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Graphs in Life: World Air Roures

http://milenomics.com/2014/05/partners-alliances-partner-awards/
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Graphs in Life: Global Internet Connections

http://www.opte.org/maps/
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Graphs in Life: Social Networks (Facebook)

http://robotmonkeys.net/wp-content/uploads/2010/12/social-nets-then-and-now-fb-cities-airlines-data.jpg
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Directed Graph, or Digraph: Definition

A digraph G = (V,E) is a finite nonempty set V of nodes
together with a (possibly empty) set E of ordered pairs of nodes◦

of G called arcs.

V = { 0, 1, 2, 3, 4, 5, 6 }

E = { (0, 1), (0, 3),
(1, 2),
(2, 0), (2, 5), (2, 6),
(3, 1),
(4, 0), (4, 3), (4, 5),
(5, 3), (5, 6),
(6, 5) }

◦) Set E is a neighbourhood, or adjacency relation on V .
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Digraph: Relations of Nodes

If (u, v) ∈ E,

• v is adjacent to u;

• v is an out-neighbour of u, and

• u is an in-neighbour of v. u

v

in-neighbour of v

out-neighbour of u

Examples:

◦ Nodes (points) 1 and 3 are adjacent to 0.

◦ 1 and 3 are out-neighbours of 0.

◦ 0 is an in-neighbour of 1 and 3.

◦ Node 1 is adjacent to 3.

◦ 1 is an out-neighbour of 3.

◦ 3 is an in-neighbour of 1. . . .

◦ 5 is an out-neighbour of 2, 4, and 6.
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(Undirected) Graph: Definition

A graph◦ G = (V,E) is a finite nonempty set V of vertices
together with a (possibly empty) set E of unordered pairs of
vertices of G called edges.

V = { a, b, c, d, e, f, g, h }

E =
{
{a, b}, {a, d}, {b, d}, {b, c},
{c, d}, {d, f}, {d, h} {f, h},
{e, g}

}
◦) The symmetric digraph: each arc (u, v) has the opposite arc (v, u).

Such a pair is reduced into a single undirected edge that can be traversed
in either direction.
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Order, Size, and In- / Out-degree

The order of a digraph G = (V,E) is the number of nodes, n = |V |.

The size of a digraph G = (V,E) is the number of arcs, m = |E|.

For a given n,
m = 0 n(n− 1)

Sparse digraphs: |E| ∈ O(n) Dense digraphs: |E| ∈ Θ(n2)

The in-degree or out-degree of a node v is the number of arcs
entering or leaving v, respectively.

• A node of in-degree 0 – a source.

• A node of out-degree 0 – a sink.

• This example: the order |V | = 6
and the size |E| = 9.

Source Sink
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Walk, Path, and Cycle

A walk in a digraph G = (V,E):

a sequence of nodes v0 v1 . . . vn, such that (vi, vi+1) is an arc in
G, i.e., (vi, vi+1) ∈ E, for each i; 0 ≤ i < n.

• The length of the walk v0 v1 . . . vn is the number n of arcs
involved.

• A path is a walk, in which no node is repeated.

• A cycle is a walk, in which v0 = vn and no other nodes are
repeated.

• By convention, a cycle in a graph is of length at least 3.

• It is easily shown that if there is a walk from u to v, then there is at least
one path from u to v.
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Walks, Paths, and Cycles in a Digraph: an Example

0

1

2

3

4

5

6

Sequence Walk? Path? Cycle?

0 2 3 no no no
3 1 2 yes yes no
1 2 6 5 3 1 yes no yes
4 5 6 5 yes no no
4 3 5 no no no
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Walks, Paths, and Cycles in a Graph: an Example

a
b

c

d
e

f

g
h

Sequence Walk? Path? Cycle?

a b c yes yes no
e g e yes no no
d b c d yes no yes
d a d f yes no no
a b d f h yes yes no
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Digraph G = (V,E): Distances and Diameter

The distance, d(u, v), from a node u to a node v in G is the
minimum length of a path from u to v.

• If no path exists, the distance is undefined or +∞.

• For graphs, d(u, v) = d(v, u) for all vertices u and v.

The diameter of G is the maximum distance max
u,v∈V

[d(u, v)]

between any two vertices.

