# Minimum Spanning Trees Prim Kruskal NP-complete problems

Lecturer: Georgy Gimel'farb

COMPSCI 220 Algorithms and Data Structures

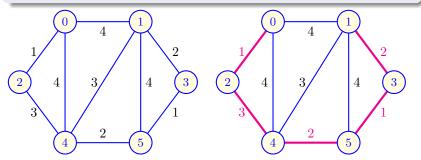
1 Minimum spanning tree problem

- 2 Prim's MST Algorithm
- 3 Kruskal's MST algorithm
- 4 Other graph/network optimisation problems

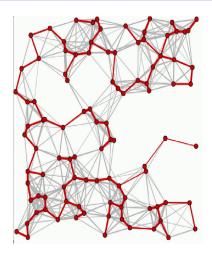
# Minimum Spanning Tree

#### Minimum spanning tree (MST) of a weighted graph G:

A **spanning tree**, i.e., a subgraph, being a tree and containing all vertices, having minimum total weight (sum of all edge weights).



The MST with the total weight 9



#### Many applications:

- Electrical, communication, road etc network design.
- Data coding and clustering.
- Approximate NP-complete graph optimisation.
  - Travelling salesman problem: the MST is within a factor of two of the optimal path.
- Image analysis.

http://www.geeks for geeks.org/applications-of-minimum-spanning-tree/

#### Two efficient **greedy** Prim's and Kruskal's MST algorithms:

- Each algorithm selects edges in order of their increasing weight, but avoids creating a cycle.
- The Prim's algorithm maintains a tree at each stage that grows to span.
- The Kruskal's algorithm maintains a forest whose trees coalesce into one spanning tree.
- The Prim's algorithm implemented with a priority queue is very similar to the Dijkstra's algorithm.
  - This implementation of the Prim's algorithm runs in time  $O(m + n \log n)$ .
- The Kruskal's algorithm uses disjoint sets ADT and can be implemented to run in time  $O(m \log n)$ .

Two efficient greedy Prim's and Kruskal's MST algorithms:

- Each algorithm selects edges in order of their increasing weight, but avoids creating a cycle.
- The Prim's algorithm maintains a tree at each stage that grows to span.
- The Kruskal's algorithm maintains a forest whose trees coalesce into one spanning tree.
- The Prim's algorithm implemented with a priority queue is very similar to the Dijkstra's algorithm.
  - This implementation of the Prim's algorithm runs in time  $O(m + n \log n)$ .
- The Kruskal's algorithm uses disjoint sets ADT and can be implemented to run in time  $O(m \log n)$ .

Two efficient greedy Prim's and Kruskal's MST algorithms:

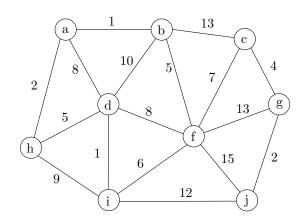
- Each algorithm selects edges in order of their increasing weight, but avoids creating a cycle.
- The Prim's algorithm maintains a tree at each stage that grows to span.
- The Kruskal's algorithm maintains a forest whose trees coalesce into one spanning tree.
- The Prim's algorithm implemented with a priority queue is very similar to the Dijkstra's algorithm.
  - This implementation of the Prim's algorithm runs in time  $O(m + n \log n)$ .
- The Kruskal's algorithm uses disjoint sets ADT and can be implemented to run in time  $O(m \log n)$ .

# Prim's MST Algorithm

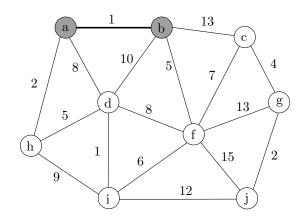
```
 \begin{aligned} & \textbf{algorithm Prim}( \text{ weighted graph } (G,c), \text{ vertex } s \text{ )} \\ & \textbf{array } w[n] = \{c[s,0], c[s,1], \ldots, c[s,n-1]\} \\ & S \leftarrow \{s\} & \text{first vertex added to MST} \\ & \textbf{while } S \neq V(G) \textbf{ do} \\ & \text{find } u \in V(G) \setminus S \text{ so that } w[u] \text{ is minimum} \\ & S \leftarrow S \cup \{u\} & \text{adding an edge adjacent to } u \text{ to MST} \\ & \textbf{for } x \in V(G) \setminus S \textbf{ do} \\ & w[x] \leftarrow \min\{w[x], c[u,x]\} \\ & \textbf{end for} \\ & \textbf{end while} \end{aligned}
```

Very similar to the Dijkstra's algorithm:

- ullet Priority queue should be used for selecting the lowest edge weights  $w[\ldots]$ .
- In the priority queue implementation, most time is taken by EXTRACT-MIN and DECREASE-KEY operations.

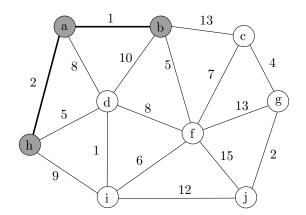


$$S = \{ \mathbf{a} \}$$

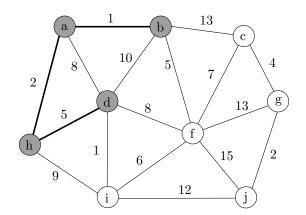


$$S = \left\{ \frac{\mathbf{a}, \mathbf{b}}{\mathbf{b}} \right\}$$

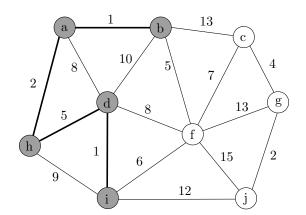
| w = | a | b           | c            | d              | f           | g        | h           | i        | j        |
|-----|---|-------------|--------------|----------------|-------------|----------|-------------|----------|----------|
|     | 0 | $1_{\rm a}$ | $13_{\rm b}$ | 8 <sub>a</sub> | $5_{\rm b}$ | $\infty$ | $2_{\rm a}$ | $\infty$ | $\infty$ |





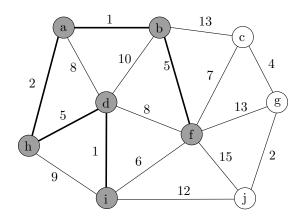


$$S = \{a,b,d,h\}$$



$$S = \{ \frac{a, b, d, h, i}{a} \} \qquad w = \begin{bmatrix} \frac{a}{a} & b & c & d & f & g & h & i & j \\ \hline 0 & 1_a & 13_b & 5_h & 5_b & \infty & 2_a & 1_d & 12_i \end{bmatrix}$$

