Outline	Definitions	Representation	ADT	DFS

Directed Graphs (Digraphs) and Graphs Definitions Graph ADT Traversal algorithms DFS

Lecturer: Georgy Gimel'farb

COMPSCI 220 Algorithms and Data Structures

1/74

Outline	Definitions	Representation	ADT	DFS

1 Basic definitions

2 Digraph Representation and Data Structures

3 Digraph ADT Operations

4 Graph Traversals and Applications

5 Depth-first Search in Digraphs

Graphs in Life: World Air Roures

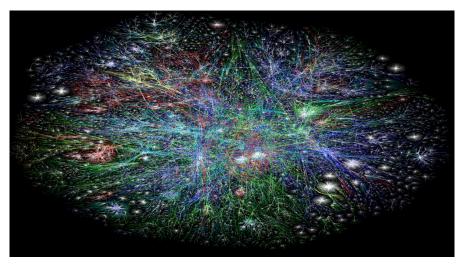
http://milenomics.com/2014/05/partners-alliances-partner-awards/

- 34

A

DFS

Graphs in Life: Global Internet Connections



http://www.opte.org/maps/ < □ > < ⊡ > < ≧ > < ≧ > ≧

4 / 74

Al

Traversal

DFS

Graphs in Life: Social Networks (Facebook)

 $\label{eq:http://robotmonkeys.net/wp-content/uploads/2010/12/social-nets-then-and-now-fb-cities-airlines-data.jpg \\ < \square \mathrel{\triangleright} < \textcircled{ } \rightarrow \land \textcircled{ } \rightarrow \land$

5/74

Directed Graph, or Digraph: Definition

A digraph G = (V, E) is a finite nonempty set V of nodes together with a (possibly empty) set E of ordered pairs of nodes[°] of G called arcs.

$$V = \{ 0, 1, 2, 3, 4, 5, 6 \}$$

$$E = \{ (0, 1), (0, 3), (1, 2), (2, 0), (2, 5), (2, 6), (3, 1), (4, 0), (4, 3), (4, 5), (5, 3), (5, 6), (6, 5) \}$$

•) Set E is a neighbourhood, or adjacency relation on V.

Outline	Definitions	Representation	ADT	DFS

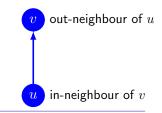
Digraph: Relations of Nodes

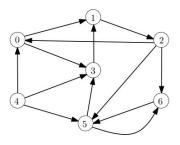
 ${\rm If}\;(u,v)\in E{\rm ,}$

- v is adjacent to u;
- v is an **out-neighbour** of u, and
- u is an **in-neighbour** of v.

Examples:

- $\circ~$ Nodes (points) 1~ and 3~ are adjacent to 0.
- \circ 1 and 3 are out-neighbours of 0.
- \circ 0 is an in-neighbour of 1 and 3.
- Node 1 is adjacent to 3.
- \circ 1 is an out-neighbour of 3.
- \circ 3 is an in-neighbour of 1. . . .
- \circ 5 is an out-neighbour of 2, 4, and 6.



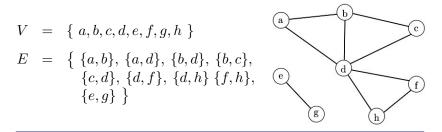


< ロ > < 同 > < 回 > < 回 >

 Outline
 Definitions
 Representation
 ADT
 Traversal
 DFS

 (Undirected)
 Graph:
 Definition

A graph^o G = (V, E) is a finite nonempty set V of vertices together with a (possibly empty) set E of unordered pairs of vertices of G called edges.



 $^\circ)~$ The symmetric digraph: each arc (u,v) has the opposite arc (v,u).

Such a pair is reduced into a single undirected edge that can be traversed in either direction.

Order, Size, and In- / Out-degree

The order of a digraph G = (V, E) is the number of nodes, n = |V|.

The size of a digraph G = (V, E) is the number of arcs, m = |E|.

For a given n, m = 0Sparse digraphs: $|E| \in O(n)$ Dense digraphs: $|E| \in \Theta(n^2)$ n(n-1)

The **in-degree** or **out-degree** of a node v is the number of arcs entering or leaving v, respectively.

- A node of in-degree 0 a **source**.
- A node of out-degree 0 a sink.
- This example: the order |V| = 6and the size |E| = 9.

Order, Size, and In- / Out-degree

The order of a digraph G = (V, E) is the number of nodes, n = |V|.

The size of a digraph G = (V, E) is the number of arcs, m = |E|.

For a given n, m = 0Sparse digraphs: $|E| \in O(n)$ Dense digraphs: $|E| \in \Theta(n^2)$ n(n-1)

The **in-degree** or **out-degree** of a node v is the number of arcs entering or leaving v, respectively.

- A node of in-degree 0 a **source**.
- A node of out-degree 0 a sink.
- This example: the order |V| = 6and the size |E| = 9.

Order, Size, and In- / Out-degree

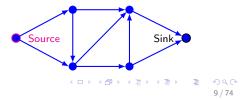
The order of a digraph G = (V, E) is the number of nodes, n = |V|.

The size of a digraph G = (V, E) is the number of arcs, m = |E|.

For a given n, m = 0Sparse digraphs: $|E| \in O(n)$ Dense digraphs: $|E| \in \Theta(n^2)$ n(n-1)

The **in-degree** or **out-degree** of a node v is the number of arcs entering or leaving v, respectively.

- A node of in-degree 0 a source.
- A node of out-degree 0 a sink.
- This example: the order |V| = 6and the size |E| = 9.



