Directed Graphs (Digraphs) and Graphs Definitions Graph ADT Traversal algorithms DFS

Lecturer: Georgy Gimel'farb

COMPSCI 220 Algorithms and Data Structures
(1) Basic definitions
(2) Digraph Representation and Data Structures
(3) Digraph ADT Operations
(4) Graph Traversals and Applications
(5) Depth-first Search in Digraphs

Graphs in Life: World Air Roures

http://milenomics.com/2014/05/partners-alliances-partner-awards/

Graphs in Life：Global Internet Connections

Graphs in Life: Social Networks (Facebook)

http://robotmonkeys.net/wp-content/uploads/2010/12/social-nets-then-and-now-fb-cities-airlines-data.jpg

Directed Graph, or Digraph: Definition

A digraph $G=(V, E)$ is a finite nonempty set V of nodes together with a (possibly empty) set E of ordered pairs of nodes ${ }^{\circ}$ of G called arcs.

$$
\begin{aligned}
V= & \{0,1,2,3,4,5,6\} \\
E= & \{(0,1),(0,3), \\
& (1,2), \\
& (2,0),(2,5),(2,6), \\
& (3,1), \\
& (4,0),(4,3),(4,5), \\
& (5,3),(5,6), \\
& (6,5)\}
\end{aligned}
$$

${ }^{\circ}$ Set E is a neighbourhood, or adjacency relation on V.

Digraph: Relations of Nodes

If $(u, v) \in E$,

- v is adjacent to u;
- v is an out-neighbour of u, and
- u is an in-neighbour of v.

Examples:

- Nodes (points) 1 and 3 are adjacent to 0 .
- 1 and 3 are out-neighbours of 0 .
- 0 is an in-neighbour of 1 and 3 .
- Node 1 is adjacent to 3 .
- 1 is an out-neighbour of 3 .
- 3 is an in-neighbour of 1
- 5 is an out-neighbour of 2,4 , and 6 .

. is an out-nighour of 2,4 , and 6 .

(Undirected) Graph: Definition

A graph ${ }^{\circ} G=(V, E)$ is a finite nonempty set V of vertices together with a (possibly empty) set E of unordered pairs of vertices of G called edges.

$$
\begin{aligned}
V= & \{a, b, c, d, e, f, g, h\} \\
E= & \{\{a, b\},\{a, d\},\{b, d\},\{b, c\}, \\
& \{c, d\},\{d, f\},\{d, h\}\{f, h\}, \\
& \{e, g\}\}
\end{aligned}
$$

${ }^{\circ}$) The symmetric digraph: each arc (u, v) has the opposite arc (v, u). Such a pair is reduced into a single undirected edge that can be traversed in either direction.

Order, Size, and In- / Out-degree

The order of a digraph $G=(V, E)$ is the number of nodes, $n=|V|$.

The size of a digraph $G=(V, E)$ is the number of arcs, $m=|E|$.

The in-degree or out-degree of a node v is the number of arcs entering or leaving v, respectively.

- A node of in-degree 0 - a source.
- A node of out-degree 0 - a sink
- This example: the order $|V|=6$ and the size $|E|=9$

Order, Size, and In- / Out-degree

The order of a digraph $G=(V, E)$ is the number of nodes, $n=|V|$.

The size of a digraph $G=(V, E)$ is the number of arcs, $m=|E|$.
For a given $n, m \stackrel{\text { Sparse digraphs: }|E| \in \mathrm{O}(n) \quad \text { Dense digraphs: }|E| \in \Theta\left(n^{2}\right)}{=0} \underset{(n-1)}{\bullet}$

The in-degree or out-degree of a node v is the number of arcs entering or leaving v, respectively.

- A node of in-degree 0 - a source.
- A node of out-degree 0 - a sink
- This example: the order $|V|=6$ and the size $|E|=9$

Order, Size, and In- / Out-degree

The order of a digraph $G=(V, E)$ is the number of nodes, $n=|V|$.

The size of a digraph $G=(V, E)$ is the number of arcs, $m=|E|$.
For a given $n, m \stackrel{\text { Sparse digraphs: }|E| \in \mathrm{O}(n)}{\stackrel{\text { Dense digraphs: }}{=}|E| \in \Theta\left(n^{2}\right)} \underset{n(n-1)}{\bullet}$

The in-degree or out-degree of a node v is the number of arcs entering or leaving v, respectively.