The radius of G is min
u∈V

max
v∈V

[d(u, v)].
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Path Distances in Digraphs: Examples

d(0, 3) = min{lengthof 0,3; lengthof 0,1,2,6,5,3; lengthof 0,1,2,5,3}
= min{1; 5; 4} = 1

0

1

2

3

4

5

6

v︷ ︸︸ ︷
0 1 2 3 4 5 6

u=0 − 1 2 1 ∞ 3 3
u=1 2 − 1 3 ∞ 2 2
u=2 1 3 − 2 ∞ 1 1
u=3 3 1 2 − ∞ 3 3
u=4 1 2 3 1 − 1 2
u=5 4 2 3 1 ∞ − 1
u=6 5 3 4 2 ∞ 1 −

d(0, 1) = 1, d(0, 2) = 2, d(0, 5) = 3, d(0, 4) =∞, d(5, 5) = 0, d(5, 2) = 3,
d(5, 0) = 4, d(4, 6) = 2, d(4, 1) = 2, d(4, 2) = 3

Diameter: max{1, 2, 1,∞, 3, . . . , 4, . . . , 5, . . . , 1} =∞
Raduis: min{∞,∞, . . . , 3,∞,∞} = 3
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Path Distances in Graphs: Examples

a
b

c

d
e

f

g
h

v︷ ︸︸ ︷
a b c d e f g h

u=a 0 1 2 1 ∞ 2 ∞ 2
u=b 1 0 1 1 ∞ 2 ∞ 2
u=c 2 1 0 1 ∞ 2 ∞ 2
u=d 1 1 1 0 ∞ 1 ∞ 1
u=e ∞ ∞ ∞ ∞ 0 ∞ 1 ∞
u=f 2 2 2 1 ∞ 0 ∞ 1
u=g ∞ ∞ ∞ ∞ 1 ∞ 0 ∞
u=h 2 2 2 1 ∞ 1 ∞ 0

d(a,b) = d(b, a) = 1, d(a, c) = d(c, a) = 2, d(a, f) = d(f, a) = 2,
d(a, e) = d(e, a) =∞, d(e, e) = 0, d(e, g) = d(g, e) = 1, d(h, f) = d(f,h) = 1,
d(d,h) = d(h, d) = 1

Diameter: max{0, 1, 2, 1,∞, 2, . . . , 2, . . . , 2, . . . , 0} =∞
Radius: min{∞, . . . ,∞} =∞
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Diameter / Radius of an Unweighted Graph

A B

E

C D

A B C D E maxv d(u,v)

A 0 1 1 2 1 2

B 1 0 2 1 1 2

C 1 2 0 1 1 2

D 2 1 1 0 1 2

E 1 1 1 1 0 1

d(C,E) = d(E,C)
= min{1, 1 + 1, 1 + 1, 1 + 1 + 1, 1 + 1 + 1} = 1

d(B,C) = d(C,B)
= min{1 + 1, 1 + 1 + 1, 1 + 1, 1 + 1 + 1, 1 + 1, 1 + 1 + 1} = 2

Radius = 1; diameter = 2.
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Diameter / Radius of a Weighted Graph

3

1 1

2

5 1

2

3

A B

E

C D

A B C D E maxv d(u,v)

A 0 2 2 2 1 2

B 2 0 4 2 1 4

C 2 4 0 3 3 4

D 2 2 3 0 1 3

E 1 1 3 1 0 3

d(C,E) = d(E,C)
= min{5, 2 + 1, 3 + 1, 2 + 3 + 1, 3 + 2 + 1} = 3

d(B,C) = d(C,B)
= min{3 + 2, 1 + 1 + 2, 1 + 5, 1 + 1 + 3, 2 + 3, 2 + 1 + 5} = 4

Radius = 2; diameter = 4.
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Underlying Graph of a Digraph

The underlying graph of a digraph G = (V,E) is the graph
G′ = (V,E′) where E′ =

{
{u, v} | (u, v) ∈ E

}
.

0

1

2

3

4

5

6

0

1

2

3

4

5

6
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Sub(di)graphs

A subdigraph of a digraph G = (V,E) is a digraph G′ = (V ′, E′)
where V ′ ⊆ V and E′ ⊆ E.

