selects edges in order of their increasing
weight, but avoids creating a cycle.

5/60

Finding Minimum Spanning Tree

Two efficient greedy Prim's and Kruskal's MST algorithms:
e Each algorithm selects edges in order of their increasing
weight, but avoids creating a cycle.
e The Prim’'s algorithm maintains a tree at each stage that
grows to span.
e The Kruskal's algorithm maintains a forest whose trees
coalesce into one spanning tree.

5/60

Finding Minimum Spanning Tree

Two efficient greedy Prim's and Kruskal's MST algorithms:

e Each algorithm selects edges in order of their increasing
weight, but avoids creating a cycle.

e The Prim’'s algorithm maintains a tree at each stage that
grows to span.

e The Kruskal's algorithm maintains a forest whose trees
coalesce into one spanning tree.

e The Prim’s algorithm implemented with a priority queue is
very similar to the Dijkstra's algorithm.

e This implementation of the Prim's algorithm runs in time
O(m + nlogn).
e The Kruskal's algorithm uses disjoint sets ADT and can be
implemented to run in time O(mlogn).

5/60

Prim’s MST Algorithm

algorithm Prim(weighted graph (G, c), vertex s)
array win| = {c[s, 0], c[s, 1],...,c[s,n — 1]}
S« {s} ‘first vertex added to I\/IST‘
while S # V(G) do
find u € V(G) \ S so that wlu] is minimum
S+ SuU{u} ‘adding an edge adjacent to u to MST
forc € V(G)\ S do
wlz] + min{w(x], c[u, x|}
end for
end while
Very similar to the Dijkstra’s algorithm:

® Priority queue should be used for selecting the lowest edge weights w]. . .].

® |n the priority queue implementation, most time is taken by
EXTRACT-MIN and DECREASE-KEY operations.

6 /60

lllustrating the Prim’s Algorithm

S:{a} w=l ¢ & Pl

7 /60

lllustrating the Prim’s Algorithm

S = {a7b}

w =

13y,

Ob

7 /60

lllustrating the Prim’s Algorithm

S = {a,b,h} w =

01a13b5h5b002a9hoo

7 /60

lllustrating the Prim’s Algorithm

S = {a,b,d,h} w=L

7 /60

lllustrating the Prim’s Algorithm

S = {a,b,d,h,i} w =

0 1a 13b 5h 5b o0 2a]-d 121

7 /60

lllustrating the Prim’s Algorithm

S = {a7b,d,f,h71} w =

7 /60

lllustrating the Prim’s Algorithm

S = {a,b,c,d,f,hg}

w =

a

d

Tt

Sh

S,

1q

7 /60

lllustrating the Prim’s Algorithm

alb|c|d|f

0
=
—

—

S = {mb,c,d,f,g,h,i} w =

7 /60

lllustrating the Prim’s Algorithm

S = {a,b,c,d,f,g,h,i,j} w =

7 /60

Prim's Algorithm (Priority Queue Implementation)

algorithm Prim (weighted graph (G, ¢), vertex s € V(G))
priority queue @, arrays colour[n], pred[n]
for u € V(G) do
pred[u] < NULL; colour[u] + WHITE
end for
colour[s] < GREY; Q.insert(s,0)
while not Q.isEmpty() do
u + Q.peek()
for each x adjacent to u do
t <« c(u,z);
if colour[z] = WHITE then
colour|z] + GREY; pred[z] < u; Q.insert(x,t)
else if colour[x] = GREY and Q.getKey(x) > t then
Q.decreaseKey(z,t); predlz] < u
end if
end for
Q.delete(); colour[u] + BLACK
end while

return pred
8/60

MST: Prim's Algorithm — Starting Vertex a

Initialisation:

Priority queue @Q: {axey=o0}
veV ‘a b ¢ d e f g
pred|v] R —
key,

0

9/60

MST: Prim's Algorithm: 1 — 2 u + a = Q.peek(); for-loop

u = a; adjacent = € {b,c,d}; x < b; key, < cost(a,b) =2
Priority queue Q: {ao, b2}
veV ‘ a b ¢ d e f g

predfv] | — a — — —
key, |0 2

10 /60

MST: Prim's Algorithm: 3 u = a; for-loop

O—

O, ;
adjacent x € {b,¢,d}; = < ¢; key, « cost(a,c) =3
Priority queue Q: {ag,bs, c3}

veV ‘ a b c d e f g

pred|v] - -

key,

- a a
0 2 3

11 /60

MST: Prim's Algorithm: 4 u = a; for-loop

O—

@

3
adjacent x € {b,c,d}; x < d; key, < cost(a,d) =3
Priority queue Q: {ag, ba, c3,ds}

veV ‘ a b c d e f g
predfv] | — a a a — — —
key, |0 2 3 3

12 /60

MST: Prim's Algorithm: 5 -6

(Q.delete() — excluding the vertex a
Priority queue Q: {ba,c3,ds}

veV ‘ a b c d e f g
predfv] | — a a a — — —
key, |0 2 3 3

13 /60

MST: Prim's Algorithm: 7 u <+ b = Q.peek(); for-loop

adjacent x € {c,e}; x + ¢; key,. =3 < cost(b,c) =4
Priority queue Q: {ba,c3,ds}

veV ‘ a b c d e f g
predfv] | — a a a — — —
key, |0 2 3 3

14 /60

MST: Prim's Algorithm: 8 u = b; for-loop

adjacent x € {¢,e}; x + ¢; key, < cost(b,e) =3
Priority queue Q: {ba,cs,ds,e3}

veV ‘ a b c d e f g
predfv] | — a a a b — —
key, |0 2 3 3 3

15 /60

MST: Prim's Algorithm: 9 — 10

(Q.delete() — excluding the vertex b
Priority queue Q: {cs,ds,e3}

veV ‘ a b c d e f g
predfv] | — a a a b — —
key, |0 2 3 3 3

16 /60

MST: Prim's Algorithm: 11 u < ¢ = Q.peek(); for-loop

adjacent x € {d, e, [}; © < d; key; = 3 < cost(c,d) =5
Priority queue Q: {cs,ds,e3}