- A node of in-degree 0 - a source.
- A node of out-degree 0 - a sink.
- This example: the order $|V|=6$ and the size $|E|=9$.

Walk, Path, and Cycle

A walk in a digraph $G=(V, E)$:

a sequence of nodes $v_{0} v_{1} \ldots v_{n}$, such that $\left(v_{i}, v_{i+1}\right)$ is an arc in G, i.e., $\left(v_{i}, v_{i+1}\right) \in E$, for each $i ; 0 \leq i<n$.

- The length of the walk $v_{0} v_{1} \ldots v_{n}$ is the number n of arcs involved
- A path is a walk, in which no node is repeated
- A cycle is a walk, in which $v_{0}=v_{n}$ and no other nodes are repeated
- By convention, a cycle in a graph is of length at least 3
- It is easily shown that if there is a walk from u to v, then there is at least one path from u to v

Walk, Path, and Cycle

A walk in a digraph $G=(V, E)$:

a sequence of nodes $v_{0} v_{1} \ldots v_{n}$, such that $\left(v_{i}, v_{i+1}\right)$ is an arc in G, i.e., $\left(v_{i}, v_{i+1}\right) \in E$, for each $i ; 0 \leq i<n$.

- The length of the walk $v_{0} v_{1} \ldots v_{n}$ is the number n of arcs involved.
- A path is a walk, in which no node is repeated.
- A cycle is a walk, in which $v_{0}=v_{n}$ and no other nodes are repeated.
- By convention, a cycle in a graph is of length at least 3
- It is easily shown that if there is a wall, from u to v, then there is at least one path from u to v

Walk, Path, and Cycle

A walk in a digraph $G=(V, E)$:

a sequence of nodes $v_{0} v_{1} \ldots v_{n}$, such that $\left(v_{i}, v_{i+1}\right)$ is an arc in G, i.e., $\left(v_{i}, v_{i+1}\right) \in E$, for each $i ; 0 \leq i<n$.

- The length of the walk $v_{0} v_{1} \ldots v_{n}$ is the number n of arcs involved.
- A path is a walk, in which no node is repeated.
- A cycle is a walk, in which $v_{0}=v_{n}$ and no other nodes are repeated.
- By convention, a cycle in a graph is of length at least 3 .
- It is easily shown that if there is a walk from u to v, then there is at least one path from u to v.

Walks, Paths, and Cycles in a Digraph: an Example

Sequence	Walk?	Path?	Cycle?
023			
312	nes	yes	
126531	yes		yes
4565	yes		
435			

Walks, Paths, and Cycles in a Digraph: an Example

Sequence	Walk?	Path?	Cycle?
023	no	no	no
312	yes	yes	no
126531	yes	nos	
4565	yes	nes	
435			

Walks, Paths, and Cycles in a Digraph: an Example

Sequence	Walk?	Path?	Cycle?
023	no	no	no
312	yes	yes	no
126531	yes		yes
4565	yes		no
435			

Walks, Paths, and Cycles in a Digraph: an Example

Sequence	Walk?	Path?	Cycle?
023	no	no	no
312	yes	yes	no
126531	yes	no	yes
4565	yes	no	no
435			

Walks, Paths, and Cycles in a Digraph: an Example

Sequence	Walk?	Path?	Cycle?
023	no	no	no
312	yes	yes	no
126531	yes	no	yes
4565	yes	no	no
435		no	

Walks, Paths, and Cycles in a Digraph: an Example

Sequence	Walk?	Path?	Cycle?
023	no	no	no
312	yes	yes	no
126531	yes	no	yes
4565	yes	no	no
435	no	no	no

Walks, Paths, and Cycles in a Graph: an Example

Sequence	Walk?	Path?	Cycle?
$a b c$	yes	es	no
$e g e$	yes		nes
$d b c d$	$y e s$		yes
$d a d f$	yes	ne	no
$a b d f h$	$y e s$	$y e s$	

Walks, Paths, and Cycles in a Graph: an Example

Sequence	Walk?	Path?	Cycle?
$a b c$	yes	yes	no
$e g e$	yes		no
$d b c d$	yes		yes
$d a d f$	yes	no	no
$a b d f h$	yes	yes	no

Walks, Paths, and Cycles in a Graph: an Example

Sequence	Walk?	Path?	Cycle?
$a b c$	yes	yes	no
$e g e$	yes	no	no
$d b c d$	yes	no	yes
$d a d f$	yes	no	no
$a b d f h$	yes	yes	no