G =


V = {0, 1, 2, 3, 4},

E =


(0, 2), (1, 0), (1, 2),
(1, 3), (3, 1), (4, 2),
(3, 4)




G′ =

(
V ′ = {1, 2, 3},

E′ = {(1, 2), (3, 1)}

)
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Spanning Sub(di)graphs

A spanning subdigraph contains all nodes, that is, V ′ = V .

G =


V = {0, 1, 2, 3, 4},

E =


(0, 2), (1, 0), (1, 2),
(1, 3), (3, 1), (4, 2),
(3, 4)


 G′ =

V ′ = {0, 1, 2, 3, 4},

E′ =

{
(0, 2), (1, 2),
(3, 4)

}
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Induced Sub(di)graphs

The subdigraph induced by a subset V ′ of V is the digraph
G′ = (V ′, E′) where E′ = {(u, v) ∈ E | u ∈ V ′ and v ∈ V ′}.

G =


V = {0, 1, 2, 3, 4},

E =


(0, 2), (1, 0), (1, 2),
(1, 3), (3, 1), (4, 2),
(3, 4)


 G′ =

V ′ = {1, 2, 3},

E′ =

{
(1, 2), (1, 3),
(3, 1)

}
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Digraphs: Computer Representation

For a digraph G of order n with the vertices, V , labelled 0, 1, . . . , n− 1:

The adjacency matrix of G:

The n× n boolean matrix (often encoded with 0’s and 1’s) such that
its entry (i, j) is true if and only if there is an arc (i, j) from the
node i to node j.

An adjacency list of G:

A sequence of n sequences, L0, . . . , Ln−1, such that the sequence
Li contains all nodes of G that are adjacent to the node i.

Each sequence Li may not be sorted! But we usually sort them.

22 / 74
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Adjacency Matrix of a Digraph

0

1

2

3

4

5

6

Digraph G = (V,E)



0 1 0 1 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 1 1
0 1 0 0 0 0 0
1 0 0 1 0 1 0
0 0 0 1 0 0 1
0 0 0 0 0 1 0



0

0

1

1

2

2

3

3

4

4

5

5

6

6

Adjacency matrix of G:

0 – a non-adjacent pair of vertices:
(i, j) /∈ E

1 – an adjacent pair of vertices:
(i, j) ∈ E

The number of 1’s in a row (column) is the out-(in-) degree of the related node.
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Adjacency Lists of a Graph

a
b

c

d
e

f

g
h

Graph G = (V,E)

symbolic

0 = a: b d
1 = b: a c d
2 = c: b d
3 = d: a b c f h
4 = e: g
5 = f: d h
6 = g: e
7 = h: d f

numeric
8

1 3
0 2 3
1 3
0 1 2 5 7
6
3 7
4
3 5

Special cases can be stored more efficiently:

• A complete binary tree or a heap: in an array.

• A general rooted tree: in an array pred of size n;

• pred[i] – a pointer to the parent of node i.
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Digraph Operations w.r.t. Data Structures

Operation Adjacency Matrix Adjacency Lists
arc (i, j) exists? is entry (i, j) 0 or 1 find j in list i
out-degree of i scan row and sum 1’s size of list i
in-degree of i scan column and sum 1’s for j 6= i, find i in list j
add arc (i, j) change entry (i, j) insert j in list i
delete arc (i, j) change entry (i, j) delete j from list i
add node create new row/column add new list at end
delete node i delete row/column i and delete list i and for j 6= i,

shuffle other entries delete i from list j
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Adjacency Lists / Matrices: Comparative Performance

G = (V,E) −→ n = |V |; m = |E|

Operation array/array list/list

arc (i, j) exists? Θ(1) Θ(α)◦)

out-degree of i Θ(n) Θ(1)

in-degree of i Θ(n) Θ(n+m)

add arc (i, j) Θ(1) Θ(1)

delete arc (i, j) Θ(1) Θ(α)

add node Θ(n) Θ(1)

delete node i Θ(n2) Θ(n+m)

◦)Here, α denotes size of the adjacency list for vertex i.
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General Graph Traversal Algorithm (Part 1)

algorithm traverse

Input: digraph G = (V,E)
begin

array colour[n], pred[n]
for u ∈ V (G) do

colour[u]← WHITE
end for
for s ∈ V (G) do

if colour[s] = WHITE then
visit(s)

end if
end for
return pred

end

Three types of nodes each stage:

• WHITE – unvisited yet.

• GREY – visited, but some
adjacent nodes are WHITE.