veV ‘ a b c d e f g
predfv] | — a a a b — —
key, |0 2 3 3 3

17 /60

MST: Prim's Algorithm: 12 u = c; for-loop

adjacent x € {d, e, [}; x <+ ¢; key, = 3 > cost(c,e) = 1; key, «+ 1

Priority queue Q: {cs,ds,e1}

veV ‘ a b c d e f g
predfv] | — a a a ¢ — —
key, |0 2 3 3 1

18 /60

MST: Prim's Algorithm: 13 u = c; for-loop

adjacent z € {d,e, f}; v < f; key; < 6
Priority queue Q: {cs,ds, €1, f6}

veV ‘ a b c d e f g
predfv] | — a a a ¢ ¢ —
key, |0 2 3 3 1 6

19 /60

MST: Prim's Algorithm: 14 — 15

(Q.delete() — excluding the vertex ¢
Priority queue Q: {e1,ds, fs}

veV ‘ a b c d e f g
predfv] | — a a a ¢ ¢ —
key, |0 2 3 3 1 6

20 /60

MST: Prim's Algorithm: 16 u + e = (.peek(); for-loop

adjacent z € {f}; z < f; key; < 6 < cost(e, f) =8
Priority queue Q: {e1,ds, fo}

veV ‘ a b c d e f g
predfv] | — a a a ¢ ¢ —
key, |0 2 3 3 1 6

21 /60

MST: Prim's Algorithm: 17 — 18

(Q.delete() — excluding the vertex e
Priority queue Q: {ds, fs}

veV ‘ a b c d e f g
predfv] | — a a a ¢ ¢ —
key, |0 2 3 3 1 6

22 /60

MST: Prim's Algorithm: 19 u < d = Q.peek(); for-loop

adjacent z € {f}; v < f; key; < 6 < cost(d, f) =7
Priority queue Q: {ds, fs}

veV ‘ a b c d e f g
predfv] | — a a a ¢ ¢ —
key, |0 2 3 3 1 6

23 /60

MST: Prim's Algorithm: 20 — 21

(Q.delete() — excluding the vertex d
Priority queue Q: {fs}

veV ‘ a b c d e f g
predfv] | — a a a ¢ ¢ —
key, |0 2 3 3 1 6

24 /60

MST: Prim's Algorithm: 22 u <+ f = Q.peek(); for-loop

adjacent = € {g}; = < g; key, < cost(f,g) =9
Priority queue Q: {fs,g9}

veV ‘ a b c d e f g
predfv] | — a a a ¢ ¢ f
key,, 0 2 3 3 1 6 9

25 /60

MST: Prim's Algorithm: 23

(Q.delete() — excluding the vertex f
Priority queue Q: {go}

veV ‘ a b c d e f g
predfv] | — a a a ¢ ¢ f
key,, 0 2 3 3 1 6 9

26 /60

MST: Prim's Algorithm: 24 — 25 u <+ g = Q.peek()

3
no adjacent vertices z;).delete() — excluding the vertex g

Priority queue Q: empty

veV ‘ a b c d e f g
predfv] | — a a a ¢ ¢ f
key,, 0 2 3 3 1 6 9

27 /60

MST: Prim's Algorithm: Output

MST edges {e = (pred[v],v) : v € V\a}:

{(a,b), (a,c), (a,d), (c,e), (¢, f), (f,g)}; total cost 24
veV ‘ a b c d e
predfv] | — a a a ¢
key, |0 2 3 3 1

f
c
6

© |

28 /60

Kruskal

Kruskal’s MST Algorithm

algorithm Kruskal(weighted graph (G,c))
T+ 0
insert F(G) into a priority queue
for e = {u,v} € E(G) in increasing order of weight do
if u and v are not in the same tree then
T+ TU{e}
merge the trees of u and v
end if
end for

e Keeping track of the trees using the disjoint sets ADT, with standard
operations FIND and UNION.

® They can be implemented efficiently so that the main time taken is at the
sorting step.

29 /60

Kruskal

lllustrating Kruskal's Algorithm

[e[(a,b) (4,9 (a, k) (G, 9) (e, 9) (d, h) (b, F) (£, 9) (e, f) (a) (d f) (h D) (6, d) (4,5) (4, 0) (F,9) (F,5)]
ke T T 2 2 4 5 5 6 10 12 13 13 15 |

30 /60

Kruskal

lllustrating Kruskal's Algorithm

[e[(a,5) (d,9) (a, k) (G, 9) (e, 9) (d, h) (b, F) (F,9) (e, f) (a) (d f) (h D) (6, d) (4,5) (b, ¢) (F,9) (F,5)]
@] 1 I 2 2 4 5 5 6 10 12 13 13 15 |

30 /60

Kruskal

lllustrating Kruskal's Algorithm

[e[(a,) (d,9) (a,h) (G, 9) (e, 9) (d, h) (b, F) (£, 9) (e, f) (a) (d f) (h D) (6, d) (4,5) (b, ¢) (F,9) (F,5)]
@] 1 I 2 2 4 5 5 6 10 12 13 13 15 |

30 /60

Kruskal

lllustrating Kruskal's Algorithm

[e[(a,) (d,9) (a,h) (G, 9) (¢, 9) (d, h) (b, F) (£, 9) (e, f) (a) (d f) (h D) (6, d) (4,5) (b, ¢) (F,9) (F,5)]
@] 1 I 2 2 4 5 5 6 10 12 13 13 15 |

30 /60

Kruskal

lllustrating Kruskal's Algorithm

[e[(a,5) (d,9) (a,h) (5, 9) (¢, 9) (d,) (6, /) (F,9) (e,) (a,d) (d, F) (h, %) (0, d) (5,5) (b,) (F,9) (F,4)]
@] 1 T 2 2 4 5 5 6 7 8 8 9 10 12 13 13 15 |

30 /60

Kruskal

lllustrating Kruskal's Algorithm

[e[(a,5) (d,9) (a,h) (5, 9) (¢, 9) (d, h) (b, /) (£,9) (e,) (a,d) (d, F) (h, %) (0, d) (5, 5) (b,) (F,9) (F,4)]
@] 1 T 2 2 4 5 5 6 7 8 8 9 10 12 13 13 15 |