A walk in a digraph G = (V, E):

a sequence of nodes $v_0 v_1 \dots v_n$, such that (v_i, v_{i+1}) is an arc in G, i.e., $(v_i, v_{i+1}) \in E$, for each i; $0 \le i < n$.

- The **length** of the walk $v_0 v_1 \dots v_n$ is the number n of arcs involved.
- A **path** is a walk, in which no node is repeated.
- A cycle is a walk, in which $v_0 = v_n$ and no other nodes are repeated.
- By convention, a cycle in a graph is of length at least 3.
- It is easily shown that if there is a walk from u to v, then there is at least one path from u to v.

-

A walk in a digraph G = (V, E):

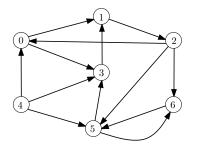
a sequence of nodes $v_0 v_1 \dots v_n$, such that (v_i, v_{i+1}) is an arc in G, i.e., $(v_i, v_{i+1}) \in E$, for each i; $0 \le i < n$.

- The length of the walk $v_0 v_1 \dots v_n$ is the number n of arcs involved.
- A path is a walk, in which no node is repeated.
- A cycle is a walk, in which $v_0 = v_n$ and no other nodes are repeated.
- By convention, a cycle in a graph is of length at least 3.
- It is easily shown that if there is a walk from u to v, then there is at least one path from u to v.

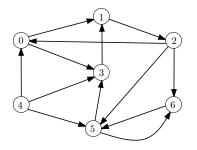
A walk in a digraph G = (V, E):

a sequence of nodes $v_0 v_1 \dots v_n$, such that (v_i, v_{i+1}) is an arc in G, i.e., $(v_i, v_{i+1}) \in E$, for each i; $0 \le i < n$.

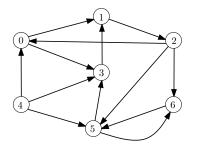
- The length of the walk $v_0 v_1 \dots v_n$ is the number n of arcs involved.
- A path is a walk, in which no node is repeated.
- A cycle is a walk, in which $v_0 = v_n$ and no other nodes are repeated.
- By convention, a cycle in a graph is of length at least 3.
- It is easily shown that if there is a walk from u to v, then there is at least one path from u to v.



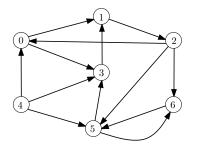
Sequence	Walk?	Path?	Cycle?
023	no	no	no
312	yes		no
126531	yes		yes
4565	yes		no
435	no	no	no



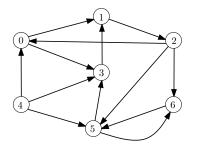
Sequence	Walk?	Path?	Cycle?
023	no	no	no
312	yes		no
126531	yes		yes
4565	yes		no
435	no	no	no



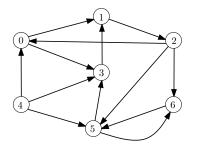
Sequence	Walk?	Path?	Cycle?
023	no	no	no
312	yes	yes	no
126531	yes		yes
4565	yes		no
435	no	no	no



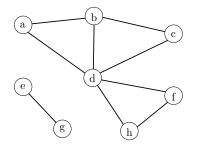
Sequence	Walk?	Path?	Cycle?
023	no	no	no
312	yes	yes	no
126531	yes	no	yes
4565	yes		no
435	no	no	no



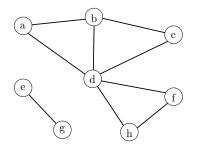
Sequence	Walk?	Path?	Cycle?
023	no	no	no
312	yes	yes	no
126531	yes	no	yes
4565	yes	no	no
435	no	no	no



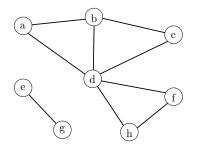
Sequence	Walk?	Path?	Cycle?
023	no	no	no
312	yes	yes	no
126531	yes	no	yes
4565	yes	no	no
435	no	no	no



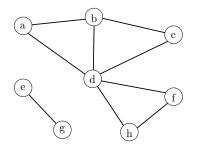
Sequence	Walk?	Path?	Cycle?
a b c	yes	yes	no
ege	yes		no
dbcd	yes		yes
d a d f	yes		no
abdfh	yes	yes	no



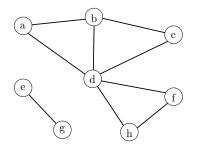
Sequence	Walk?	Path?	Cycle?
a b c	yes	yes	no
ege	yes		no
dbcd	yes		yes
dadf	yes		no
abdfh	yes	yes	no



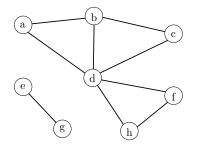
Sequence	Walk?	Path?	Cycle?
a b c	yes	yes	no
ege	yes	no	no
dbcd	yes		yes
dadf	yes		no
abdfh	yes	yes	no



Sequence	Walk?	Path?	Cycle?
a b c	yes	yes	no
ege	yes	no	no
dbcd	yes	no	yes
dadf	yes		no
abdfh	yes	yes	no



Sequence	Walk?	Path?	Cycle?
a b c	yes	yes	no
ege	yes	no	no
dbcd	yes	no	yes
dadf	yes	no	no
abdfh	yes	yes	no



Sequence	Walk?	Path?	Cycle?	
a b c	yes	yes	no	
ege	yes	no	no	
dbcd	yes	no	yes	
d a d f	yes	no	no	
abdfh	yes	yes	no	

Digraph G = (V, E): Distances and Diameter

The **distance**, d(u, v), from a node u to a node v in G is the *minimum* length of a path from u to v.

- If no path exists, the distance is undefined or $+\infty$.
- For graphs, d(u, v) = d(v, u) for all vertices u and v.