• BLACK – visited; only GREY
adjacent nodes
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General Graph Traversal Algorithm (Part 2)

algorithm visit

Input: node s of digraph G
begin

colour[s]← GREY; pred[s]← NULL
while there is a grey node do

choose a grey node u
if there is a white neighbour of u

choose such a neighbour v
colour[v]← GREY; pred[v]← u

else colour[u]← BLACK
end if

end while
end

28 / 74



Outline Definitions Representation ADT Traversal DFS

Illustrating the General Traversal Algorithm

a

b

c

d

e

initialising all nodes WHITE
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Illustrating the General Traversal Algorithm

a

b

c

d

e

a

e

visit(a); colour[a]← GREY
e is WHITE neighbour of a:

colour[e]← GREY; pred[e]← a
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Illustrating the General Traversal Algorithm

a

b

c

d

e

a

e

a
visit(a); colour[a]← GREY
e is WHITE neighbour of a

colour[e]← GREY; pred[e]← a
choose GREY a: no WHITE neighbour:

colour[a]← BLACK
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Illustrating the General Traversal Algorithm

a

b

c

d

e

a

e

a

e

visit(a); colour[a]← GREY
e is WHITE neighbour of a

colour[e]← GREY; pred[e]← a
choose GREY a: no WHITE neighbour:

colour[a]← BLACK
choose GREY e: no WHITE neighbour:

colour[e]← BLACK
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Illustrating the General Traversal Algorithm

c

a

b

d

e

a

eb

c a

e

visit(b); colour[b]← GREY
c is WHITE neighbour of b

colour[c]← GREY; pred[c]← b
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Illustrating the General Traversal Algorithm

c

a

b

d

e

a

eb

c

d

a

e

visit(b); colour[b]← GREY
c is WHITE neighbour of b

colour[c]← GREY; pred[c]← b
d is WHITE neighbour of c

colour[d]← GREY; pred[d]← c
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Illustrating the General Traversal Algorithm

c

a

b

d

e

a

eb

c

d

visit(b); colour[b]← GREY
c is WHITE neighbour of b

colour[c]← GREY; pred[c]← b
d is WHITE neighbour of c

colour[d]← GREY; pred[d]← c
no more WHITE nodes:

colour[d]← BLACK
colour[c]← BLACK
colour[b]← BLACK
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Classes of Traversal Arcs

c

a

b

d

e

a

eb

c

d

Search forest F : a set of disjoint trees
spanning a digraph G after its traversal.

An arc (u, v) ∈ E(G) is called a tree
arc if it belongs to one of the trees of F

The arc (u, v), which is not a tree arc,
is called:

• a forward arc if u is an ancestor of
v in F ;

• a back arc if u is a descendant of
v in F , and

• a cross arc if neither u nor v is an
ancestor of the other in F .
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Outline Definitions Representation ADT Traversal DFS

Basic Facts about Traversal Trees (for further analyses)

Theorem 5.2: Suppose we have run traverse on G, resulting in a
search forest F .

1 If T1 and T2 are different trees in F and T1 was explored
before T2, then there are no arcs from T1 to T2.

2 If G is a graph, then there can be no edges joining different
trees of F .

3 If v, w ∈ V (G); v is visited before w, and w is reachable from
v in G, then v and w belong to the same tree of F .

4 If v, w ∈ V (G) and v and w belong to the same tree T in F ,
then any path from v to w in G must have all nodes in T .
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Outline Definitions Representation ADT Traversal DFS

Run-time Analysis of Algorithm traverse

In the while-loop of subroutine visit let:

• a (A) be lower (upper) time bound to choose a GREY node.

• b (B) be lower (upper) time bound to choose a WHITE neighbour.

Given a (di)graph G = (V,E) of order n = |V | and size m = |E|,
the running time of traverse is:

• O(An+Bm) and Ω(an+ bm) with adjacency lists, and

• O(An+Bn2) and Ω(an+ bn2) with an adjacency matrix.

Time to find a GREY node: O(An) and Ω(an)
Time to find a WHITE neighbour: O(Bm) and Ω(bm) (adjacency lists)

O(Bn2) and Ω(bn2) (an adjacency matrix)

• Generally, A,B, a, b may depend on n.