30 /60

Kruskal

lllustrating Kruskal's Algorithm

[e[(a,) (d,9) (a,h) (G, 9) (¢, 9) (d,) (b,) (c. f) (a,d) (d,) (h,4) (b,d) (i) (b,0) (F,9) (F,)]
ke T 1T =2 =2 4 5 5 7 8 8 9 10 12 13 13 15 |

30 /60

MST: Kruskal's Algorithm

Initialisation:

Disjoint-sets ADT A = {{a}, {b}, {c}, {d}, {e}, {f}, {9}}

cost | 12 3 3 3 4 5 6 7 8 9
edge [(c,€) (a,0) (a,¢) (a,d) (b€) (b,) (c,d) (. f) (d, f) (e,]) (f.9)

31/60

MST: Kruskal's Algorithm

Step 1: {S. = A.set(c)} # {S. = A.set(e)}; add (c,¢e); A.union(S., Se)
Disjoint-sets ADT A = {{a}, {5}, {e.c}, {d}, {/}, {o}}

cost| 12 3 3 3 4 5 6 7 8 9
edge [(c,¢) (a,0) (a;¢) (a,d) (b€) (b,) (c,d) (¢, f) (d, f) (e, [) (f.9)

32/60

MST: Kruskal's Algorithm

O, :

3
Step 2: {S, = A.set(a)} # {S» = A.set(b)}; add (a,b); A.union(S,, Sp)
Disjoint-sets ADT A = {{a,b}, {c.¢}, {d}, {f}, {g}}

cost | 12 3 3 3 4 5 6 7 8 9
edge [(c.¢) (a,0) (a,¢) (a,d) (b€) (b,¢) (e,d) (¢, f) (d, f) (e,) (f.9)

33/60

MST: Kruskal's Algorithm

Step 3: {S, = A.set(a)} # {S. = A.set(c)}; add (a,c); A.union(S,, S)
Disjoint-sets ADT A = {{a,b,c.e}, {d}, {f}, {g}}

cost| 12 3 3 3 4 5 6 7 8 9
edge [(c.¢) (a.0) (a,¢) (a,d) (b€) (b,¢) (c,d) (¢, f) (d, f) (e, [) (f.9)

34 /60

MST: Kruskal's Algorithm

Step 4: {S, = A.set(a)} # {Ss = A.set(d)}; add (a,d); A.union(Sa, Sq)
Disjoint-sets ADT A = {{a,b,¢,d, e}, {f}, {g}}

cost| 12 3 3 3 4 5 6 7 8 9
edge‘ (c.e) (a,b) (a,c) (a,d) (bye) (b,c) (c,d) (¢, f) (d, f) (e, f) (f,9)

35/60

MST: Kruskal's Algorithm

Step 5: {S, = A.set(b)} = {S. = A.set(e)}; skip (b,¢)
Disjoint-sets ADT A = {{a.b,c.d. e}, {f}, {9}}

cost| 12 3 3 3 4 5 6 7 8 9
edge‘ (c.e) (a,b) (a,c) (a,d) (bye) (b,c) (c,d) (¢, f) (d, f) (e, f) (f,9)

36 /60

MST: Kruskal's Algorithm

Step 6: {S, = A.set(b)} = {S. = A.set(c)}; skip (b,¢)
Disjoint-sets ADT A = {{a.b,c.d.c}, {f}, {9}}

cost| 12 3 3 3 4 5 6 7 8 9
edge | (c.¢) (a.b) (a,c) (a.d) (b.e) (b,c) (¢,d) (¢, f) (d, f) (e, f) (f,9)

37 /60

MST: Kruskal's Algorithm

Step 7: {S. = A.set(c)} = {Sa = A.set(d)}; skip (¢, d)
Disjoint-sets ADT A = {{(/. bye,d,et, {f}, {g}}

cost| 12 3 3 3 4 5 6 7 8 9
edge | (c.¢) (a.b) (a,c) (a.d) (b.e) (b.c) (¢,d) (¢, f) (d, f) (e, f) (f,9)