Walks, Paths, and Cycles in a Graph: an Example

Sequence	Walk?	Path?	Cycle?
$a b c$	yes	yes	no
$e g e$	yes	no	no
$d b c d$	yes	no	yes
$d a d f$	yes	no	no
$a b d f h$	yes	yes	no

Walks, Paths, and Cycles in a Graph: an Example

Sequence	Walk?	Path?	Cycle?
$a b c$	yes	yes	no
$e g e$	yes	no	no
$d b c d$	yes	no	yes
$d a d f$	yes	no	no
$a b d f h$	yes	yes	no

Walks, Paths, and Cycles in a Graph: an Example

Sequence	Walk?	Path?	Cycle?
$a b c$	yes	yes	no
$e g e$	yes	no	no
$d b c d$	yes	no	yes
$d a d f$	yes	no	no
$a b d f h$	yes	yes	no

Digraph $G=(V, E)$: Distances and Diameter

The distance, $d(u, v)$, from a node u to a node v in G is the minimum length of a path from u to v.

- If no path exists, the distance is undefined or $+\infty$.
- For graphs, $d(u, v)=d(v, u)$ for all vertices u and v.

The diameter of G is the maximum distance $\max [d(u, v)]$

between any two vertices
The radius of G is $\min _{u \in V} \max _{v \in V}[d(u, v)]$

Digraph $G=(V, E)$: Distances and Diameter

The distance, $d(u, v)$, from a node u to a node v in G is the minimum length of a path from u to v.

- If no path exists, the distance is undefined or $+\infty$.
- For graphs, $d(u, v)=d(v, u)$ for all vertices u and v.

The diameter of G is the maximum distance $\max _{u, v \in V}[d(u, v)]$ between any two vertices.

The radius of G is $\min _{u \in V} \max _{v \in V}[d(u, v)]$.

Path Distances in Digraphs: Examples

$d(0,3)=\min \left\{\right.$ length $_{\text {of } 0,3} ;$ length $_{\text {of } 0,1,2,6,5,3} ;$ length $\left._{\text {of } 0,1,2,5,3}\right\}$

$$
=\min \{1 ; 5 ; 4\}=1
$$

		1	2	3	4	5	6
$u=0$	-	1	2	1	∞	3	3
$u=1$	2	-	1	3	∞	2	2
$u=2$	1	3	-	2	∞	1	1
$u=3$	3	1	2	-	∞	3	3
$u=4$	1	2	3	1	-	1	2
$u=5$	4	2	3	1	∞	-	1
$u=6$	5	3	4	2	∞	1	-

$d(0,1)=1, d(0,2)=2, d(0,5)=3, d(0,4)=\infty, d(5,5)=0, d(5,2)=3$, $d(5,0)=4, d(4,6)=2, d(4,1)=2, d(4,2)=3$

Diameter: $\max \{1,2,1, \infty, 3, \ldots, 4, \ldots, 5, \ldots, 1\}=\infty$
Raduis: $\min \{\infty, \infty, \ldots, 3, \infty, \infty\}=3$

Path Distances in Graphs: Examples

	a	b	c	d	e	f	g	h
$u=\mathrm{a}$	0	1	2	1	∞	2	∞	2
$u=\mathrm{b}$	1	0	1	1	∞	2	∞	2
$u=\mathrm{c}$	2	1	0	1	∞	2	∞	2
$u=\mathrm{d}$	1	1	1	0	∞	1	∞	1
$u=\mathrm{e}$	∞	∞	∞	∞	0	∞	1	∞
$u=\mathrm{f}$	2	2	2	1	∞	0	∞	1
$u=\mathrm{g}$	∞	∞	∞	∞	1	∞	0	∞
$u=\mathrm{h}$	2	2	2	1	∞	1	∞	0

$d(\mathrm{a}, \mathrm{b})=d(\mathrm{~b}, \mathrm{a})=1, d(\mathrm{a}, \mathrm{c})=d(\mathrm{c}, \mathrm{a})=2, d(\mathrm{a}, \mathrm{f})=d(\mathrm{f}, \mathrm{a})=2$,
$d(\mathrm{a}, \mathrm{e})=d(\mathrm{e}, \mathrm{a})=\infty, d(\mathrm{e}, \mathrm{e})=0, d(\mathrm{e}, \mathrm{g})=d(\mathrm{~g}, \mathrm{e})=1, d(\mathrm{~h}, \mathrm{f})=d(\mathrm{f}, \mathrm{h})=1$,
$d(\mathrm{~d}, \mathrm{~h})=d(\mathrm{~h}, \mathrm{~d})=1$
Diameter: $\max \{0,1,2,1, \infty, 2, \ldots, 2, \ldots, 2, \ldots, 0\}=\infty$
Radius: $\min \{\infty, \ldots, \infty\}=\infty$