The **diameter** of G is the maximum distance $\max_{u,v \in V}[d(u,v)]$ between any two vertices.

```
The radius of G is \min_{u \in V} \max_{v \in V} [d(u, v)].
```

Digraph G = (V, E): Distances and Diameter

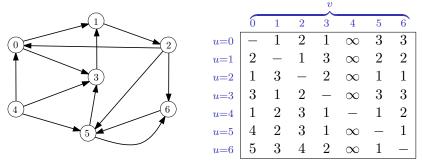
The **distance**, d(u, v), from a node u to a node v in G is the *minimum* length of a path from u to v.

- If no path exists, the distance is undefined or $+\infty$.
- For graphs, d(u, v) = d(v, u) for all vertices u and v.

The diameter of G is the maximum distance $\max_{u,v\in V}[d(u,v)]$ between any two vertices.

```
The radius of G is \min_{u \in V} \max_{v \in V} [d(u, v)].
```

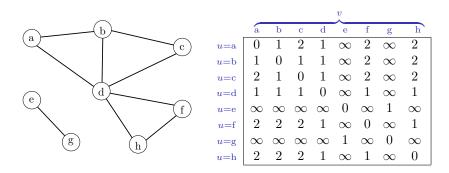
Outline	Definitions	Representation	ADT	Iraversal	DF5
Path [Distances in I	Digraphs: Exa	mples		



 $\begin{array}{l} d(0,1) = 1, \ d(0,2) = 2, \ d(0,5) = 3, \ d(0,4) = \infty, \ d(5,5) = 0, \ d(5,2) = 3, \\ d(5,0) = 4, \ d(4,6) = 2, \ d(4,1) = 2, \ d(4,2) = 3 \\ \\ \mbox{Diameter: } \max\{1,2,1,\infty,3,\ldots,4,\ldots,5,\ldots,1\} = \infty \\ \\ \mbox{Raduis: } \min\{\infty,\infty,\ldots,3,\infty,\infty\} = 3 \end{array}$

14/74

Path Distances in Graphs: Examples



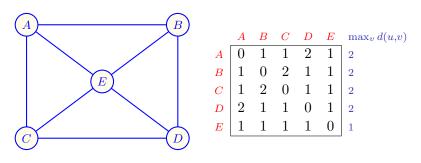
d(a, b) = d(b, a) = 1, d(a, c) = d(c, a) = 2, d(a, f) = d(f, a) = 2, $d(a, e) = d(e, a) = \infty$, d(e, e) = 0, d(e, g) = d(g, e) = 1, d(h, f) = d(f, h) = 1, d(d, h) = d(h, d) = 1

Diameter: $\max\{0, 1, 2, 1, \infty, 2, \dots, 2, \dots, 2, \dots, 0\} = \infty$ Radius: $\min\{\infty, \dots, \infty\} = \infty$

<ロ><一><一><一><一><一><一><一><一</td>15/74

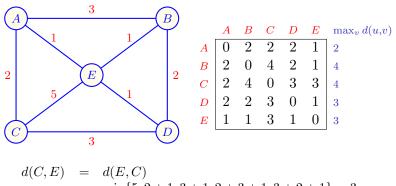
A

Diameter / Radius of an Unweighted Graph



$$\begin{array}{rcl} d(C,E) &=& d(E,C) \\ &=& \min\{1,1+1,1+1,1+1+1,1+1+1\} = 1 \\ d(B,C) &=& d(C,B) \\ &=& \min\{1+1,1+1+1,1+1,1+1,1+1,1+1\} = 2 \\ \mbox{Radius} = 1; \mbox{ diameter} = 2. \end{array}$$

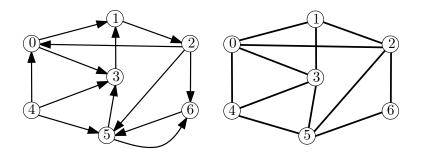
Diameter / Radius of a Weighted Graph



 $\begin{array}{rcl} a(C,E) &=& a(E,C) \\ &=& \min\{5,2+1,3+1,2+3+1,3+2+1\} = 3 \\ d(B,C) &=& d(C,B) \\ &=& \min\{3+2,1+1+2,1+5,1+1+3,2+3,2+1+5\} = 4 \\ \mbox{Radius} = 2; \mbox{ diameter} = 4. \end{array}$

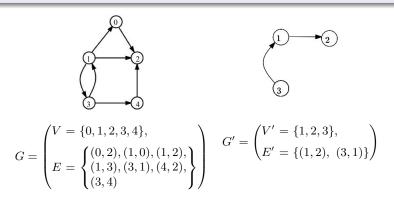
Underlying Graph of a Digraph

The underlying graph of a digraph G = (V, E) is the graph G' = (V, E') where $E' = \{\{u, v\} \mid (u, v) \in E\}.$



	ADT	Traversal	DFS
Sub(di)graphs			

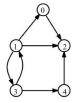
A subdigraph of a digraph G = (V, E) is a digraph G' = (V', E')where $V' \subseteq V$ and $E' \subseteq E$.



<ロ > < 部 > < 言 > < 言 > 言 の < で 19/74

Spanning Sub(di)graphs

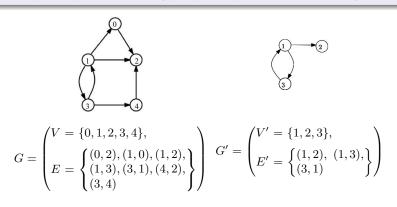
A spanning subdigraph contains all nodes, that is, V' = V.



$$G = \begin{pmatrix} V = \{0, 1, 2, 3, 4\}, \\ E = \begin{cases} (0, 2), (1, 0), (1, 2), \\ (1, 3), (3, 1), (4, 2), \\ (3, 4) \end{cases} \end{pmatrix} G' = \begin{pmatrix} V' = \{0, 1, 2, 3, 4\}, \\ E' = \begin{cases} (0, 2), (1, 2), \\ (3, 4) \end{cases} \end{pmatrix}$$

イロン イヨン イヨン イヨン 三日 20 / 74

The subdigraph **induced** by a subset V' of V is the digraph G' = (V', E') where $E' = \{(u, v) \in E \mid u \in V' \text{ and } v \in V'\}$.