38 /60

Kruskal

MST: Kruskal's Algorithm

Step 8: {S. = A.set(c)} # {Sy = Aset(f)}; add (c, f); A.union(S., Sy)
Disjoint-sets ADT A = {{a,b,c,d, ¢, f}, {g}}

cost | 12 3 3 3 4 5 6 7 8 9
edge‘ (c.e) (a,b) (a,c) (a,d) (bye) (byc) (c,d) (e, f) (d, f) (e, f) (f,9)

39 /60

Kruskal

MST: Kruskal's Algorithm

Step 9: {S; = A.set(d)} = {Sy = A.set(f)}; skip (d, f)
Disjoint-sets ADT A = {{(/. b,c,d,e, [}, {g}}

cost | 12 3 3 3 4 5 6 7 8 9
edge | (c.¢) (a.b) (a,c) (a.d) (b,e) (b.c) (c,d) (c. [) (d, f) (e, f) (f,9)

40 /60

Kruskal

MST: Kruskal's Algorithm

Step 10: {S. = A.set(e)} = {Sy = A.set(f)}; skip (e, [)
Disjoint-sets ADT A = {{(/. b,c,d,e, [}, {g}}

cost | 12 3 3 3 4 5 6 7 8 9
edge | (c.e) (a,b) (a,c) (a,d) (be) (b,c) (c,d) (c,f) (d. f) (e, f) (f,9)

41/60

Kruskal

MST: Kruskal's Algorithm

Step 11: {S; = A.set(f)} # {Sy = A.set(g)}; add (f,g); A.union(Sy, Sy)
Disjoint-sets ADT A = {{a,b,c.d,e, f,g}}

cost | 12 3 3 3 4 5 6 7 8 9
edge| (c.¢) (a,b) (a,c) (a,d) (be) (b,c) (c,d) (¢, f) (d.) (e, f) (f,9)

42 /60

Kruskal

MST: Kruskal's Algorithm: Output

Step 11: {S; = A.set(f)} # {Sy = A.set(g)}; add (f,g); A.union(Sy,Sy)
Disjoint-sets ADT A = {{(/. b,c,d,e, f, f/}}

cost | 12 3 3 3 4 5 6 7 8 9
edge | (c,e) (a,b) (a,c) (a,d) (c, f) (f,9)

43 /60

Kruskal

Comparing the Prim's and Kruskal's Algorithms

Both algorithms choose and add at each step a min-weight edge
from the remaining edges, subject to constraints.

Prim’s MST algorithm:

e Start at a root vertex.
e Two rules for a new edge:

(a) No cycle in the subgraph
built so far.

(b) The connected subgraph
built so far.

e Terminate if no more edges
to add can be found.

At each step: an acyclic

connected subgraph being a tree.

Kruskal's MST algorithm:

e Start at a min-weight edge.
e One rule for a new edge:
(a) No cycle in a forest of
trees built so far.
e Terminate if no more edges
to add can be found.

At each step: a forest of trees
merging as the algorithm
progresses (can find a spanning forest
for a disconnected graph).

44 /60

Kruskal

Correctness of Prim's and Kruskal's Algorithms

Theorem 6.15: Prim’s and Kruskal's algorithms are correct.

e A set of edges is promising if it can be extended to a MST.

e The theorem claims that both the algorithms

@ choose at each step a promising set of edges and
@® terminate with the MST as the set cannot be further extended.

Technical fact for proving these claims.

e Let B C V(G); |B| <n, be a proper subset of the vertices.

e Let 7' C E be a promising set of edges, such that no edge in T’
leaves B (i.e., If (u,v) € T, then either both w,v € B or both u,v ¢ B).

e |f a minimum-weight edge e leaves B (one endpoint in B and one

outside), then the set T'| J{e} is also promising.

45 /60

Kruskal

Correctness of Prim's and Kruskal's Algorithms

Proof of the technical fact that the set 7' J{e} is promising.

e Since the set T' is promising, it is in a some MST U.
e If e € U, there is nothing to prove.

e Otherwise, adding e to U creates exactly one cycle.

e This cycle contains at least one more edge, €/, leaving B, as
otherwise the cycle could not close.

e Removing the edge €’ forms for the graph G a new spanning
tree U'.

e Its total weight is no greater than the total weight of the
MST U, and thus the tree U’ is also an MST.

e Since the MST U’ contains the set T'| J{e} of edges, that set
is promising.