Diameter / Radius of an Unweighted Graph

	A	B	C	D	E	$\max _{v} d(u, v)$
A	0	1	1	2	1	2
B	1	0	2	1	1	2
C	1	2	0	1	1	2
D	2	1	1	0	1	2
E	1	1	1	1	0	1

$$
\begin{aligned}
d(C, E) & =d(E, C) \\
& =\min \{1,1+1,1+1,1+1+1,1+1+1\}=1 \\
d(B, C) & =d(C, B) \\
& =\min \{1+1,1+1+1,1+1,1+1+1,1+1,1+1+1\}=2
\end{aligned}
$$

Radius $=1$; diameter $=2$.

Diameter / Radius of a Weighted Graph

| | | A | B | C | D | E |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\max _{v} d(u, v)$

$$
\begin{aligned}
d(C, E) & =d(E, C) \\
& =\min \{5,2+1,3+1,2+3+1,3+2+1\}=3 \\
d(B, C) & =d(C, B) \\
& =\min \{3+2,1+1+2,1+5,1+1+3,2+3,2+1+5\}=4
\end{aligned}
$$

Radius $=2$; diameter $=4$.

Underlying Graph of a Digraph

The underlying graph of a digraph $G=(V, E)$ is the graph $G^{\prime}=\left(V, E^{\prime}\right)$ where $E^{\prime}=\{\{u, v\} \mid(u, v) \in E\}$.

Sub(di)graphs

A subdigraph of a digraph $G=(V, E)$ is a digraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ where $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$.

$$
G=\binom{V=\{0,1,2,3,4\},}{E=\left\{\begin{array}{l}
(0,2),(1,0),(1,2), \\
(1,3),(3,1),(4,2), \\
(3,4)
\end{array}\right.} \quad G^{\prime}=\binom{V^{\prime}=\{1,2,3\},}{E^{\prime}=\{(1,2),(3,1)\}}
$$

Spanning Sub(di)graphs

A spanning subdigraph contains all nodes, that is, $V^{\prime}=V$.

Induced Sub(di)graphs

The subdigraph induced by a subset V^{\prime} of V is the digraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ where $E^{\prime}=\left\{(u, v) \in E \mid u \in V^{\prime}\right.$ and $\left.v \in V^{\prime}\right\}$.

$$
G=\binom{V=\{0,1,2,3,4\},}{E=\left\{\begin{array}{l}
(0,2),(1,0),(1,2), \\
(1,3),(3,1),(4,2), \\
(3,4)
\end{array}\right\}} \quad G^{\prime}=\binom{V^{\prime}=\{1,2,3\},}{E^{\prime}=\left\{\begin{array}{l}
(1,2),(1,3),\} \\
(3,1)
\end{array}\right\}}
$$

Digraphs: Computer Representation

For a digraph G of order n with the vertices, V, labelled $0,1, \ldots, n-1$:

The adjacency matrix of G :

The $n \times n$ boolean matrix (often encoded with 0 's and 1 's) such that its entry (i, j) is true if and only if there is an arc (i, j) from the node i to node j.

An adjacency list of G :
 A sequence of n sequences, L_{0}, \ldots, L_{n-1}, such that the sequence L_{i} contains all nodes of G that are adjacent to the node

Each sequence L_{i} may not be sorted! But we usually sort them

Digraphs: Computer Representation

For a digraph G of order n with the vertices, V, labelled $0,1, \ldots, n-1$:

The adjacency matrix of G :

The $n \times n$ boolean matrix (often encoded with 0 's and 1 's) such that its entry (i, j) is true if and only if there is an arc (i, j) from the node i to node j.

An adjacency list of G :

A sequence of n sequences, L_{0}, \ldots, L_{n-1}, such that the sequence L_{i} contains all nodes of G that are adjacent to the node i.

Each sequence L_{i} may not be sorted! But we usually sort them.

Adjacency Matrix of a Digraph

Digraph $G=(V, E)$

Adjacency matrix of G :
0 - a non-adjacent pair of vertices:
$(i, j) \notin E$
1 - an adjacent pair of vertices:
$(i, j) \in E$

The number of 1's in a row (column) is the out-(in-) degree of the related node.