• A more detailed analysis depends on the rules used.
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Outline Definitions Representation ADT Traversal DFS

Main Rules for Choosing Next Nodes

• Depth-first search (DFS):
• Starting at a node v.
• Searching as far away from v as

possible via neighbours.
• Continue from the next neighbour

until no more new nodes.

• Breadth-first search (BFS):
• Starting at a node v.
• Searching through all its neighbours,

then through all their neighbours,
etc.

• Continue until no more new nodes.

• More complicated priority-first search
(PFS).

1

2 3

4

5 6

7

8 95

DFS

6

DFS

7

DFS

8

DFS3 DFS 4DFS

1

DFS

2

DFS

0

DFS

1

2 3

6

4 5

9
7 85

BFS

6

BFS

7

BFS

8

BFS3 BFS 4BFS

1

BFS

2

BFS

0

BFS
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Outline Definitions Representation ADT Traversal DFS

Depth-first Search (DFS) Algorithm (Part 1)

algorithm dfs

Input: digraph G = (V (G), E(G))
begin

stack S; array colour[n], pred[n], seen[n], done[n]
for u ∈ V (G) do

colour[u]← WHITE; pred[u]← NULL
end for
time← 0
for s ∈ V (G) do

if colour[s] = WHITE then
dfsvisit(s)

end if
end for
return pred, seen, done

end
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Outline Definitions Representation ADT Traversal DFS

Depth-first Search (DFS) Algorithm (Part 2)

algorithm dfsvisit

Input: node s
begin

colour[s]← GREY; seen[s]← time+ +;
S.push top(s)
while not S.isempty() do

u← S.get top()
if there is a v adjacent to u and colour[v] = WHITE then

colour[v]← GREY; pred[v]← u
seen[v]← time+ +; S.push top(v)

else S.del top();
colour[u]← BLACK; done[u]← time+ +;

end if
end while

end
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Outline Definitions Representation ADT Traversal DFS

Recursive View of DFS Algorithm

algorithm rec dfs visit

Input: node s
begin

colour[s]← GREY
seen[s]← time+ +
for each v adjacent to s do

if colour[v] = WHITE then
pred[v]← s
rec dfs visit(v)

end if
end for
colour[s]← BLACK
done[s]← time+ +

end
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Outline Definitions Representation ADT Traversal DFS

DFS: An Example (seen[v] | done[v]): time = 0; 1

c

−|−

a0|−

b

−|−

d

−|−

e −|−
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Outline Definitions Representation ADT Traversal DFS

DFS: An Example (seen[v] | done[v]): time = 1; 2

c

−|−

a0|−

b

1|−

d

−|−

e −|−
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Outline Definitions Representation ADT Traversal DFS

DFS: An Example (seen[v] | done[v]): time = 2, 3

c

2|−

a0|−

b

1|−

d

−|−

e −|−
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Outline Definitions Representation ADT Traversal DFS

DFS: An Example (seen[v] | done[v]): time = 3; 4

c

2|−

a0|−

b

1|−

d

−|−

e 3|−
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Outline Definitions Representation ADT Traversal DFS

DFS: An Example (seen[v] | done[v]): time = 4; 5

c

2|−

a0|−

b

1|−

d

−|−

e 3|4
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Outline Definitions Representation ADT Traversal DFS

DFS: An Example (seen[v] | done[v]: time = 5, 6

c

2|5

a0|−

b

1|−

d

−|−

e 3|4
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Outline Definitions Representation ADT Traversal DFS

DFS: An Example (seen[v] | done[v]): time = 6, 7

c

2|5

a0|−

b

1|−

d

6|−

e 3|4
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Outline Definitions Representation ADT Traversal DFS

DFS: An Example (seen[v] | done[v]): time = 7, 8

c

2|5

a0|−

b

1|−

d

6|7

e 3|4
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Outline Definitions Representation ADT Traversal DFS

DFS: An Example (seen[v] | done[v]): time = 8, 9

c

2|5

a0|−

b

1|8

d

6|7

e 3|4

51 / 74



Outline Definitions Representation ADT Traversal DFS

DFS: An Example (seen[v] | done[v]): time = 9, 10

c

2|5

a0|9

b

1|8

d

6|7

e 3|4
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Outline Definitions Representation ADT Traversal DFS

Basic Properties of Depth-first Search

Next GREY node chosen ← the last one coloured GREY thus far.

• Data structure for this “last in, first out” order – a stack.