46 /60

Kruskal

Correctness of Prim's and Kruskal's Algorithms

Proof of Theorem 6.15:

e Suppose that the MST algorithm has maintained a promising
set T' of edges so far.
e Let an edge e = {u, v} have been just chosen.
e Let B denote at each step
e either the set of vertices in the tree (Prim)
e or in the tree containing the vertex u (Kruskal).

e Then the above technical fact can be applied to conclude that
T\ J{e} is promising and the algorithm is correct.

47 /60

Kruskal

Minimum Spanning Trees (MST): Some Properties

Can you prove these two facts?
@® The maximum-cost edge, if unique, of a cycle in an edge-
weighted graph G is not in any MST.

Otherwise, at least one of those equally expensive edges of the
cycle must not be in each MST.

® The minimum-cost edge, if unique, between any non-empty
strict subset S of V(G) and the V(G) \ S is in any MST.

Otherwise, at least one of these minimum-cost edges must be
in each MST.
Hint: Look whether a total weight of an MST with such a maximum-cost
edge or without such a minimum-cost edge can be further decreased.

48 /60

Optimisation

Other (Di)graph Optimisation/Decision Problems

There are many more graph and network computational and
optimisation problems.

Many of them do not have easy or polynomial-time solutions.

However, a few of them are in a special class in that their solutions
can be verified in polynomial time.
e This class of computational problems is called the NP
(nondeterministic polynomial) class.

e In addition, many of these are proven to be harder than
anything else in the NP class.

e The latter NP problems are called NP-complete ones.
Other algorithm design techniques like backtracking, branch-and-

bound or approximation algorithms (studied in COMPSCI 320) are
needed.

49 /60

Optimisation

Examples of NP-complete Graph Problems

Vertex Cover, or dominating set: Finding a subset of k;
k < |V(G)], vertices such that every vertex of the graph is
adjacent to one in that subset.

e Finding the smallest vertex cover in the graph is NP-complete.

e However, it is polynomial-time solvable for bipartite graphs.

Hamiltonian path: Finding a path through all the vertices of a graph.

Hamiltonian cycle: Finding a cycle through all the vertices of a graph
(graphs containing such a cycle are called Hamiltonian graphs).

50 /60

Optimisation

Hamiltonian Paths - Examples

http://www.cs.utsa.edu/~wagner/CS3343/graphapp2/hampaths.html

The longest (18,040 miles) Hamiltonian path from Maine (ME) between capitals of all
48 mainland US states out of the 68,656,026 possible Hamiltonian paths: J

51/60

http://www.cs.utsa.edu/~wagner/CS3343/graphapp2/hampaths.html

Optimisation

Hamiltonian Paths - Examples

http://www.cs.utsa.edu/~wagner/CS3343/graphapp2/hampaths.html

The random (13,619miles) Hamiltonian path from Maine (ME) between capitals of all
48 mainland US states out of the 68,656,026 possible Hamiltonian paths: J

52 /60

http://www.cs.utsa.edu/~wagner/CS3343/graphapp2/hampaths.html

Optimisation

Hamiltonian Paths - Examples

http://www.cs.utsa.edu/~wagner/CS3343/graphapp2/hampaths.html

The shortest (11,698 miles) Hamiltonian path from Maine (ME) between capitals of
all 48 mainland US states out of the 68,656,026 possible Hamiltonian paths: J

53 /60

http://www.cs.utsa.edu/~wagner/CS3343/graphapp2/hampaths.html

Optimisation

Examples of NP-complete Graph Problems

e Longest path: Finding the longest path between two nodes
of a digraph.
e k-colouring: Finding a k-colouring of a graph, for fixed k > 3.
e Feedback arc set: Finding a subset F' of k; k < |V (G)],
nodes such that G\ F is a DAG.
e Maximum clique: Finding a complete subgraph of the
maximum order k in a given graph G = (V, E).
e In a complete subgraph, G’ = (V', E’) C G, all the nodes
u,v € V! CV are adjacent, i.e., (u/,v') € E' C E.
k=3 k=4 k=6

54 /60

Optimisation

NP-complete Graph Colouring: Examples

https://en.wikipedia.org/wiki/Graph_coloring
http://iasbs.ac.ir/seminar/math/combinatorics/
https://heuristicswiki.wikispaces.com/Graph+coloring

Optimisation: Colouring a general graph with the minimum number of colours.