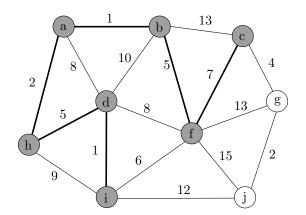




$$S = \left\{ \mathbf{a}, \mathbf{b}, \mathbf{d}, \mathbf{f}, \mathbf{h}, \mathbf{i} \right\} \qquad w = \begin{bmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} & \mathbf{d} & \mathbf{f} & \mathbf{g} \\ 0 & 1_{\mathbf{a}} & 7_{\mathbf{f}} & 5_{\mathbf{h}} & 5_{\mathbf{b}} & 13_{\mathbf{f}} \end{bmatrix}$$



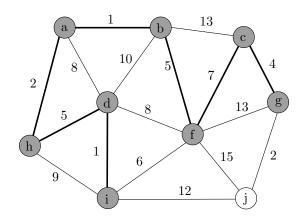
 $12_{i}$ 



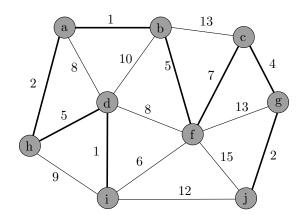
$$S = \{a,b,c,d,f,h,i\}$$

$$w = \begin{bmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} & \mathbf{d} & \mathbf{f} & \mathbf{g} & \mathbf{h} & \mathbf{i} & \mathbf{j} \\ 0 & 1_{\mathbf{a}} & 7_{\mathbf{f}} & 5_{\mathbf{h}} & 5_{\mathbf{b}} & \mathbf{4_{\mathbf{c}}} & 2_{\mathbf{a}} & 1_{\mathbf{d}} & 12_{\mathbf{i}} \end{bmatrix}$$





$$S = \{a,b,c,d,f,g,h,i\}$$

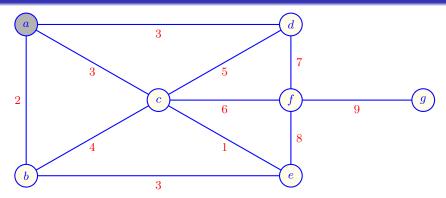




# Prim's Algorithm (Priority Queue Implementation)

```
algorithm Prim (weighted graph (G, c), vertex s \in V(G))
     priority queue Q, arrays colour[n], pred[n]
     for u \in V(G) do
           pred[u] \leftarrow \mathsf{NULL}; colour[u] \leftarrow \mathsf{WHITE}
     end for
     colour[s] \leftarrow \mathsf{GREY}; Q.\mathtt{insert}(s,0)
     while not Q.isEmpty() do
           u \leftarrow Q.\mathtt{peek}()
           for each x adjacent to u do
                t \leftarrow c(u, x):
                if colour[x] = WHITE then
                      colour[x] \leftarrow \mathsf{GREY}; \ pred[x] \leftarrow u; \ Q.\mathtt{insert}(x,t)
                else if colour[x] = GREY and Q.getKey(x) > t then
                      Q.\mathtt{decreaseKev}(x,t); pred[x] \leftarrow u
                end if
           end for
           Q.\mathtt{delete}(); colour[u] \leftarrow \mathsf{BLACK}
     end while
     return pred
```

# MST: Prim's Algorithm – Starting Vertex a

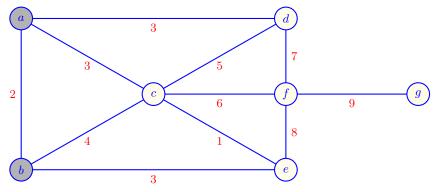


#### **Initialisation:**

Priority queue Q:  $\{a_{\text{key}=0}\}$ 



# MST: Prim's Algorithm: 1-2 $u \leftarrow a = Q.peek()$ ; for-loop

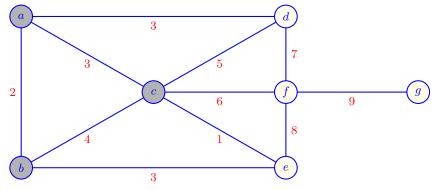


$$u = a$$
; adjacent  $x \in \{b, c, d\}$ ;  $x \leftarrow b$ ;  $\text{key}_b \leftarrow \text{cost}(a, b) = 2$ 

Priority queue Q:  $\{a_0, b_2\}$ 





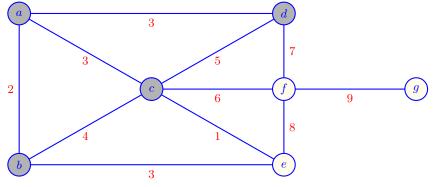


$$\mathsf{adjacent}\ x \in \{b, c, d\};\ \pmb{x} \leftarrow \pmb{c};\ \mathrm{key}_c \leftarrow \mathrm{cost}(a, c) = 3$$

Priority queue Q:  $\{a_0,b_2,c_3\}$ 





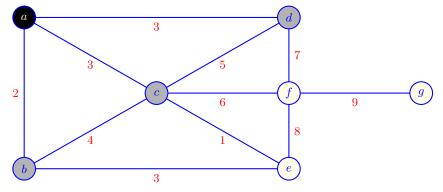


$$\mathsf{adjacent}\ x \in \{b, c, d\};\ \pmb{x} \leftarrow \pmb{d};\ \ker_{\pmb{d}} \leftarrow \mathsf{cost}(a, d) = 3$$

Priority queue Q:  $\{a_0,b_2,c_3,d_3\}$ 



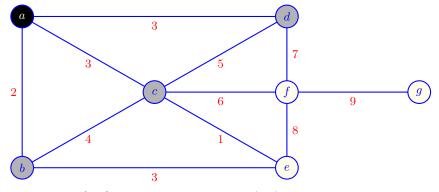




 $Q.\mathtt{delete}()$  – excluding the vertex a

Priority queue Q:  $\{b_2, c_3, d_3\}$ 

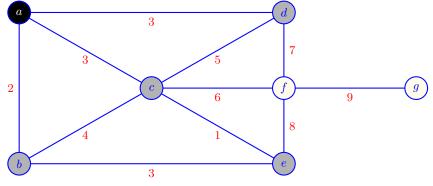
# $u \leftarrow b = Q.\mathtt{peek}();$ for-loop



$$\text{adjacent } x \in \{c,e\}; \, \textcolor{red}{\textbf{\textit{x}}} \leftarrow \textcolor{red}{\textbf{\textit{c}}}; \, \ker_c = 3 < \cot(b,c) = 4$$