Adjacency Lists of a Graph

symbolic

$$
\begin{aligned}
& 0=\mathrm{a}: \mathrm{b} \mathrm{~d} \\
& 1=\mathrm{b}: \mathrm{a} \mathrm{c} \mathrm{~d} \\
& 2=\mathrm{c}: \mathrm{b} \mathrm{~d} \\
& 3=\mathrm{d}: \mathrm{a} \mathrm{~b} \mathrm{c} \mathrm{f} \mathrm{~h} \\
& 4=\mathrm{e}: \mathrm{g} \\
& 5=\mathrm{f}: \mathrm{d} \mathrm{~h}
\end{aligned}
$$

$$
023
$$

$$
13
$$

$$
01257
$$

$$
6
$$

$$
37
$$

$6=\mathrm{g}$: e
$7=\mathrm{h}: \mathrm{df}$
4
35
Special cases can be stored more efficiently:

- A complete binary tree or a heap: in an array.
- A general rooted tree: in an array pred of size n;
- pred[i] - a pointer to the parent of node i.

Digraph Operations w.r.t. Data Structures

Operation	Adjacency Matrix	Adjacency Lists
arc (i, j) exists?	is entry $(i, j) 0$ or 1	find j in list i
out-degree of i	scan row and sum 1's	size of list i
in-degree of i	scan column and sum 1's	for $j \neq i$, find i in list j
add arc (i, j)	change entry (i, j)	insert j in list i
delete arc (i, j)	change entry (i, j)	delete j from list i
add node	create new row/column	add new list at end
delete node i	delete row/column i and shuffle other entries	delete list i and for $j \neq i$, delete i from list j

Adjacency Lists / Matrices: Comparative Performance

$$
G=(V, E) \quad \longrightarrow \quad n=|V| ; \quad m=|E|
$$

Operation	array/array	list/list
arc (i, j) exists?	$\Theta(1)$	$\left.\Theta(\alpha)^{\circ}\right)$
out-degree of i	$\Theta(n)$	$\Theta(1)$
in-degree of i	$\Theta(n)$	$\Theta(n+m)$
add arc (i, j)	$\Theta(1)$	$\Theta(1)$
delete arc (i, j)	$\Theta(1)$	$\Theta(\alpha)$
add node	$\Theta(n)$	$\Theta(1)$
delete node i	$\Theta\left(n^{2}\right)$	$\Theta(n+m)$

$\left.{ }^{\circ}\right)$ Here, α denotes size of the adjacency list for vertex i.

General Graph Traversal Algorithm

algorithm traverse
Input: digraph $G=(V, E)$

begin

array colour $[n], \operatorname{pred}[n]$
for $u \in V(G)$ do colour $[u] \leftarrow$ WHITE
end for
for $s \in V(G)$ do
if colour $[s]=$ WHITE then visit(s)
end if
end for
return pred
end

Three types of nodes each stage:

- WHITE - unvisited yet.
- GREY - visited, but some adjacent nodes are WHITE.
- BLACK - visited; only GREY adjacent nodes

General Graph Traversal Algorithm

algorithm visit
Input: node s of digraph G
begin
colour $[s] \leftarrow$ GREY; pred $[s] \leftarrow$ NULL
while there is a grey node do choose a grey node u
if there is a white neighbour of u
choose such a neighbour v colour $[v] \leftarrow$ GREY; pred $[v] \leftarrow u$ else colour $[u] \leftarrow$ BLACK end if
end while
end

Illustrating the General Traversal Algorithm

initialising all nodes WHITE

Illustrating the General Traversal Algorithm

$$
\begin{aligned}
& \text { visit }(\mathrm{a}) ; \text { colour }[\mathrm{a}] \leftarrow \text { GREY } \\
& \mathrm{e} \text { is WHITE neighbour of a: } \\
& \text { colour }[\mathrm{e}] \leftarrow \mathrm{GREY} ; \text { pred }[\mathrm{e}] \leftarrow \mathrm{a}
\end{aligned}
$$

Illustrating the General Traversal Algorithm

visit(a); colour[a] \leftarrow GREY e is WHITE neighbour of a colour $[\mathrm{e}] \leftarrow$ GREY; pred $[e] \leftarrow \mathrm{a}$ choose GREY a: no WHITE neighbour: colour $[\mathrm{a}] \leftarrow$ BLACK