Greedy colouring

55 /60

https://en.wikipedia.org/wiki/Graph_coloring
http://iasbs.ac.ir/seminar/math/combinatorics/
https://heuristicswiki.wikispaces.com/Graph+coloring

Optimisation

Examples of NP-complete Graph Problems

Independent set: Finding the largest subset of vertices, no two of
which are connected by an edge.

<D<t

Travelling salesman problem (TSP): Finding a minimum weight
path through all the vertices of a weighted digraph (G, ¢).

9 Total weight of the path
c,eba,d, f,g: 25

56 /60

Optimisation

TSP — NP-Hard, but not NP-Complete Problem

Blog by Jean Francois Paget: https://www.ibm.com/developerworks/community/

blogs/jfp/entry/no_the_tsp_isn_t_np_complete?lang=en

e NP problem — its solution can be verified in polynomial time.
e NP-hard problem — it is as difficult as any NP problem.
e NP-complete problem — it is both NP and NP-hard.

For a given TSP solution:
@ Each city is visited once (easy verified in polynomial time).
@® Total travel length is minimal (no known polynomial-time check).

N, = (n — 1)! of paths through n vertices, starting from an arbitrary vertex:

n | 10 20 100 1000 10000
N, | 3.63-10° 1.22-10"7 9.33-155 4.02-10%°" 2.85-10%%°

57 /60

https://www.ibm.com/developerworks/community/blogs/jfp/entry/no_the_tsp_isn_t_np_complete?lang=en
https://www.ibm.com/developerworks/community/blogs/jfp/entry/no_the_tsp_isn_t_np_complete?lang=en

Optimisation

TSP — NP-Hard, but not NP-Complete Problem

Blog by Jean Francois Paget: https://www.ibm.com/developerworks/community/
blogs/jfp/entry/no_the_tsp_isn_t_np_complete?lang=en

Effective algorithms for solving the TSPs with large n exist. See, e.g., the
optimal TSP solution by D. Applegate, R. Bixby, V. Chvatal, and W. Cook for

n = 13,509 cities and towns with more than 500 residents in the USA:

58 /60

https://www.ibm.com/developerworks/community/blogs/jfp/entry/no_the_tsp_isn_t_np_complete?lang=en
https://www.ibm.com/developerworks/community/blogs/jfp/entry/no_the_tsp_isn_t_np_complete?lang=en

Optimisation

Examples of NP-complete Graph Problems

Maximum Cut: Determining whether vertices of G = (V, E) can
be separated into two non-empty subsets V; and Va; Vi | Vo = V;
Vi Ve =0, with at most k edges between Vi and V5.

e Max / min-cut optimisation: Maximising / minimising the
number k of edges between the separated subsets.

e Weighted max / min-cut: Maximising / minimising the
total weight of edges between the separated subsets.

59 /60

Optimisation

Examples of NP-complete Graph Problems

e Induced path: Determining whether there is an induced
subgraph of order k being a simple path.

e Bandwidth: Determining whether there is a linear ordering of
V' with bandwidth & or less.

e Bandwidth k& — each edge spans at most k vertices.

e Subgraph Isomorphism: Determining whether H is a
sub(di)graph of G.

e Minimum broadcast time: Determining for a given source
node of a digraph G, whether (point-to-point) broadcast to all
other nodes can take at most k time steps.

¢ Disjoint connecting paths: Determining for given k pairs of
source and sink vertices of a graph G, whether there are k
vertex-disjoint paths connecting each pair.

60 /60

	Minimum spanning tree problem
	Prim's MST Algorithm
	Kruskal's MST algorithm
	Other graph/network optimisation problems