・ロ ・ ・ (日 ・ ・ 注 ・ く 注 ・ 注 ・ う Q (*) 21/74

Digraphs: Computer Representation

For a digraph G of order n with the vertices, V, labelled $0, 1, \ldots, n-1$:

The **adjacency matrix** of G:

The $n \times n$ boolean matrix (often encoded with 0's and 1's) such that its entry (i, j) is true if and only if there is an arc (i, j) from the node i to node j.

An adjacency list of G:

A sequence of n sequences, L_0, \ldots, L_{n-1} , such that the sequence L_i contains all nodes of G that are adjacent to the node i.

Each sequence L_i may not be sorted! But we usually sort them.

Digraphs: Computer Representation

For a digraph G of order n with the vertices, V, labelled $0, 1, \ldots, n-1$:

The adjacency matrix of G:

The $n \times n$ boolean matrix (often encoded with 0's and 1's) such that its entry (i, j) is true if and only if there is an arc (i, j) from the node i to node j.

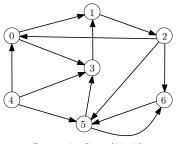
An adjacency list of G:

A sequence of n sequences, L_0, \ldots, L_{n-1} , such that the sequence L_i contains all nodes of G that are adjacent to the node i.

Each sequence L_i may not be sorted! But we usually sort them.

Outline	Definitions	Representation	ADT	DFS

Adjacency Matrix of a Digraph



 $\mathsf{Digraph}\ G = (V, E)$

	0	1	2	3	4	5	6
0	0	1	0	1	0	0	[0
1	0	0	1	0	0	0	0
2	1	0	0	0	0	1	$egin{array}{c} 6 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$
3	0	1	0	0	0	0	0
4	1	0	0	1	0	1	0
5	0	0	0	1	0	0	1
6	0	0	0	0	0	1	0

Adjacency matrix of G:

0 – a non-adjacent pair of vertices: $(i, j) \notin E$

 $1 \ -$ an adjacent pair of vertices: $(i,j) \in E$

The number of 1's in a row (column) is the out-(in-) degree of the related node.

A

DFS

Adjacency Lists of a Graph

	symbolic	<u>numeric</u>
		8
	0 = a: b d	$1 \ 3$
	1 = b: a c d	$0\ 2\ 3$
(e) (d)	2 = c: b d	$1 \ 3$
(f)	3 = d: a b c f h	$0\ 1\ 2\ 5\ 7$
	4 = e: g	6
(g) (h)	5 = f: d h	37
Graph $G = (V, E)$	6 = g: e	4
-	7 = h: d f	35

Special cases can be stored more efficiently:

- A complete binary tree or a heap: in an array.
- A general rooted tree: in an array pred of size n;
 - pred[i] a pointer to the parent of node *i*.

ADT

Traversal

DFS

Digraph Operations w.r.t. Data Structures

Operation	Adjacency Matrix	Adjacency Lists
arc (i, j) exists?	is entry (i,j) 0 or 1	find j in list i
out-degree of i	scan row and sum 1 's	size of list i
in-degree of <i>i</i>	scan column and sum 1 's	for $j \neq i$, find <i>i</i> in list <i>j</i>
add arc (i, j)	change entry (i, j)	insert j in list i
delete arc (i, j)	change entry (i, j)	delete j from list i
add node	create new row/column	add new list at end
delete node <i>i</i>	delete row/column i and	delete list i and for $j \neq i$,
	shuffle other entries	delete i from list j

ADT

Adjacency Lists / Matrices: Comparative Performance

$$G = (V, E) \quad \longrightarrow \quad n = |V|; \quad m = |E|$$

Operation	array/array	list/list	
arc (i, j) exists?	$\Theta(1)$	$\Theta(\alpha)^{\circ)}$	
out-degree of i	$\Theta(n)$	$\Theta(1)$	
in-degree of i	$\Theta(n)$	$\Theta(n+m)$	
add arc (i, j)	$\Theta(1)$	$\Theta(1)$	
delete arc (i, j)	$\Theta(1)$	$\Theta(\alpha)$	
add node	$\Theta(n)$	$\Theta(1)$	
delete node i	$\Theta(n^2)$	$\Theta(n+m)$	

°)Here, α denotes size of the adjacency list for vertex *i*.

