Graphs and Digraphs
BFS Priority search DAG Connectivity

Lecturer: Georgy Gimel'farb

COMPSCI 220 Algorithms and Data Structures

@ Breadth-first Search

@ Priority-first Search of Digraphs

© Algorithms Using Traversal Techniques
O Cycle detection

@ Acyclic digraphs and topological ordering

@ Connected graphs and strong components

2/67

Breadth-First Vs. Depth-first Search

Node choice convention: the lowest index

®
@
© O
6 @ ® ©®
@
®

®
©

©
D
O
6 ® ©® @

Breadth-first Search (BFS) Algorithm

algorithm bfs
Input: digraph G = {V(G), E(G)}
begin
queue
array colour [n} , pred[n], d[n] (number of steps from the root)

for u € V(G) do
colour|u] <~ WHITE; pred[u] <~ NULL
end for
for s € V(G) do
if colour[s] = WHITE then
bfsvisit(s)
end if
end for
return pred, d

end
4 /67

Breadth-first Search (BFS) Algorithm

algorithm bfsvisit
Input: node s
begin
colour(s] <= GREY; d[s] <- 0; Q.enqueue(s)
while not Q.isempty() do
u < Q.get head()
for each v adjacent to u do
if colour[v] = WHITE then
colour|v] < GREY; pred[v] + u; d[v] + d[u] + 1
Q.enqueue(v)
end if
end for
Q.dequeue(); colour[u] < BLACK
end while
end

5/67

BFS

BFS: Example 1

Queue: b

BFS

BFS: Example 1

Queue: a ¢

BFS

BFS: Example 1

Queue: ¢ e

BFS

BFS: Example 1

Queue: e d

BFS: Example 1

10 /67

Example 2: BFS (start at A; alphabetical ordering of next nodes)

ss ABCDEFGHS
ds]: 0 Queue Q: A
pred[s]: —

11/67

Example 2: BFS (start at A; alphabetical ordering of next nodes)

Queue Q: AB

12 /67

Example 2: BFS (start at A; alphabetical ordering of next nodes)

Queue Q: BS

13 /67

Example 2: BFS (start at A; alphabetical ordering of next nodes)

14 /67

Example 2: BFS (start at A; alphabetical ordering of next nodes)

Queue @Q: SC

15 /67

Example 2: BFS (start at A; alphabetical ordering of next nodes)

Queue Q: CG

16 /67

Example 2: BFS (start at A; alphabetical ordering of next nodes) 7-9

Queue Q: GDEF

17 /67

Example 2: BFS (start at A; alphabetical ordering of next nodes) 10

Queue Q: DEFH

18 /67

Example 2: BFS (start at A; alphabetical ordering of next nodes)11-14

ss ABCDETFGHS
ds 0 1 2 3 332 31 Queue Q:
predls). — AS CCCS GA

19 /67

Priority-first Search (PFS)

A common generalisation of BFS and DFS:
e Each GREY node is associated with an integer key.
e The smaller the key, the higher the priority.

e The rule for selecting a new GREY node: one with the
maximum priority (minimum key).

e The keys are fixed in the simplest case, but generally they
may be updated.

BFS as PFS: the key of v € V' « the time it was first coloured GREY.
DFS as PFS: the key of v € V « —seen|v]

PFS is best described via the priority queue ADT
e E.g., using a binary heap.

20 /67

Priority-first Search (PFS) Algorithm

algorithm pfs
Input: digraph G = (V(G), E(G))
begin
priority queue @Q;
array colour[n], pred[n]
for u € V(G) do
colour[u] <= WHITE; pred[u] <— NULL
end for
for s € V(G) do
if colour[s] = WHITE then
pfsvisit(s)
end if
end for
return pred

end
21 /67

Priority-first Search (PFS) Algorithm

algorithm pfsvisit
Input: node s
begin
colour[s] +— GREY; Q.insert(s, setkey (s))
while not Q.is_empty() do
u < Q.get_min()
if v adjacent to u and colour[v] = WHITE then
colour|v] <— GREY; pred[v] « u;
Q.insert(v, setkey (v))
else
Q.del min(); colour|u] + BLACK
end if
end while

end setkey(s) — the rule of assigning a priority key to the node s.