Priority queue Q:  $\{b_2, c_3, d_3\}$ 

# u = b; for-loop

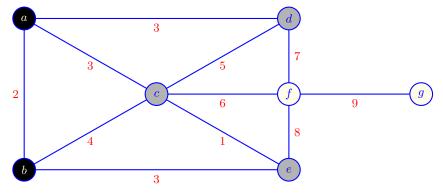


$$\text{adjacent } x \in \{c,e\}; \, \textcolor{red}{x} \leftarrow \textcolor{red}{e}; \, \ker_e \leftarrow \text{cost}(b,e) = 3$$

Priority queue Q:  $\{b_2, c_3, d_3, e_3\}$ 





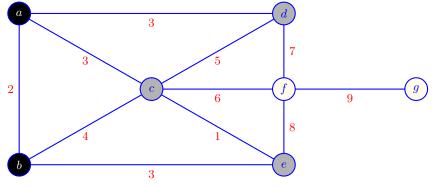


 $Q.\mathtt{delete}()$  — excluding the vertex b

Priority queue Q:  $\{c_3, d_3, e_3\}$ 



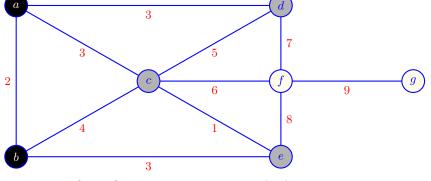
# $u \leftarrow c = Q.peek(); for-loop$



adjacent 
$$x \in \{d, e, f\}$$
;  $\mathbf{x} \leftarrow \mathbf{d}$ ;  $\text{key}_d = 3 < \text{cost}(c, d) = 5$ 

Priority queue Q:  $\{c_3, d_3, e_3\}$ 



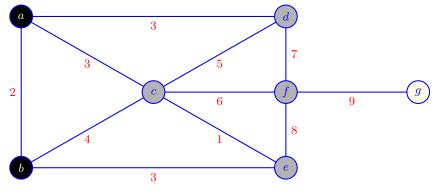


$$\text{adjacent } x \in \{d, e, f\}; \ \underline{x} \leftarrow \underline{e}; \ \underline{\text{key}_e = 3 > \text{cost}(c, e) = 1}; \ \text{key}_e \leftarrow 1$$

Priority queue  $Q: \{c_3, d_3, e_1\}$ 







$$adjacent \ x \in \{d, e, f\}; \ {\color{red} x} \leftarrow {\color{blue} f}; \ {\rm key}_f \leftarrow 6$$

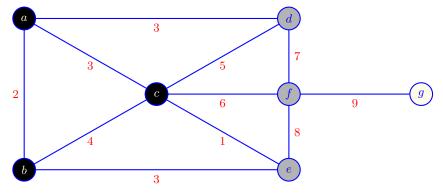
Priority queue Q:  $\{c_3,d_3,e_1,f_6\}$ 

|                                | a | b | c | d | e | f | g |
|--------------------------------|---|---|---|---|---|---|---|
| $\frac{pred[v]}{\text{key}_v}$ | _ | a | a | a | c | c | _ |
| $\ker_v$                       | 0 | 2 | 3 | 3 | 1 | 6 |   |



#### MST: Prim's Algorithm: 14 - 15



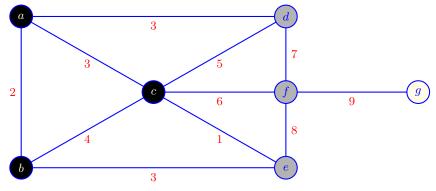


 $Q.\mathtt{delete}()$  – excluding the vertex c

Priority queue Q:  $\{e_1, d_3, f_6\}$ 



#### $u \leftarrow e = Q.peek(); for-loop$



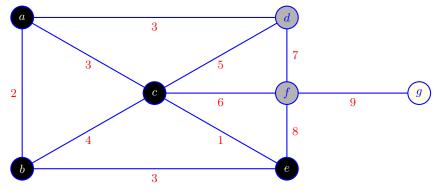
adjacent 
$$x \in \{f\}$$
;  $x \leftarrow f$ ;  $\text{key}_f \leftarrow 6 < \text{cost}(e, f) = 8$ 

Priority queue Q:  $\{e_1, d_3, f_6\}$ 



#### MST: Prim's Algorithm: 17 – 18

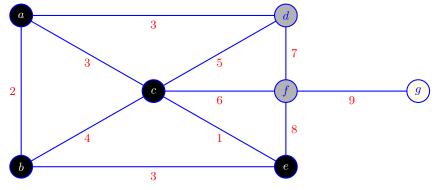




 $Q.\mathtt{delete}()$  – excluding the vertex e

Priority queue  $Q: \{d_3, f_6\}$ 

# $u \leftarrow d = Q.\mathtt{peek}();$ **for**-loop



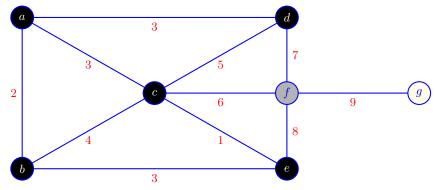
adjacent 
$$x \in \{f\}$$
;  $\mathbf{x} \leftarrow \mathbf{f}$ ;  $\text{key}_f \leftarrow 6 < \text{cost}(d, f) = 7$ 