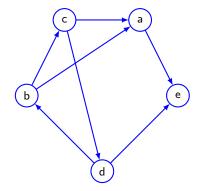
General Graph Traversal Algorithm

```
algorithm traverse
    Input: digraph G = (V, E)
begin
    array colour[n], pred[n]
    for u \in V(G) do
        colour[u] \leftarrow \mathsf{WHITE}
    end for
    for s \in V(G) do
        if colour[s] = WHITE then
             visit(s)
        end if
    end for
    return pred
end
```

Three types of nodes each stage:

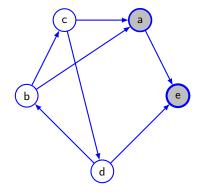
- WHITE unvisited vet.
- GREY visited, but some adjacent nodes are WHITE.
- BLACK visited; only GREY adjacent nodes


```
algorithm visit
     Input: node s of digraph G
begin
     colour[s] \leftarrow \mathsf{GREY}; \ pred[s] \leftarrow \mathsf{NULL}
     while there is a grey node do
          choose a grey node u
          if there is a white neighbour of u
                choose such a neighbour v
                colour[v] \leftarrow \mathsf{GREY}; \ pred[v] \leftarrow u
          else colour[u] \leftarrow \mathsf{BLACK}
          end if
     end while
end
```

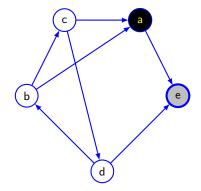
initialising all nodes WHITE

・ロ ・ ・ (日 ・ ・ 注 ・ く 注 ・ 注 ・ つ Q (*) 29 / 74

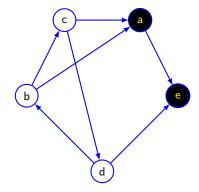


 $\begin{array}{l} \texttt{visit}(\texttt{a}); \ colour[\texttt{a}] \leftarrow \mathsf{GREY} \\ \texttt{e} \ \texttt{is} \ \mathsf{WHITE} \ \texttt{neighbour} \ \texttt{of} \ \texttt{a}: \\ \ colour[\texttt{e}] \leftarrow \mathsf{GREY}; \ pred[\texttt{e}] \leftarrow \texttt{a} \end{array}$

<ロ> <同> <同> < 回> < 回>

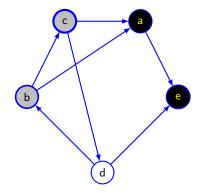


 $\begin{array}{l} \texttt{visit}(\texttt{a}); \ colour[\texttt{a}] \leftarrow \texttt{GREY}\\ \texttt{e} \ \texttt{is} \ \texttt{WHITE} \ \texttt{neighbour} \ \texttt{of} \ \texttt{a}\\ \ colour[\texttt{e}] \leftarrow \texttt{GREY}; \ pred[e] \leftarrow \texttt{a}\\ \texttt{choose} \ \texttt{GREY} \ \texttt{a}: \ \texttt{no} \ \texttt{WHITE} \ \texttt{neighbour}:\\ \ colour[\texttt{a}] \leftarrow \texttt{BLACK} \end{array}$



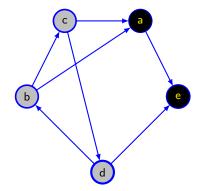
 $\begin{array}{l} \texttt{visit}(\texttt{a}); \ colour[\texttt{a}] \leftarrow \texttt{GREY}\\ \texttt{e} \ \texttt{is} \ \texttt{WHITE} \ \texttt{neighbour} \ \texttt{of} \ \texttt{a}\\ \ colour[\texttt{e}] \leftarrow \texttt{GREY}; \ pred[e] \leftarrow \texttt{a}\\ \texttt{choose} \ \texttt{GREY} \ \texttt{a}: \ \texttt{no} \ \texttt{WHITE} \ \texttt{neighbour}:\\ \ colour[\texttt{a}] \leftarrow \texttt{BLACK}\\ \texttt{choose} \ \texttt{GREY} \ \texttt{e}: \ \texttt{no} \ \texttt{WHITE} \ \texttt{neighbour}:\\ \ colour[\texttt{e}] \leftarrow \texttt{BLACK}\\ \end{array}$

・ロト ・四ト ・ヨト ・ヨト



 $\begin{array}{l} \texttt{visit}(\texttt{b}); \ colour[\texttt{b}] \leftarrow \texttt{GREY} \\ \texttt{c} \ \texttt{is} \ \texttt{WHITE} \ \texttt{neighbour} \ \texttt{of} \ \texttt{b} \\ \ colour[\texttt{c}] \leftarrow \texttt{GREY}; \ pred[c] \leftarrow \texttt{b} \end{array}$

イロン イヨン イヨン イヨン



 $\begin{array}{l} \texttt{visit}(\texttt{b}); \ colour[\texttt{b}] \leftarrow \texttt{GREY} \\ \texttt{c} \ \texttt{is} \ \texttt{WHITE} \ \texttt{neighbour} \ \texttt{of} \ \texttt{b} \\ \ colour[\texttt{c}] \leftarrow \texttt{GREY}; \ pred[\texttt{c}] \leftarrow \texttt{b} \\ \texttt{d} \ \texttt{is} \ \texttt{WHITE} \ \texttt{neighbour} \ \texttt{of} \ \texttt{c} \\ \ colour[\texttt{d}] \leftarrow \texttt{GREY}; \ pred[\texttt{d}] \leftarrow \texttt{c} \end{array}$

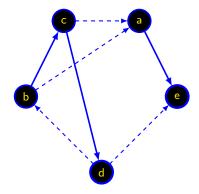
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

A

DFS

35 / 74

Illustrating the General Traversal Algorithm



 $\begin{array}{l} \texttt{visit}(\texttt{b}); \ colour[\texttt{b}] \leftarrow \texttt{GREY}\\ \texttt{c} \ \texttt{is} \ \texttt{WHITE} \ \texttt{neighbour} \ \texttt{of} \ \texttt{b}\\ \ colour[\texttt{c}] \leftarrow \texttt{GREY}; \ pred[\texttt{c}] \leftarrow \texttt{b}\\ \texttt{d} \ \texttt{is} \ \texttt{WHITE} \ \texttt{neighbour} \ \texttt{of} \ \texttt{c}\\ \ colour[\texttt{d}] \leftarrow \texttt{GREY}; \ pred[\texttt{d}] \leftarrow \texttt{c}\\ \texttt{no} \ \texttt{more} \ \texttt{WHITE} \ \texttt{nodes}:\\ \ colour[\texttt{d}] \leftarrow \texttt{BLACK}\\ \ colour[\texttt{c}] \leftarrow \texttt{BLACK}\\ \ colour[\texttt{b}] \leftarrow \texttt{BLACK}\\ \end{array}$

イロト イポト イヨト イヨト

Outline	Definitions	Representation	ADT	Traversal	DFS	
Classes of Trayersal Ares						

Classes of Traversal Arcs

Search forest F: a set of disjoint trees spanning a digraph G after its traversal.