22 /67

PFS: Example:

Initialisation
UGV a b C d e g
key,|3 5 2 1 5 6
pred[v] ‘ - - —

Priority queue @ = { }

23 /67

PFS: Example:

b ¢ d
key, |3 5 2 1

[S28e

S Q

predfv] | — — —

Priority queue @ = {as}

24 /67

PFS: Example: 2: u < Q.getmin() = a; v < b; Q.insert(b,5)

Priority queue Q = {as, b5}

25 /67

PFS: Example: 3: u <+ Q.getmin() = a; v < ¢ Q.insert(c,2)

veVia b c¢c d e g
key, |3 5 2 1 5 6
pred[v] ‘ - a a — — -

Priority queue Q = {as, b5, c2}

26 /67

PFS: Example: 4: u + Q.getmin() = ¢; v < e; Q.insert(e,b)

as @ €5
veVia b ¢ d
key, |3 5 2 1

@ pred[v]‘f a —a —

Priority queue @ = {as, bs, c2, €5}

o Q

|t O

27 /67

PFS: Example: 5: u + Q.getmin() = ¢; v < g; Q.insert(g,6)

as @ €5

veV
key,

a b
3 5
a

@ pred[v] ‘ -

Priority queue Q = {as, b5, c2,e5,96}

d
1

c
2
a

oot O
oo

28 /67

PFS: Example: 6: u < Q.getmin() = ¢; Q.del min()

veVia b ¢ d e g
key, |3 5 2 1 5 6
pred[v]‘f a a — ¢ c

Priority queue Q = {as,bs, €5, 96}

29 /67

PFS: Example: 7: u < Q.getmin() = a;).delmin()

veVia b ¢ d e g
key, |3 5 2 1 5 6
pred[v]‘f a a — ¢ c

Priority queue @ = {bs, €5, g6}

30/67

PFS: Example: 8: u <+ Q.getmin() = b; Q.del min()

veVia b ¢ d e g
key, |3 5 2 1 5 6
pred[v]‘f a a — ¢ c

Priority queue Q = {es, g6}

31/67

PFS: Example: 9: u < Q.getmin() =e; Q.del min()

veVia b ¢ d e g
key, |3 5 2 1 5 6
pred[v]‘f a a — ¢ c

Priority queue @ = {gs}

32/67

PFS: Example:

10: u + Q.getmin() = g; v < d; Q.insert(d, 1)

veVia b ¢ d e g
key, |3 5 2 1 5 6
pred[v]‘f a a g ¢ c

Priority queue Q = {g¢,d1}

33/67

PFS: Example: 11: u + Q.getmin() = d; ().delmin()

veVia b ¢ d e g
key, |3 5 2 1 5 6
pred[v]‘f a a g ¢ c

Priority queue @ = {gs}

34 /67

PFS: Example: 12: u + Q.getmin() = g; Q.del min()

veVia b ¢ d e g
key, |3 5 2 1 5 6
pred[v]‘f a a g ¢ c

Priority queue Q = { }

35/67

PFS: Example:

5
&
w
Q| ot o
QN O
Q| Q
o|lot o
oo

36 /67

Traversal

Pre-order and Post-order Labelings

DFS: gives pre-order and
post-order labellings to a
digraph:
e Pre-order label -
the order in which

the nodes were
turned GREY.

e Post-order label —
the order in which
the nodes were ...
turned BLACK.

Pre-order: visit a current node, then traverse its subtrees.
Post-order: traverse subtrees, then visit their parent node.

4/1

37/67

Traversal

Pre-order and Post-order Labelings

v| A B C D E F G H I
seenfv]/pre- | 1/1 2/2 10/6 3/3 7/5 11/7 4/4 12/8 14/9
donelv]/post- | 18/9 9/4 17/8 6/2 8/3 16/7 5/1 13/5 15/6

38 /67

Traversal

Pre-order and Post-order Labelings

v| A B C D E F G H I
seenfv]/pre- | 1/1 2/2 10/6 3/3 7/5 11/7 4/4 12/8 14/9
donelv]/post- | 18/9 9/4 17/8 6/2 8/3 16/7 5/1 13/5 15/6

39 /67

Cycle Detection

Cycle: a—-b-d-a

40 /67

Cycle Detection

Suppose that there is a cycle in G and let v be the node in the
cycle visited first by DFS.

e If (u,v) is an arc in the cycle then it must be a back arc.

o Conversely if there is a back arc, we must have a cycle.

e So a digraph is acyclic iff there are no back arcs from DFS.
An acyclic digraph is called a directed acyclic graph (DAG).

e An acyclic graph is a tree or a forest.
Cycles can also be easily detected in a graph using BFS.

e Finding a cycle of minimum length in a graph is not difficult
using BFS (better than DFS).