Priority queue Q:  $\{d_3, f_6\}$ 



# MST: Prim's Algorithm: 20 - 21

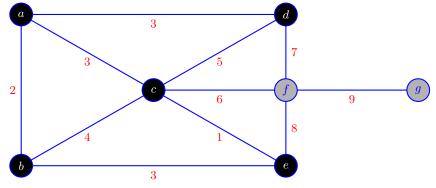
 $Q.\mathtt{delete}()$ 



 $Q.\mathtt{delete}()-\mathsf{excluding}\ \mathsf{the}\ \mathsf{vertex}\ d$ 

Priority queue Q:  $\{f_6\}$ 

#### $u \leftarrow f = Q.\mathtt{peek}();$ for-loop

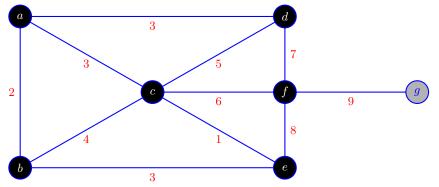


adjacent 
$$x \in \{g\}$$
;  $\mathbf{x} \leftarrow \mathbf{g}$ ;  $\text{key}_q \leftarrow \text{cost}(f,g) = 9$ 

Priority queue Q:  $\{f_6, g_9\}$ 







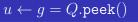
 $Q.\mathtt{delete}()-\mathsf{excluding}\ \mathsf{the}\ \mathsf{vertex}\ f$ 

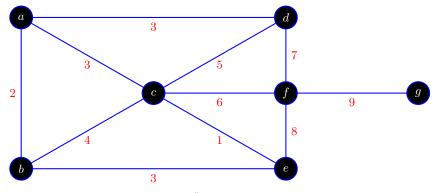
Priority queue Q:  $\{g_9\}$ 

| $v \in V$      | a | b | c | d | e | f | g |
|----------------|---|---|---|---|---|---|---|
| pred[v]        | _ | a | a | a | c | c | f |
| $\text{key}_v$ | 0 | 2 | 3 | 3 | 1 | 6 | 9 |



### MST: Prim's Algorithm: 24 - 25



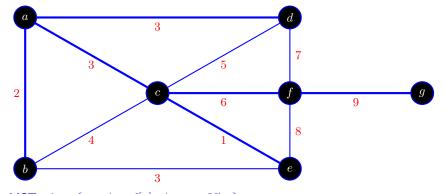


no adjacent vertices x;  $Q.\mathtt{delete}()$  – excluding the vertex g

Priority queue Q: empty



### MST: Prim's Algorithm: Output

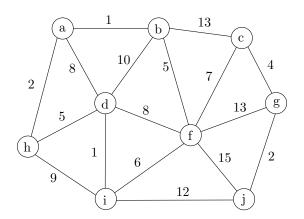


MST edges 
$$\{e=(pred[v],v): v\in V\backslash a\}:$$
  $\{(a,b),\ (a,c),\ (a,d),\ (c,e),\ (c,f),\ (f,g)\};$  total cost 24

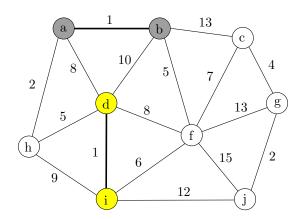
### Kruskal's MST Algorithm

```
\begin{aligned} & \textbf{algorithm Kruskal} \big( \text{ weighted graph } (G,c) \big) \\ & T \leftarrow \emptyset \\ & \text{insert } E(G) \text{ into a priority queue} \\ & \textbf{for } e = \{u,v\} \in E(G) \text{ in increasing order of weight } \textbf{do} \\ & \textbf{if } u \text{ and } v \text{ are not in the same tree } \textbf{then} \\ & & T \leftarrow T \cup \{e\} \\ & & \text{merge the trees of } u \text{ and } v \\ & & \textbf{end if} \end{aligned}
```

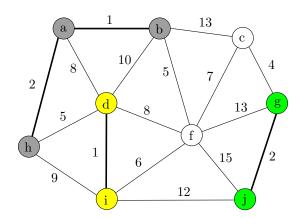
- Keeping track of the trees using the disjoint sets ADT, with standard operations FIND and UNION.
- They can be implemented efficiently so that the main time taken is at the sorting step.



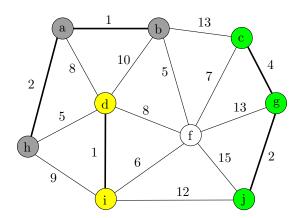
| e    | (a, b) | (d, i) | (a, h) | (j,g) | (c,g) | (d, h) | (b, f) | (f, i) | (c, f) | (a,d) | (d, f) | (h, i) | (b,d) | (i, j) | (b, c) | (f,g) | (f,j) |
|------|--------|--------|--------|-------|-------|--------|--------|--------|--------|-------|--------|--------|-------|--------|--------|-------|-------|
| c(e) | 1      | 1      | 2      | 2     | 4     | 5      | 5      | 6      | 7      | 8     | 8      | 9      | 10    | 12     | 13     | 13    | 15    |



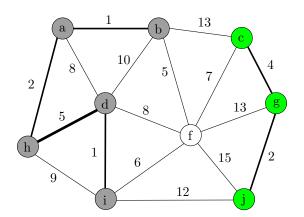
| e    | (a, b) | (d, i) | (a, h) | (j,g) | (c,g) | (d, h) | (b, f) | (f, i) | (c, f) | (a,d) | (d, f) | (h, i) | (b,d) | (i, j) | (b, c) | (f,g) | (f,j) |
|------|--------|--------|--------|-------|-------|--------|--------|--------|--------|-------|--------|--------|-------|--------|--------|-------|-------|
| c(e) | 1      | 1      | 2      | 2     | 4     | 5      | 5      | 6      | 7      | 8     | 8      | 9      | 10    | 12     | 13     | 13    | 15    |



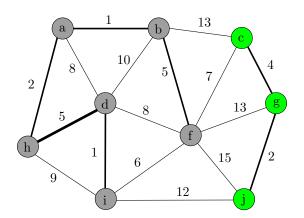
| e    | (a, b) | (d, i) | (a, h) | (j,g) | (c,g) | (d, h) | (b, f) | (f, i) | (c, f) | (a, d) | (d, f) | (h, i) | (b,d) | (i, j) | (b, c) | (f,g) | (f,j) |
|------|--------|--------|--------|-------|-------|--------|--------|--------|--------|--------|--------|--------|-------|--------|--------|-------|-------|
| c(e) | 1      | 1      | 2      | 2     | 4     | 5      | 5      | 6      | 7      | 8      | 8      | 9      | 10    | 12     | 13     | 13    | 15    |