An arc $(u,v)\in E(G)$ is called a tree arc if it belongs to one of the trees of F

The arc (u, v), which is not a tree arc, is called:

- a forward arc if u is an ancestor of v in F;
- a back arc if u is a descendant of v in F, and
- a **cross arc** if neither *u* nor *v* is an ancestor of the other in *F*.

- **1** If T_1 and T_2 are different trees in F and T_1 was explored before T_2 , then there are no arcs from T_1 to T_2 .
- If G is a graph, then there can be no edges joining different trees of F.
- If v, w ∈ V(G); v is visited before w, and w is reachable from v in G, then v and w belong to the same tree of F.
- ④ If $v, w \in V(G)$ and v and w belong to the same tree T in F, then any path from v to w in G must have all nodes in T.

- **1** If T_1 and T_2 are different trees in F and T_1 was explored before T_2 , then there are no arcs from T_1 to T_2 .
- If G is a graph, then there can be no edges joining different trees of F.
- If v, w ∈ V(G); v is visited before w, and w is reachable from v in G, then v and w belong to the same tree of F.
- ④ If $v, w \in V(G)$ and v and w belong to the same tree T in F, then any path from v to w in G must have all nodes in T.

- **1** If T_1 and T_2 are different trees in F and T_1 was explored before T_2 , then there are no arcs from T_1 to T_2 .
- **2** If G is a graph, then there can be no edges joining different trees of F.
- 3 If v, w ∈ V(G); v is visited before w, and w is reachable from v in G, then v and w belong to the same tree of F.
- ④ If $v, w \in V(G)$ and v and w belong to the same tree T in F, then any path from v to w in G must have all nodes in T.

- **1** If T_1 and T_2 are different trees in F and T_1 was explored before T_2 , then there are no arcs from T_1 to T_2 .
- **2** If G is a graph, then there can be no edges joining different trees of F.
- If v, w ∈ V(G); v is visited before w, and w is reachable from v in G, then v and w belong to the same tree of F.
- (a) If $v, w \in V(G)$ and v and w belong to the same tree T in F, then any path from v to w in G must have all nodes in T.

- **1** If T_1 and T_2 are different trees in F and T_1 was explored before T_2 , then there are no arcs from T_1 to T_2 .
- **2** If G is a graph, then there can be no edges joining different trees of F.
- If v, w ∈ V(G); v is visited before w, and w is reachable from v in G, then v and w belong to the same tree of F.
- 4 If $v, w \in V(G)$ and v and w belong to the same tree T in F, then any path from v to w in G must have all nodes in T.

Outline	Definitions	Representation	ADT	Traversal	DFS
Run-time	Analysis o	of Algorithm 1	craverse		

In the **while-loop** of subroutine visit let:

- a (A) be lower (upper) time bound to choose a GREY node.
- b(B) be lower (upper) time bound to choose a WHITE neighbour.

Given a (di)graph G = (V, E) of order n = |V| and size m = |E|, the running time of traverse is:

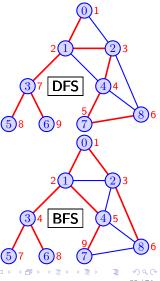
- O(An + Bm) and $\Omega(an + bm)$ with adjacency lists, and
- $O(An + Bn^2)$ and $\Omega(an + bn^2)$ with an adjacency matrix.

Time to find a GREY node: O(An) and $\Omega(an)$ Time to find a WHITE neighbour: O(Bm) and $\Omega(bm)$ (adjacency lists) $O(Bn^2)$ and $\Omega(bn^2)$ (an adjacency matrix)

- Generally, A, B, a, b may depend on n.
- A more detailed analysis depends on the rules used.

Main Rules for Choosing Next Nodes

- Depth-first search (DFS):
 - Starting at a node v.
 - Searching as far away from v as possible via neighbours.
 - Continue from the next neighbour until no more new nodes.
- Breadth-first search (BFS):
 - Starting at a node v.
 - Searching through all its neighbours, then through all their neighbours, etc.
 - Continue until no more new nodes.
- More complicated priority-first search (PFS).



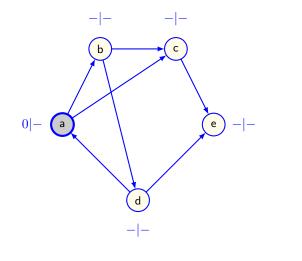
```
algorithm dfs
    Input: digraph G = (V(G), E(G))
begin
    stack S; array colour[n], pred[n], seen[n], done[n]
    for u \in V(G) do
         colour[u] \leftarrow \mathsf{WHITE}; \ pred[u] \leftarrow \mathsf{NULL}
    end for
    time \leftarrow 0
    for s \in V(G) do
         if colour[s] = WHITE then
              dfsvisit(s)
         end if
    end for
    return pred, seen, done
end
                                                ◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの
```

```
Outline
                Definitions
                                                                      Traversal
                                                                                       DFS
                                  Representation
Depth-first Search (DFS) Algorithm
                                                                              (Part 2)
     algorithm dfsvisit
          Input: node s
     begin
          colour[s] \leftarrow \mathsf{GREY}; seen[s] \leftarrow time + +;
          S.\mathtt{push\_top}(s)
          while not S.isempty() do
               u \leftarrow S.get_top()
               if there is a v adjacent to u and colour[v] = WHITE then
                    colour[v] \leftarrow \mathsf{GREY}; \ pred[v] \leftarrow u
                     seen[v] \leftarrow time + +; S.\texttt{push\_top}(v)
               else S.del_top();
                    colour[u] \leftarrow \mathsf{BLACK}; done[u] \leftarrow time + +;
               end if
          end while
     end
                                                           ・ロト ・ 同ト ・ ヨト ・ ヨト ・ りゅう
```