41 /67

Back Arcs in Cycle Detection

Implications of the back arc (v, u):

e A directed path from u to v exists
in a tree of the search forest.

Search forest

e Hence, there is a directed cycle

X containing both w and v.
F,’

DFS

bacy
ey

-

42 /67

Cycle

Using DFS to Find Cycles in Digraphs

DES

43 /67

Cycle

Using BFS to Find Cycles in Digraphs

Level 1

Level 2

44 /67

Using BFS to Find Cycles in Graphs

BES

45 /67

Digraph to Describe Structure of Arithmetic Expression

Evaluating expressions like
(a+b)x (c—(a+b)) x (—c+d)

in a compiler by describing
precedence order:

e Compute (a+b) and ¢
before (¢ — (a + b)).

e Compute —c before
(—c+d).

e Compute
(a+b)x (c—(a+D)).

e Compute the expression.

46 /67

Topological Sorting

Definition 5.9: Topological sort (order), or linear order

of a digraph G is a linear ordering of all its vertices, such that if
(u,v) € E(G), then u appears before v in the ordering.

e [Theorem 5.11] Topological sort is possible iff G is a DAG.
e Main application: scheduling events (arithmetic expressions,
university prerequisites, etc).
List of finishing times for DFS, in reverse order, solves the problem:
due to no back arcs, each node finishes before anything pointing to it.

e Another solution: zero in-degree sorting: find node of
in-degree zero, delete it, and repeat until all nodes listed.

e Is it less efficient than sorting via DFS?

47 /67

Zero In-degree Topological Sorting

—delete [a] —sdelete [b] —rdelete [e]
w
9 0

Topological sorting: a b c e d f g

Note that topological sorting is not unique and depends on a
selection rule for multiple zero in-degree (i.e., source) nodes.

48 / 67

Zero In-degree Topological Sorting

Goals:
e To decide whether a digraph G has a directed cycle or not.

e If no zero in-degree node is found at any step, then G has a
directed cycle.

e To find topological sorting of a DAG.
Running time O(n?):
e n steps to delete ongoing zero in-degree nodes one-by-one.

e Searching at each step k through all the remaining n — k
nodes to find the first node with zero in-degree.

e O(n) time complexity of the single step in the average and
worst cases.

49 /67

DAG

Zero In-degree Topological Sorting: Example 2

Topological sorting: —

50 /67

Zero In-degree Topological Sorting: Example 2

Topological sorting: a

50 /67

Zero In-degree Topological Sorting: Example 2

Topological sorting: a c

50 /67

Zero In-degree Topological Sorting: Example 2

Topological sorting: a cd

50 /67

Zero In-degree Topological Sorting: Example 2

Topological sorting: acde

50 /67

Zero In-degree Topological Sorting: Example 2

Topological sorting: acde j

50 /67

Zero In-degree Topological Sorting: Example 2

Topological sorting: acdejb

50 /67

Zero In-degree Topological Sorting: Example 2

O, 0

Topological sorting: acdejb f

50 /67

Zero In-degree Topological Sorting: Example 2

© O,

Topological sorting: acdejb fh

50 /67

Zero In-degree Topological Sorting: Example 2

®

Topological sorting: acdejbfhyg

50 /67

Zero In-degree Topological Sorting: Example 2

Topological sorting: acdejb fhgt (itis not unique!)

50 /67

Topological Sorting via DFS

V. = {a,b,c,d,e,f, g h i j}
E = {(ai),(af),

(i,b), (i,d),

(f,e), (f,8), (i),

(e,1), (e, 8)

(j,8),

(g,d), (g,h)

(d,c),

(h,c)}

51/67

Topological Sorting via DFS

<
I

{a’ b? C? d’ e7 f’ g? h’ i?j}

Theorem 5.13: | Listing the nodes of a DAG

G in reverse order of DFS finishing times
yields a topological order of G.