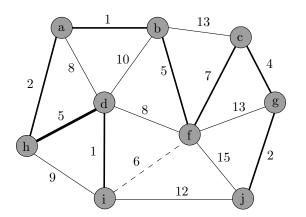
| e    | (a, b) | (d, i) | (a, h) | (j,g) | (c,g) | (d, h) | (b, f) | (f, i) | (c, f) | (a,d) | (d, f) | (h, i) | (b,d) | (i, j) | (b, c) | (f,g) | (f,j) |
|------|--------|--------|--------|-------|-------|--------|--------|--------|--------|-------|--------|--------|-------|--------|--------|-------|-------|
| c(e) | 1      | 1      | 2      | 2     | 4     | 5      | 5      | 6      | 7      | 8     | 8      | 9      | 10    | 12     | 13     | 13    | 15    |



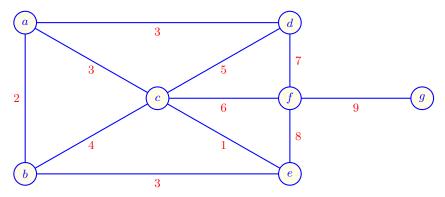
| e    | (a, b) | (d, i) | (a, h) | (j,g) | (c,g) | (d, h) | (b, f) | (f, i) | (c, f) | (a,d) | (d, f) | (h, i) | (b,d) | (i, j) | (b, c) | (f,g) | (f,j) |
|------|--------|--------|--------|-------|-------|--------|--------|--------|--------|-------|--------|--------|-------|--------|--------|-------|-------|
| c(e) | 1      | 1      | 2      | 2     | 4     | 5      | 5      | 6      | 7      | 8     | 8      | 9      | 10    | 12     | 13     | 13    | 15    |



| e    | (a, b) | (d, i) | (a, h) | (j,g) | (c,g) | (d, h) | (b, f) | (f, i) | (c, f) | (a,d) | (d, f) | (h, i) | (b,d) | (i, j) | (b, c) | (f,g) | (f,j) |
|------|--------|--------|--------|-------|-------|--------|--------|--------|--------|-------|--------|--------|-------|--------|--------|-------|-------|
| c(e) | 1      | 1      | 2      | 2     | 4     | 5      | 5      | 6      | 7      | 8     | 8      | 9      | 10    | 12     | 13     | 13    | 15    |





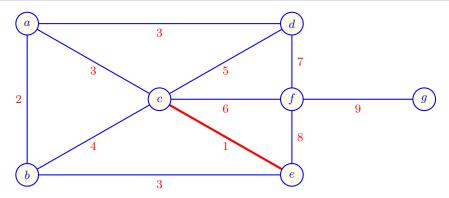


#### **Initialisation:**

 $\underline{\text{Disjoint-sets ADT}} \ A = \big\{ \{a\}, \ \{b\}, \ \{c\}, \ \{d\}, \ \{e\}, \ \{f\}, \ \{g\} \big\}$ 

| $\cos t$                 |       |       |       |       |       |       |       |       |        |       |                    |
|--------------------------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|--------------------|
| $\overline{\text{edge}}$ | (c,e) | (a,b) | (a,c) | (a,d) | (b,e) | (b,c) | (c,d) | (c,f) | (d, f) | (e,f) | $\overline{(f,g)}$ |



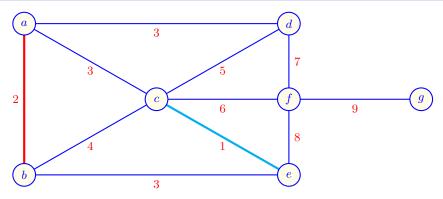


Step 1:  $\{S_c = A.set(c)\} \neq \{S_e = A.set(e)\}; add(c, e); A.union(S_c, S_e)$ 

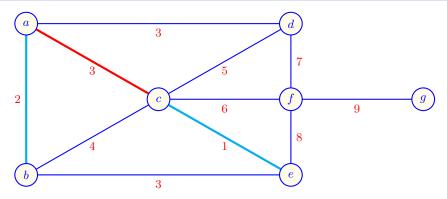
 $\underline{\text{Disjoint-sets ADT}}\ A = \big\{\{a\},\ \{b\},\ \{\textcolor{red}{c},\textcolor{blue}{e}\},\ \{d\},\ \{f\},\ \{g\}\big\}$ 

| $\cos t$                 |       |       |       |       |        |       |       |        |        |        |       |
|--------------------------|-------|-------|-------|-------|--------|-------|-------|--------|--------|--------|-------|
| $\overline{\text{edge}}$ | (c,e) | (a,b) | (a,c) | (a,d) | (b, e) | (b,c) | (c,d) | (c, f) | (d, f) | (e, f) | (f,g) |



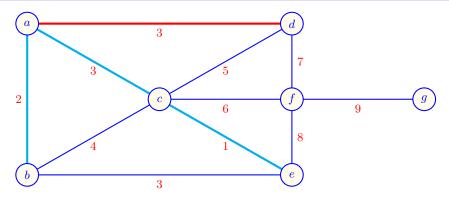


**Step 2:**  $\{S_a = A.set(a)\} \neq \{S_b = A.set(b)\}; add (a, b); A.union(S_a, S_b)$ Disjoint-sets ADT  $A = \{\{a, b\}, \{c, e\}, \{d\}, \{f\}, \{g\}\}$ 

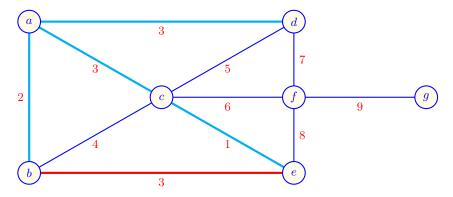


**Step 3:**  $\{S_a = A.set(a)\} \neq \{S_c = A.set(c)\}; add(a,c); A.union(S_a, S_c)$ Disjoint-sets ADT  $A = \{\{a, b, c, e\}, \{d\}, \{f\}, \{g\}\}\}$ 

| $\cos t$                 |       |       |       |       |        |       |       |        |  |
|--------------------------|-------|-------|-------|-------|--------|-------|-------|--------|--|
| $\overline{\text{edge}}$ | (c,e) | (a,b) | (a,c) | (a,d) | (b, e) | (b,c) | (c,d) | (d, f) |  |