Recursive View of DFS Algorithm

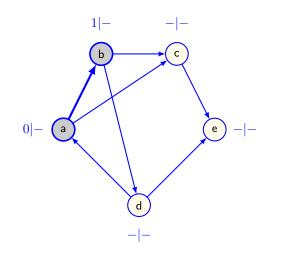
```
algorithm rec_dfs_visit
     Input: node s
begin
     colour[s] \leftarrow \mathsf{GREY}
     seen[s] \leftarrow time + +
     for each v adjacent to s do
          if colour[v] = WHITE then
               pred[v] \leftarrow s
               rec_dfs_visit(v)
          end if
     end for
     colour[s] \leftarrow \mathsf{BLACK}
    done[s] \leftarrow time + +
end
```

DFS: An Example ($seen[v] \mid done[v]$): time = 0; 1



 Outline
 Definitions
 Representation
 ADT
 Traversal
 DFS

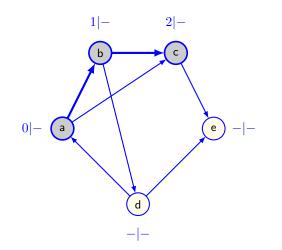
 DFS: An Example (seen[v] | done[v]): time = 1;2



・<一
 ・<三
 ・<三
 ・<三
 ・<三
 ・<三
 ・<
 ・<
 ・<
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

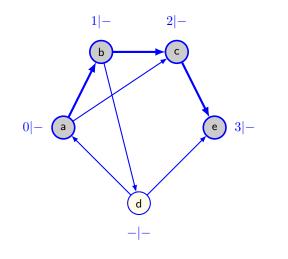
 Outline
 Definitions
 Representation
 ADT
 Traversal
 DFS

 DFS: An Example ($seen[v] \mid done[v]$): time = 2, 3



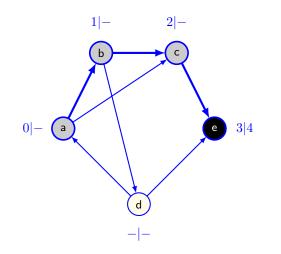
< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = のへで 45/74 Traversal DFS

DFS: An Example ($seen[v] \mid done[v]$): time = 3; 4



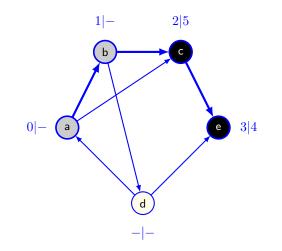
 Outline
 Definitions
 Representation
 ADT
 Traversal
 DFS

 DFS: An Example ($seen[v] \mid done[v]$): time = 4;5



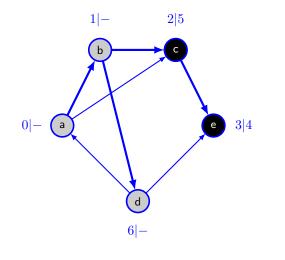
 Outline
 Definitions
 Representation
 ADT
 Traversal
 DFS

 DFS: An Example (seen[v] | done[v]: time = 5, 6



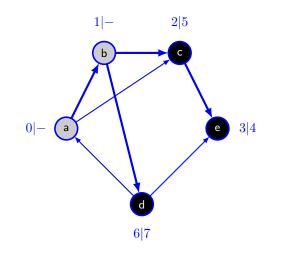
<ロ > < 回 > < 回 > < 直 > < 直 > < 直 > 三 の Q (~ 48 / 74 Outline Definitions Representation ADT Traversal DFS

DFS: An Example ($seen[v] \mid done[v]$): time = 6, 7



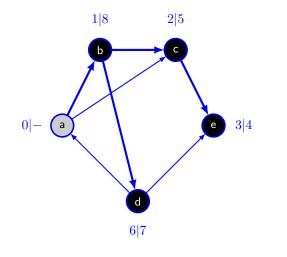
 Outline
 Definitions
 Representation
 ADT
 Traversal
 DFS

 DFS: An Example ($seen[v] \mid done[v]$): time = 7, 8



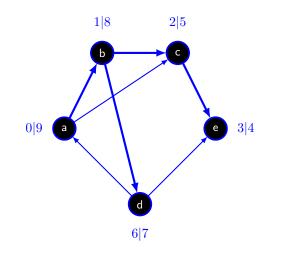
・ロ ・ ・ 一部 ・ ・ 目 ・ ・ 目 ・ の へ (や 50 / 74 Outline Definitions Representation ADT Traversal DFS

DFS: An Example ($seen[v] \mid done[v]$): time = 8, 9



 Outline
 Definitions
 Representation
 ADT
 Traversal
 DFS

 DFS:
 An Example ($seen[v] \mid done[v]$): time = 9, 10



<ロ > < 回 > < 回 > < 目 > < 目 > 目 の Q (~ 52 / 74

Basic Properties of Depth-first Search

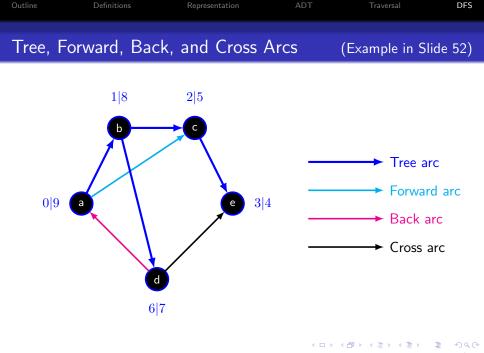
Next GREY node chosen \leftarrow the last one coloured GREY thus far.