Illustrating the General Traversal Algorithm

visit(a); colour[a] \leftarrow GREY e is WHITE neighbour of a colour $[\mathrm{e}] \leftarrow$ GREY; pred $[e] \leftarrow \mathrm{a}$ choose GREY a: no WHITE neighbour: colour $[\mathrm{a}] \leftarrow$ BLACK choose GREY e: no WHITE neighbour: colour $[\mathrm{e}] \leftarrow$ BLACK

Illustrating the General Traversal Algorithm

visit(b); colour $[\mathrm{b}] \leftarrow$ GREY c is WHITE neighbour of b colour $[\mathrm{c}] \leftarrow$ GREY; pred $[c] \leftarrow \mathrm{b}$

Illustrating the General Traversal Algorithm

visit(b); colour $[\mathrm{b}] \leftarrow$ GREY c is WHITE neighbour of b colour $[\mathrm{c}] \leftarrow$ GREY; pred $[c] \leftarrow \mathrm{b}$ d is WHITE neighbour of c colour $[\mathrm{d}] \leftarrow$ GREY; pred $[d] \leftarrow \mathrm{c}$

Illustrating the General Traversal Algorithm

visit(b); colour $[\mathrm{b}] \leftarrow$ GREY c is WHITE neighbour of b colour $[\mathrm{c}] \leftarrow$ GREY; pred $[c] \leftarrow \mathrm{b}$ d is WHITE neighbour of c colour $[\mathrm{d}] \leftarrow$ GREY; pred $[d] \leftarrow \mathrm{c}$ no more WHITE nodes:
colour $[\mathrm{d}] \leftarrow$ BLACK
colour $[\mathrm{c}] \leftarrow$ BLACK
colour $[\mathrm{b}] \leftarrow$ BLACK

Classes of Traversal Arcs

Search forest F : a set of disjoint trees spanning a digraph G after its traversal.

An arc $(u, v) \in E(G)$ is called a tree arc if it belongs to one of the trees of F

The arc (u, v), which is not a tree arc, is called:

- a forward arc if u is an ancestor of v in F;
- a back arc if u is a descendant of v in F, and
- a cross arc if neither u nor v is an ancestor of the other in F.

Basic Facts about Traversal Trees (for further analyses)

Theorem 5.2: Suppose we have run traverse on G, resulting in a search forest F.
(1) If T_{1} and T_{2} are different trees in F and T_{1} was explored before T_{2}, then there are no arcs from T_{1} to T_{2}.
2. If G is a graph, then there can be no edges joining different trees of F.
(3) If $v, w \in V(G) ; v$ is visited before w, and w is reachable from v in G, then v and w belong to the same tree of F.

4 If $v, w \in V(G)$ and v and w belong to the same tree T in F, then any path from v to w in G must have all nodes in T.

Basic Facts about Traversal Trees (for further analyses)

Theorem 5.2: Suppose we have run traverse on G, resulting in a search forest F.
(1) If T_{1} and T_{2} are different trees in F and T_{1} was explored before T_{2}, then there are no arcs from T_{1} to T_{2}.
(2) If G is a graph, then there can be no edges joining different trees of F.
(3) If $u, w \in V\left(G^{\prime}\right) ; v$ is visited before w, and w is reachable from v in G, then v and w belong to the same tree of F
(4) If $v, w \in V(G)$ and v and w belong to the same tree T in F then any path from v to w in G must have all nodes in T

Basic Facts about Traversal Trees (for further analyses)

Theorem 5.2: Suppose we have run traverse on G, resulting in a search forest F.
(1) If T_{1} and T_{2} are different trees in F and T_{1} was explored before T_{2}, then there are no arcs from T_{1} to T_{2}.
(2) If G is a graph, then there can be no edges joining different trees of F.

Basic Facts about Traversal Trees (for further analyses)

Theorem 5.2: Suppose we have run traverse on G, resulting in a search forest F.
(1) If T_{1} and T_{2} are different trees in F and T_{1} was explored before T_{2}, then there are no arcs from T_{1} to T_{2}.
(2) If G is a graph, then there can be no edges joining different trees of F.
(3) If $v, w \in V(G) ; v$ is visited before w, and w is reachable from v in G, then v and w belong to the same tree of F.
 then any path from v to w in G must have all nodes in T

Basic Facts about Traversal Trees (for further analyses)

Theorem 5.2: Suppose we have run traverse on G, resulting in a search forest F.
(1) If T_{1} and T_{2} are different trees in F and T_{1} was explored before T_{2}, then there are no arcs from T_{1} to T_{2}.
(2) If G is a graph, then there can be no edges joining different trees of F.
(3) If $v, w \in V(G) ; v$ is visited before w, and w is reachable from v in G, then v and w belong to the same tree of F.
(4) If $v, w \in V(G)$ and v and w belong to the same tree T in F, then any path from v to w in G must have all nodes in T.