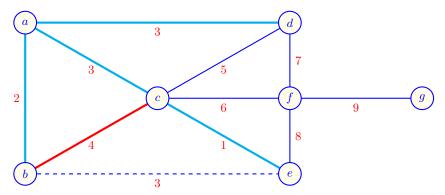
**Step 4:**  $\{S_a = A.\mathtt{set}(a)\} \neq \{S_d = A.\mathtt{set}(d)\}; \text{ add } (a,d); A.\mathtt{union}(S_a,S_d)$ Disjoint-sets ADT  $A = \{\{a,b,c,d,e\}, \{f\}, \{g\}\}\}$ 



**Step 5:** 
$$\{S_b = A.set(b)\} = \{S_e = A.set(e)\}; skip (b, e)$$

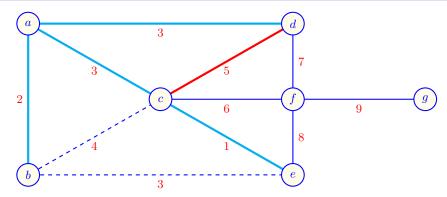
 $\underline{\text{Disjoint-sets ADT}}\ A = \left\{\{a,b,c,d,e\},\ \{f\},\ \{g\}\right\}$ 

| $\cos t$                 |        |       |       |       |        |       |       |        |        |       |       |
|--------------------------|--------|-------|-------|-------|--------|-------|-------|--------|--------|-------|-------|
| $\overline{\text{edge}}$ | (c, e) | (a,b) | (a,c) | (a,d) | (b, e) | (b,c) | (c,d) | (c, f) | (d, f) | (e,f) | (f,g) |



**Step 6:** 
$$\{S_b = A.set(b)\} = \{S_c = A.set(c)\};$$
 **skip**  $(b, c)$  Disjoint-sets ADT  $A = \{\{a, b, c, d, e\}, \{f\}, \{g\}\}$ 

| $\cos t$                 |       |       |       |       |        |       |  |       |  |
|--------------------------|-------|-------|-------|-------|--------|-------|--|-------|--|
| $\overline{\text{edge}}$ | (c,e) | (a,b) | (a,c) | (a,d) | (b, e) | (b,c) |  | (e,f) |  |

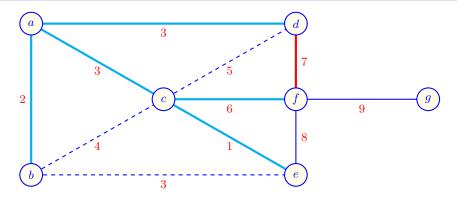


**Step 7:**  $\{S_c = A.set(c)\} = \{S_d = A.set(d)\}; skip (c, d)$ 

 $\underline{\text{Disjoint-sets ADT}}\ A = \left\{\{a,b,c,d,e\},\ \{f\},\ \{g\}\right\}$ 

| $\cos t$                 |        |       |       |       |        |       |       |        |        |        |       |
|--------------------------|--------|-------|-------|-------|--------|-------|-------|--------|--------|--------|-------|
| $\overline{\text{edge}}$ | (c, e) | (a,b) | (a,c) | (a,d) | (b, e) | (b,c) | (c,d) | (c, f) | (d, f) | (e, f) | (f,g) |

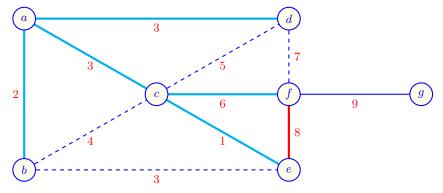
Step 8:  $\{S_c = A.set(c)\} \neq \{S_f = A.set(f)\}; \text{ add } (c, f); A.union(S_c, S_f)$ 



**Step 9:** 
$$\{S_d = A.set(d)\} = \{S_f = A.set(f)\};$$
 **skip**  $(d, f)$  Disjoint-sets ADT  $A = \{\{a, b, c, d, e, f\}, \{g\}\}$ 

| $\cos t$                 |       |       |       |       |        |       |  |       |  |
|--------------------------|-------|-------|-------|-------|--------|-------|--|-------|--|
| $\overline{\text{edge}}$ | (c,e) | (a,b) | (a,c) | (a,d) | (b, e) | (b,c) |  | (e,f) |  |

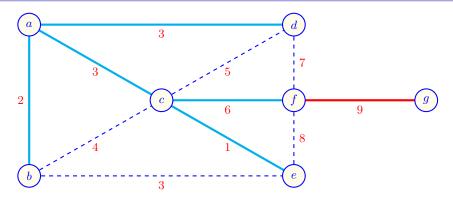




**Step 10:** 
$$\{S_e = A.set(e)\} = \{S_f = A.set(f)\}; skip (e, f)$$

 $\underline{\text{Disjoint-sets ADT}}\ A = \left\{ \{a,b,c,d,e,f\},\ \{g\} \right\}$ 

| $\cos t$                 |        |       |       |       |        |        |       |        |        |        |                    |
|--------------------------|--------|-------|-------|-------|--------|--------|-------|--------|--------|--------|--------------------|
| $\overline{\text{edge}}$ | (c, e) | (a,b) | (a,c) | (a,d) | (b, e) | (b, c) | (c,d) | (c, f) | (d, f) | (e, f) | $\overline{(f,g)}$ |
|                          |        |       |       |       |        |        |       | 4 00 8 |        | E 10 2 | E . E              |

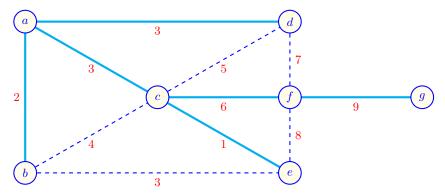


Step 11:  $\{S_f = A.\operatorname{set}(f)\} \neq \{S_g = A.\operatorname{set}(g)\}; \operatorname{add}(f,g); A.\operatorname{union}(S_f, S_g)\}$ 

 $\underline{ \text{Disjoint-sets ADT} } \ A = \big\{ \{a,b,c,d,e,f,g\} \big\}$ 

| C | ost | 1      | 2     | 3     | 3     | 3      | 4     | 5     | 6      | 7      | 8         | 9     |
|---|-----|--------|-------|-------|-------|--------|-------|-------|--------|--------|-----------|-------|
| e | dge | (c, e) | (a,b) | (a,c) | (a,d) | (b, e) | (b,c) | (c,d) | (c, f) | (d, f) | (e, f)    | (f,g) |
|   |     |        |       |       |       |        |       |       | 4.00   | 4-5    | E 1 2 2 2 | E . E |