Each call to dfs visit(v) terminates only when all nodes
reachable from v via a path of WHITE nodes have been seen.

If (v, w) is an arc, then for a

• tree or forward arc: seen[v] < seen[w] < done[w] < done[v]
• Example in Slide 52: (a, b) : 0 < 1 < 8 < 9; (b, c) : 1 < 2 < 5 < 8;

(a, c) : 0 < 2 < 5 < 9;

• back arc: seen[w] < seen[v] < done[v] < done[w]:
• Example in Slide 52: (d, a) : 0 < 6 < 7 < 9;

• cross arc: seen[w] < done[w] < seen[v] < done[v].
• Example in Slide 52: (d, e) : 3 < 4 < 6 < 7;

Hence, there are no cross edges on a graph.
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Outline Definitions Representation ADT Traversal DFS

Tree, Forward, Back, and Cross Arcs (Example in Slide 52)

c

2|5

a0|9

b

1|8

d

6|7

e 3|4

Tree arc

Forward arc

Back arc

Cross arc
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Outline Definitions Representation ADT Traversal DFS

Using DFS to Determine Ancestors of a Tree

Theorem 5.5

Suppose that DFS on a digraph G results in a search forest F . Let
v, w ∈ V (G) and seen[v] < seen[w].

1 If v is an ancestor of w in F , then

seen[v] < seen[w] < done[w] < done[v].

2 If v is not an ancestor of w in F , then

seen[v] < done[v] < seen[w] < done[w].

Proof.

1 This part follows from the recursive nature of DFS.

2 If v is not an ancestor of w in F , then w is also not an ancestor v.
• Thus v is in a subtree, which was completely explored before the

subtree of w.
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Outline Definitions Representation ADT Traversal DFS

DFS: seen/done: step 1

A

B

S

C

G

F

D

E

H

1/−

Preorder (WHITE to GREY): seen A
1

Postorder (GREY to BLACK) done
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Outline Definitions Representation ADT Traversal DFS

DFS: seen/done: step 2

A

B

S

C

G

F

D

E

H

1/−

2/−

Preorder (WHITE to GREY): seen A B
1 2

Postorder (GREY to BLACK) done
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Outline Definitions Representation ADT Traversal DFS

DFS: seen/done: step 3

A

B

S

C

G

F

D

E

H

1/−

2/3

Preorder (WHITE to GREY): seen A B
1 2

Postorder (GREY to BLACK) done B
3
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Outline Definitions Representation ADT Traversal DFS

DFS: seen/done: step 4

A

B

S

C

G

F

D

E

H

1/−

2/3

4/−

Preorder (WHITE to GREY): seen A B S
1 2 4

Postorder (GREY to BLACK) done B
3
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Outline Definitions Representation ADT Traversal DFS

DFS: seen/done: step 5

A

B

S

C

G

F

D

E

H

1/−

2/3

4/−

5/−

Preorder (WHITE to GREY): seen A B S C
1 2 4 5

Postorder (GREY to BLACK) done B
3
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Outline Definitions Representation ADT Traversal DFS

DFS: seen/done: step 6

A

B

S

C

G

F

D

E

H

1/−

2/3

4/−

5/−

6/−

Preorder (WHITE to GREY): seen A B S C D
1 2 4 5 6

Postorder (GREY to BLACK) done B
3
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Outline Definitions Representation ADT Traversal DFS

DFS: seen/done: step 7

A

B

S

C

G

F

D

E

H

1/−

2/3

4/−

5/−

6/7

Preorder (WHITE to GREY): seen A B S C D
1 2 4 5 6

Postorder (GREY to BLACK) done B D
3 7
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Outline Definitions Representation ADT Traversal DFS

DFS: seen/done: step 8

A

B

S

C

G

F

D

E

H

1/−

2/3

4/−

5/−

6/7

8/−

Preorder (WHITE to GREY): seen A B S C D E
1 2 4 5 6 8

Postorder (GREY to BLACK) done B D
3 7
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Outline Definitions Representation ADT Traversal DFS

DFS: seen/done: step 9

A

B

S

C

G

F

D

E

H

1/−

2/3

4/−

5/−

6/7

8/−

9/−

Preorder (WHITE to GREY): seen A B S C D E H
1 2 4 5 6 8 9

Postorder (GREY to BLACK) done B D
3 7
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Outline Definitions Representation ADT Traversal DFS