Run-time Analysis of Algorithm traverse

In the while-loop of subroutine visit let:

- a (A) be lower (upper) time bound to choose a GREY node.
- $b(B)$ be lower (upper) time bound to choose a WHITE neighbour.

Given a (di)graph $G=(V, E)$ of order $n=|V|$ and size $m=|E|$, the running time of traverse is:

- $\mathrm{O}(A n+B m)$ and $\Omega(a n+b m)$ with adjacency lists, and
- $\mathrm{O}\left(A n+B n^{2}\right)$ and $\Omega\left(a n+b n^{2}\right)$ with an adjacency matrix.

Time to find a GREY node: $\quad \mathrm{O}(A n)$ and $\Omega(a n)$
Time to find a WHITE neighbour: $\mathrm{O}(B m)$ and $\Omega(b m)$ (adjacency lists)
$\mathrm{O}\left(B n^{2}\right)$ and $\Omega\left(b n^{2}\right)$ (an adjacency matrix)

- Generally, A, B, a, b may depend on n.
- A more detailed analysis depends on the rules used.

Main Rules for Choosing Next Nodes

- Depth-first search (DFS):
- Starting at a node v.
- Searching as far away from v as possible via neighbours.
- Continue from the next neighbour until no more new nodes.
- Breadth-first search (BFS):
- Starting at a node v.
- Searching through all its neighbours, then through all their neighbours, etc.
- Continue until no more new nodes.
- More complicated priority-first search (PFS).

Depth-first Search (DFS) Algorithm

algorithm dfs
Input: digraph $G=(V(G), E(G))$

begin

stack S; array colour $[n]$, $\operatorname{pred}[n]$, seen $[n]$, done $[n]$
for $u \in V(G)$ do colour $[u] \leftarrow$ WHITE; pred $[u] \leftarrow$ NULL
end for
time $\leftarrow 0$
for $s \in V(G)$ do
if colour $[s]=$ WHITE then dfsvisit(s)
end if
end for
return pred, seen, done
end

Depth-first Search (DFS) Algorithm

algorithm dfsvisit
Input: node s
begin
colour $[s] \leftarrow$ GREY; seen $[s] \leftarrow$ time ++ ;
S.push_top(s)
while not S.isempty() do
$u \leftarrow S$.get_top()
if there is a v adjacent to u and colour $[v]=$ WHITE then
colour $[v] \leftarrow$ GREY; pred $[v] \leftarrow u$ seen $[v] \leftarrow$ time ++ ; S.push_top (v)
else $S . d e l_{-t o p() ; ~}^{\text {(}}$
colour $[u] \leftarrow$ BLACK; done $[u] \leftarrow$ time ++ ;
end if
end while
end

Recursive View of DFS Algorithm

algorithm rec_dfs_visit
Input: node s
begin
colour $[s] \leftarrow$ GREY
seen $[s] \leftarrow$ time ++
for each v adjacent to s do if colour $[v]=$ WHITE then
$\operatorname{pred}[v] \leftarrow s$
rec_dfs_visit(v)
end if
end for
colour $[s] \leftarrow$ BLACK
done $[s] \leftarrow$ time ++
end

DFS: An Example $(\operatorname{seen}[v] \mid$ done $[v]):$ time $=0 ; 1$

DFS: An Example $(\operatorname{seen}[v] \mid$ done $[v]):$ time $=1 ; 2$

DFS: An Example (seen $[v] \mid$ done $[v]$): time $=2,3$

DFS: An Example (seen $[v] \mid$ done $[v]$): time $=3 ; 4$

DFS: An Example (seen $[v] \mid$ done $[v])$: time $=4 ; 5$

DFS: An Example (seen $[v] \mid$ done $[v]:$ time $=5,6$

DFS: An Example $(\operatorname{seen}[v] \mid$ done $[v]):$ time $=6,7$

DFS: An Example (seen $[v] \mid$ done $[v]$): time $=7,8$

DFS: An Example $(\operatorname{seen}[v] \mid$ done $[v])$: time $=8,9$

DFS: An Example (seen $[v] \mid$ done $[v]):$ time $=9,10$

Basic Properties of Depth-first Search

Next GREY node chosen \leftarrow the last one coloured GREY thus far.