### MST: Kruskal's Algorithm: Output



**Step 11:**  $\{S_f = A.set(f)\} \neq \{S_g = A.set(g)\}; add (f,g); A.union(S_f, S_g)\}$ 

 $\underline{\text{Disjoint-sets ADT}}\ A = \big\{\{a,b,c,d,e,f,g\}\big\}$ 

| $\cos t$                 |        |       |       |       |        |        |       |       |        |        |       |
|--------------------------|--------|-------|-------|-------|--------|--------|-------|-------|--------|--------|-------|
| $\overline{\text{edge}}$ | (c, e) | (a,b) | (a,c) | (a,d) | (b, e) | (b, c) | (c,d) | (c,f) | (d, f) | (e, f) | (f,g) |

# Comparing the Prim's and Kruskal's Algorithms

Both algorithms choose and add at each step a min-weight edge from the remaining edges, subject to constraints.

### Prim's MST algorithm:

- Start at a root vertex.
- Two rules for a new edge:
  - (a) No cycle in the subgraph built so far.
  - (b) The connected subgraph built so far.
- Terminate if no more edges to add can be found.

At each step: an acyclic connected subgraph being a tree.

#### Kruskal's MST algorithm:

- Start at a min-weight edge.
- One rule for a new edge:
  - (a) No cycle in a forest of trees built so far.
- Terminate if no more edges to add can be found.

At each step: a forest of trees merging as the algorithm progresses (can find a spanning forest for a disconnected graph). Outline MST Prim Kruskal Optimisation

### Correctness of Prim's and Kruskal's Algorithms

#### Theorem 6.15: Prim's and Kruskal's algorithms are correct.

- A set of edges is promising if it can be extended to a MST.
- The theorem claims that both the algorithms
  - 1 choose at each step a promising set of edges and
  - 2 terminate with the MST as the set cannot be further extended.

#### Technical fact for proving these claims.

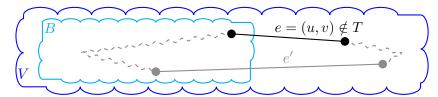
- Let  $B \subset V(G)$ ; |B| < n, be a proper subset of the vertices.
- Let  $T \subset E$  be a promising set of edges, such that no edge in T leaves B (i.e., If  $(u,v) \in T$ , then either both  $u,v \in B$  or both  $u,v \notin B$ ).
- If a minimum-weight edge e leaves B (one endpoint in B and one outside), then the set  $T \bigcup \{e\}$  is also promising.

# Correctness of Prim's and Kruskal's Algorithms

#### Proof of the technical fact that the set $T \cup \{e\}$ is promising.

- Since the set T is promising, it is in a some MST U.
- If  $e \in U$ , there is nothing to prove.
- $\bullet$  Otherwise, adding e to U creates exactly one cycle.
  - This cycle contains at least one more edge,  $e^\prime$ , leaving B, as otherwise the cycle could not close.
- Removing the edge  $e^{\prime}$  forms for the graph G a new spanning tree  $U^{\prime}$ .
- Its total weight is no greater than the total weight of the MST U, and thus the tree  $U^{\prime}$  is also an MST.
- Since the MST U' contains the set  $T \bigcup \{e\}$  of edges, that set is promising.

### Correctness of Prim's and Kruskal's Algorithms



#### **Proof of Theorem 6.15**:

- Suppose that the MST algorithm has maintained a promising set T of edges so far.
- Let an edge  $e = \{u, v\}$  have been just chosen.
- Let B denote at each step
  - either the set of vertices in the tree (Prim)
  - or in the tree containing the vertex u (Kruskal).
- Then the above technical fact can be applied to conclude that  $T \bigcup \{e\}$  is promising and the algorithm is correct.

# Minimum Spanning Trees (MST): Some Properties

#### Can you prove these two facts?

- **1** The maximum-cost edge, if unique, of a cycle in an edgeweighted graph G is not in any MST.
  - Otherwise, at least one of those equally expensive edges of the cycle must not be in each MST.
- 2 The minimum-cost edge, if unique, between any non-empty strict subset S of V(G) and the  $V(G)\setminus S$  is in any MST.
  - Otherwise, at least one of these minimum-cost edges must be in each MST.

*Hint*: Look whether a total weight of an MST with such a maximum-cost edge or without such a minimum-cost edge can be further decreased.

# Other (Di)graph Optimisation/Decision Problems

There are many more graph and network computational and optimisation problems.

Many of them do not have easy or polynomial-time solutions.

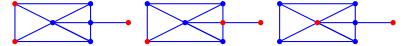
However, a few of them are in a special class in that their solutions can be verified in polynomial time.

- This class of computational problems is called the NP (nondeterministic polynomial) class.
- In addition, many of these are proven to be harder than anything else in the NP class.
- The latter NP problems are called NP-complete ones.

Other algorithm design techniques like backtracking, branch-and-bound or approximation algorithms (studied in COMPSCI 320) are needed.

### Examples of NP-complete Graph Problems

**Vertex Cover**, or dominating set: Finding a subset of k;  $k \leq |V(G)|$ , vertices such that every vertex of the graph is adjacent to one in that subset.



- Finding the smallest vertex cover in the graph is NP-complete.
- However, it is polynomial-time solvable for bipartite graphs.

**Hamiltonian path**: Finding a path through all the vertices of a graph.

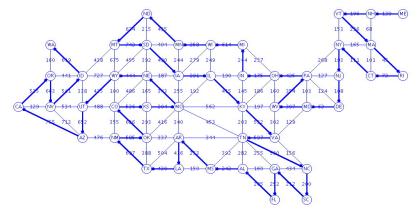


**Hamiltonian cycle**: Finding a cycle through all the vertices of a graph (graphs containing such a cycle are called *Hamiltonian graphs*).