DFS: seen/done: step 10

A

B

S

C

G

F

D

E

H

1/−

2/3

4/−

5/−

6/7

8/−

9/−10/−

Preorder (WHITE to GREY): seen A B S C D E H G
1 2 4 5 6 8 9 10

Postorder (GREY to BLACK) done B D
3 7
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Outline Definitions Representation ADT Traversal DFS

DFS: seen/done: step 11

A

B

S

C

G

F

D

E

H

1/−

2/3

4/−

5/−

6/7

8/−

9/−10/−
11/−

Preorder (WHITE to GREY): seen A B S C D E H G F
1 2 4 5 6 8 9 10 11

Postorder (GREY to BLACK) done B D
3 7
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Outline Definitions Representation ADT Traversal DFS

DFS: seen/done: step 12

A

B

S

C

G

F

D

E

H

1/−

2/3

4/−

5/−

6/7

8/−

9/−10/−
11/12

Preorder (WHITE to GREY): seen A B S C D E H G F
1 2 4 5 6 8 9 10 11

Postorder (GREY to BLACK) done B D F
3 7 12
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Outline Definitions Representation ADT Traversal DFS

DFS: seen/done: step 13

A

B

S

C

G

F

D

E

H

1/−

2/3

4/−

5/−

6/7

8/−

9/−10/13
11/12

Preorder (WHITE to GREY): seen A B S C D E H G F
1 2 4 5 6 8 9 10 11

Postorder (GREY to BLACK) done B D F G
3 7 12 13
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Outline Definitions Representation ADT Traversal DFS

DFS: seen/done: step 14

A

B

S

C

G

F

D

E

H

1/−

2/3

4/−

5/−

6/7

8/−

9/1410/13
11/12

Preorder (WHITE to GREY): seen A B S C D E H G F
1 2 4 5 6 8 9 10 11

Postorder (GREY to BLACK) done B D F G H
3 7 12 13 14
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Outline Definitions Representation ADT Traversal DFS

DFS: seen/done: step 15

A

B

S

C

G

F

D

E

H

1/−

2/3

4/−

5/−

6/7

8/15

9/1410/13
11/12

Preorder (WHITE to GREY): seen A B S C D E H G F
1 2 4 5 6 8 9 10 11

Postorder (GREY to BLACK) done B D F G H E
3 7 12 13 14 15
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Outline Definitions Representation ADT Traversal DFS

DFS: seen/done: step 16

A

B

S

C

G

F

D

E

H

1/−

2/3

4/−

5/16

6/7

8/15

9/1410/13
11/12

Preorder (WHITE to GREY): seen A B S C D E H G F
1 2 4 5 6 8 9 10 11

Postorder (GREY to BLACK) done B D F G H E C
3 7 12 13 14 15 16
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Outline Definitions Representation ADT Traversal DFS

DFS: seen/done: step 17

A

B

S

C

G

F

D

E

H

1/−

2/3

4/17

5/16

6/7

8/15

9/1410/13
11/12

Preorder (WHITE to GREY): seen A B S C D E H G F
1 2 4 5 6 8 9 10 11

Postorder (GREY to BLACK) done B D F G H E C S
3 7 12 13 14 15 16 17
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DFS: seen/done: step 18

A

B

S

C

G

F

D

E

H

1/18

2/3

4/17

5/16

6/7

8/15

9/1410/13
11/12

Preorder (WHITE to GREY): seen A B S C D E H G F
1 2 4 5 6 8 9 10 11

Postorder (GREY to BLACK) done B D F G H E C S A
3 7 12 13 14 15 16 17 18
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Outline Definitions Representation ADT Traversal DFS

Determining Ancestors of a Tree: Examples

A

B

S

C

G

F

D

E

H

1/18

2/3

4/17

5/16

6/7

8/15

9/1410/13
11/12

A→ B : seen[A] = 1 < seen[B] = 2 < done[B] = 3 < done[A] = 18
S → H : seen[S] = 4 < seen[H] = 9 < done[H] = 14 < done[S] = 17
B 9 D : seen[B] = 2 < done[B] = 3 < seen[D] = 6 < done[D] = 7
D 9 G : seen[D] = 6 < done[D] = 7 < seen[G] = 10 < done[G] = 13
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