- Data structure for this "last in, first out" order - a stack.

Each call to dfs_visit (v) terminates only when all nodes reachable from v via a path of WHITE nodes have been seen.

If (v, w) is an arc, then for a

- tree or forward arc: seen $[v]<\operatorname{seen}[w]<\operatorname{done}[w]<d o n e[v]$
- Example in Slide 52: $(a, b): 0<1<8<9 ;(b, c): 1<2<5<8$; $(a, c): 0<2<5<9 ;$
- back arc: seen $[w]<\operatorname{seen}[v]<$ done $[v]<$ done $[w]$:
- Example in Slide 52: $(d, a): 0<6<7<9$;
- cross arc: seen $[w]<$ done $[w]<\operatorname{seen}[v]<$ done $[v]$.
- Example in Slide 52: $(d, e): 3<4<6<7$;

Hence, there are no cross edges on a graph.

Tree, Forward, Back, and Cross Arcs

 (Example in Slide 52)

Using DFS to Determine Ancestors of a Tree

Theorem 5.5

Suppose that DFS on a digraph G results in a search forest F. Let $v, w \in V(G)$ and seen $[v]<\operatorname{seen}[w]$.
(1) If v is an ancestor of w in F, then

$$
\operatorname{seen}[v]<\operatorname{seen}[w]<\operatorname{done}[w]<\operatorname{done}[v] .
$$

(2) If v is not an ancestor of w in F, then

$$
\operatorname{seen}[v]<\operatorname{done}[v]<\operatorname{seen}[w]<\operatorname{done}[w] .
$$

Proof.

(1) This part follows from the recursive nature of DFS.
(2) If v is not an ancestor of w in F, then w is also not an ancestor v.

- Thus v is in a subtree, which was completely explored before the subtree of w.

DFS: seen/done: step 1

Preorder (WHITE to GREY): seen A
1
Postorder (GREY to BLACK) done

DFS: seen/done: step 2

Preorder (WHITE to GREY): seen A B
12
Postorder (GREY to BLACK) done

DFS: seen/done: step 3

Preorder (WHITE to GREY): seen A B
12
Postorder (GREY to BLACK) done B
3

DFS: seen/done: step 4

Preorder (WHITE to GREY): seen A B S
124
Postorder (GREY to BLACK) done B
3

DFS: seen/done: step 5

Preorder (WHITE to GREY): seen A B S C
1245
Postorder (GREY to BLACK) done B

DFS: seen/done: step 6

Preorder (WHITE to GREY): seen A B S C D
12456
Postorder (GREY to BLACK) done B

DFS: seen/done: step 7

Preorder (WHITE to GREY): seen A B S C D
12456
Postorder (GREY to BLACK) done B D
37

DFS: seen/done: step 8

Preorder (WHITE to GREY): seen A B S C D E 124568
Postorder (GREY to BLACK) done B D
37

DFS: seen/done: step 9

Preorder (WHITE to GREY): seen A B S C D E H 1245689
Postorder (GREY to BLACK) done B D
37

DFS: seen/done: step 10

DFS: seen/done: step 11

DFS: seen/done: step 12

DFS: seen/done: step 13

DFS: seen/done: step 14

DFS: seen/done: step 15

DFS: seen/done: step 16

DFS: seen/done: step 17

DFS: seen/done: step 18

Preorder (WHITE to GREY): seen A B S C D E H G F $\begin{array}{lllllllll}1 & 2 & 4 & 5 & 6 & 8 & 9 & 10\end{array}$
Postorder (GREY to BLACK) done B D F G H E C S A 3712131415161718

Determining Ancestors of a Tree: Examples

$A \rightarrow B: \quad \operatorname{seen}[A]=1<\operatorname{seen}[B]=2<$ done $[B]=3<$ done $[A]=18$
$S \rightarrow H: \quad$ seen $[S]=4<\operatorname{seen}[H]=9<$ done $[H]=14<$ done $[S]=17$
$B \nrightarrow D: \quad \operatorname{seen}[B]=2<$ done $[B]=3<\operatorname{seen}[D]=6<$ done $[D]=7$
$D \nrightarrow G: \quad$ seen $[D]=6<$ done $[D]=7<\operatorname{seen}[G]=10<$ done $[G]=13$