No arc (u,v) € E is a back arc in a DAG G,
and it holds that done[u] > done[v] for all
other arcs, so u will be listed before v. O

51/67

Topological Sorting via DFS

Topological Sorting via DFS: Example 2 seen|v]/done[v]

19/20

Topological sorting: jaecd fibhg

52 /67

Topological Sorting via DFS: Example 2

c d e

veV a b f g h i j
seenfv] | 1 2 8 9 16 10 3 5 11 19
done[v] | 18 7 15 14 17 13 4 6 12 20
predpv] | — a a ¢ a d b b f -
time |1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
stackQ|la b gbhbacd f i f d c a e a — j -—
ababda acd f d c a a
a a a c¢c d ¢ a
a C a
a
done[v] [20 18 17 15 14 13 12 7 6 4
sortedv | j a e ¢ d f i b h g

53 /67

Arithmetic Expression Evaluation Order

45 6]7 1011 1718

(@+b) x (¢ — (a+b) x (—c+d)

54 /67

Arithmetic Expression Evaluation Order

Parentheses-free normal Polish, or prefix mathematical notation:

each operator is placed before its operands, e,g., +yx, —yx, or Xyz, in
contrast to the common infix notation z 4+ y, * — y, or © X y, respectively.

See, e.g., https://en.wikipedia.org/wiki/Polish_notation

dome[v] |5 7 8 11 12 13 16 18 19 20
Topological order: | X =+ d — X — C + b a
Computing: a-+b

c—(a+b)
(c—(a+b))x(a+b)

—C

—c+d
(—c+d)x (c—(a+Db))x (a+D)

Interpreters of the LISP and other programming languages use the prefix (or
the equally parentheses-free postfix) notation as a syntax for math expressions.

55 /67

Multiple Topological Orders of a DAG

(9
(0)
0,1,2,34

D ©
0,1,24,3 013245 0,1,2,4,5,3,6
0,2,1,34 013,254 0,1,2,5,3,4,6
0,2,14,3 0,1,2,3,4,5 011:2:534:3,6
0,1,2,3,54 0,1,5,2,3,4,6

0.1.2.54.3 0,1,5,2,4,3,6

56 /67

Connectivity

Graph Connectivity

Definition 5.14: A graph G = (V, E) is connected if there is a
path between each pair of its vertices u,v € V.

e A graph G is disconnected if it is not connected.

e The maximum induced connected subgraphs are called the
components of G.

Theorem 5.17:

The connected components of a graph G are precisely the
subgraphs spanned by the trees in the search forest obtained after
DFS or BFS is run on G.

The number of components < the number of times the search
chooses a root.

57 /67

Connectivity

Nice DFS Application: Strong Components

e Nodes v and w are mutually reachable if there is a path
from v to w and a path from w to v.
e Nodes of a digraph divide up into disjoint subsets of mutually
reachable nodes, which induce strong components.
e For a graph, a strong component is called just a component.
e (Strong) components are precisely the equivalence classes
under the mutual reachability relation.
e A digraph is strongly connected if it has only one strong
component.
e Components of a graph are found easily by BFS or DFS: each
tree spans a component.
e However, this does not work well for a digraph, which may have
a connected underlying graph yet not be strongly connected.
e A new idea is needed.

58 /67

Connectivity

Strongly Connected Components of a Digraph

(4)
O,

— Three strong components of G

Jeene U

Overall digraph’s structure in terms of its strong components (SC)

59 /67

Connectivity

Strongly Connected Components Algorithm

Run DFS on G, to get depth-first forest F'.
Run DFS on reverse digraph G, (with all reversed arcs).
o Get forest F; by choosing root from unseen nodes finishing
latest in F.
Suppose a node v in tree of F; with root w.
e Consider the four possibilities in F":
O seenfw] < seenfv] < donelv] < done[w]
@ seen[w] < done[w] < seen[v] < done[v]
© seenfv] < seenfw] < done[w] < done[v]
O seenfv] < donev] < seenfw] < done[w]
e By root choice, 2" and 3" impossible; by root choice and
since w reachable from v in G, 4th impossible.

So v is descendant of w in F', and v, w are in the same strong
component.

The converse is easy.

60 /67

61 /67

Connectivity

Strongly Connected Components: Example 1

Dlgraph G: DFS seen[v]|donelv] Dlgraph Gy

2(9

Vdonelv] < {a105 bo,; ds; c7; fo}

62 /67

Connectivity

Strongly Connected Components: Example 1

Digraph G Digraph G,: DFS

8|9

Two components: {{a,d, b}, {c,f}}

63 /67

64 /67

Vdone[o] < {G14; D12, F11, E1o, Ag, Cs, Ba}

65 /67

Strongly Connected Components: Example 2

Digraph G,: DFS

Three components: {{G},{D,F,E},{4,B,C}}

66 /67

Three components: {{G},{D, F,E},{4,B,C}}

67 /67

	Breadth-first Search
	Priority-first Search of Digraphs
	Algorithms Using Traversal Techniques
	Cycle detection
	Acyclic digraphs and topological ordering
	Connected graphs and strong components