### Hamiltonian Paths - Examples

http://www.cs.utsa.edu/~wagner/CS3343/graphapp2/hampaths.html

The longest (18,040 miles) Hamiltonian path from Maine (ME) between capitals of all 48 mainland US states out of the 68,656,026 possible Hamiltonian paths:

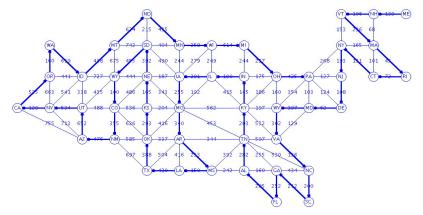


Outline MST Prim Kruskal **Optimisation** 

### Hamiltonian Paths - Examples

http://www.cs.utsa.edu/~wagner/CS3343/graphapp2/hampaths.html

The random (13,619miles) Hamiltonian path from Maine (ME) between capitals of all 48 mainland US states out of the 68,656,026 possible Hamiltonian paths:

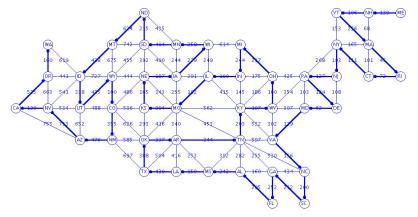


Outline MST Prim Kruskal **Optimisation** 

### Hamiltonian Paths - Examples

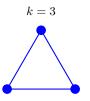
http://www.cs.utsa.edu/~wagner/CS3343/graphapp2/hampaths.html

The shortest (11,698 miles) Hamiltonian path from Maine (ME) between capitals of all 48 mainland US states out of the 68,656,026 possible Hamiltonian paths:



### Examples of NP-complete Graph Problems

- Longest path: Finding the longest path between two nodes of a digraph.
- k-colouring: Finding a k-colouring of a graph, for fixed  $k \ge 3$ .
- Feedback arc set: Finding a subset F of k;  $k \leq |V(G)|$ , nodes such that  $G \setminus F$  is a DAG.
- Maximum clique: Finding a complete subgraph of the maximum order k in a given graph G=(V,E).
  - In a complete subgraph,  $G'=(V',E')\subset G$ , all the nodes  $u,v\in V'\subseteq V$  are adjacent, i.e.,  $(u',v')\in E'\subseteq E$ .



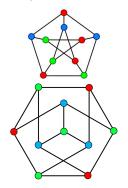


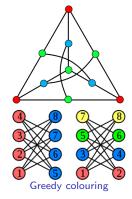


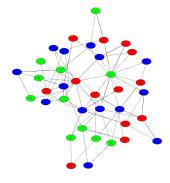
### NP-complete Graph Colouring: Examples

https://en.wikipedia.org/wiki/Graph\_coloring http://iasbs.ac.ir/seminar/math/combinatorics/ https://heuristicswiki.wikispaces.com/Graph+coloring

Optimisation: Colouring a general graph with the minimum number of colours.

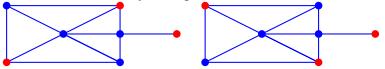




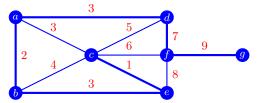


### Examples of NP-complete Graph Problems

**Independent set**: Finding the largest subset of vertices, no two of which are connected by an edge.



Travelling salesman problem (TSP): Finding a minimum weight path through all the vertices of a weighted digraph (G,c).



Total weight of the path c, e, b, a, d, f, g: 25

### TSP - NP-Hard, but not NP-Complete Problem

Blog by Jean Francois Paget: https://www.ibm.com/developerworks/community/blogs/jfp/entry/no\_the\_tsp\_isn\_t\_np\_complete?lang=en

- NP problem its solution can be verified in polynomial time.
- NP-hard problem it is as difficult as any NP problem.
- NP-complete problem it is both NP and NP-hard.

For a given TSP solution:

- **1** Each city is visited once (easy verified in polynomial time).
- 2 Total travel length is minimal (no known polynomial-time check).

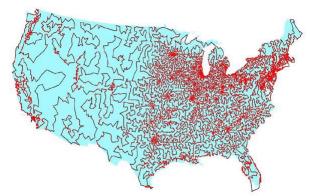
 $N_n = (n-1)!$  of paths through n vertices, starting from an arbitrary vertex:

| n                | 10                  | 20                   | 100              | 1000                   | 10000                   |
|------------------|---------------------|----------------------|------------------|------------------------|-------------------------|
| $\overline{N_n}$ | $3.63 \cdot 10^{5}$ | $1.22 \cdot 10^{17}$ | $9.33 \cdot 155$ | $4.02 \cdot 10^{2564}$ | $2.85 \cdot 10^{35655}$ |

### TSP – NP-Hard, but not NP-Complete Problem

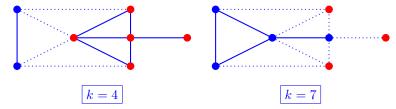
Blog by Jean Francois Paget: https://www.ibm.com/developerworks/community/blogs/jfp/entry/no\_the\_tsp\_isn\_t\_np\_complete?lang=en

Effective algorithms for solving the TSPs with large n exist. See, e.g., the optimal TSP solution by D. Applegate, R. Bixby, V. Chvatal, and W. Cook for n=13,509 cities and towns with more than 500 residents in the USA:



# Examples of NP-complete Graph Problems

**Maximum Cut**: Determining whether vertices of G = (V, E) can be separated into two non-empty subsets  $V_1$  and  $V_2$ ;  $V_1 \bigcup V_2 = V$ ;  $V_1 \bigcap V_2 = \emptyset$ , with at most k edges between  $V_1$  and  $V_2$ .



- Max / min-cut optimisation: Maximising / minimising the number k of edges between the separated subsets.
- Weighted max / min-cut: Maximising / minimising the total weight of edges between the separated subsets.

### Examples of NP-complete Graph Problems

- **Induced path**: Determining whether there is an induced subgraph of order k being a simple path.
- Bandwidth: Determining whether there is a linear ordering of V with bandwidth k or less.
  - Bandwidth k each edge spans at most k vertices.
- Subgraph Isomorphism: Determining whether H is a sub(di)graph of G.
- Minimum broadcast time: Determining for a given source node of a digraph G, whether (point-to-point) broadcast to all other nodes can take at most k time steps.
- **Disjoint connecting paths**: Determining for given k pairs of source and sink vertices of a graph G, whether there are k vertex-disjoint paths connecting each pair.