• Data structure for this "last in, first out" order – a stack. Each call to $dfs_visit(v)$ terminates only when all nodes reachable from v via a path of WHITE nodes have been seen.

If $\left(v,w\right)$ is an arc, then for a

- tree or forward arc: seen[v] < seen[w] < done[w] < done[v]
 - Example in Slide 52: (a,b): 0 < 1 < 8 < 9; (b,c): 1 < 2 < 5 < 8; (a,c): 0 < 2 < 5 < 9;
- back arc: seen[w] < seen[v] < done[w]:
 - Example in Slide 52: (d, a) : 0 < 6 < 7 < 9;
- cross arc: seen[w] < done[w] < seen[v] < done[v].
 - Example in Slide 52: (d, e) : 3 < 4 < 6 < 7;

Hence, there are no cross edges on a graph.



Using DFS to Determine Ancestors of a Tree

Theorem 5.5

Suppose that DFS on a digraph G results in a search forest F. Let $v,w \in V(G)$ and seen[v] < seen[w].

1) If v is an ancestor of w in F, then

seen[v] < seen[w] < done[w] < done[v].

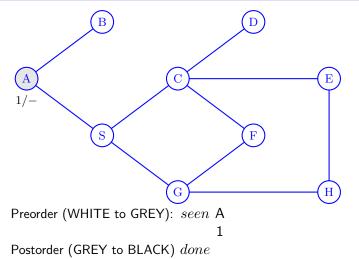
2 If v is not an ancestor of w in F, then

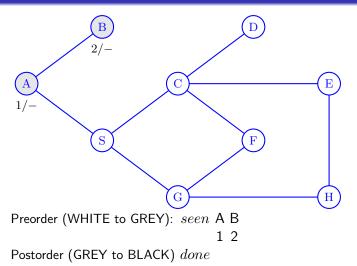
seen[v] < done[v] < seen[w] < done[w].

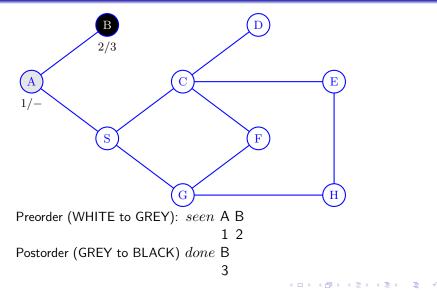
Proof.

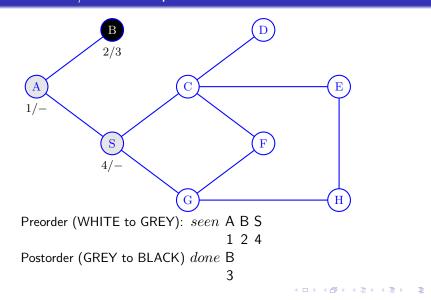
- 1 This part follows from the recursive nature of DFS.
- **2** If v is not an ancestor of w in F, then w is also not an ancestor v.
 - Thus v is in a subtree, which was completely explored before the subtree of w.

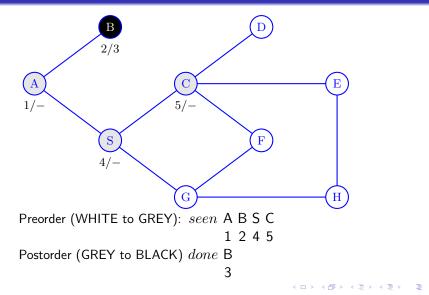
イロン 不通 と 不良 と 不良 と

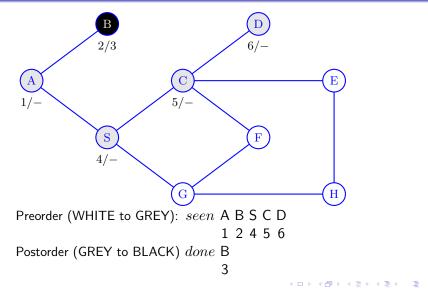


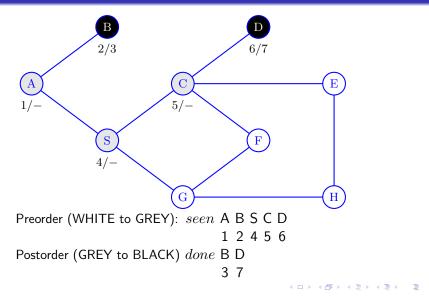


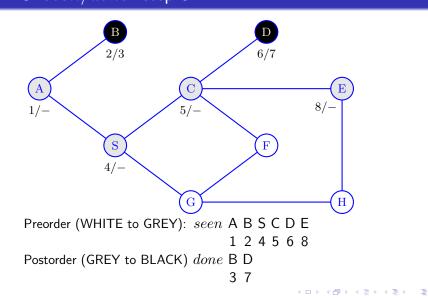


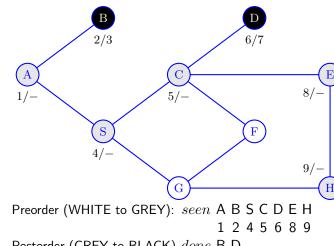








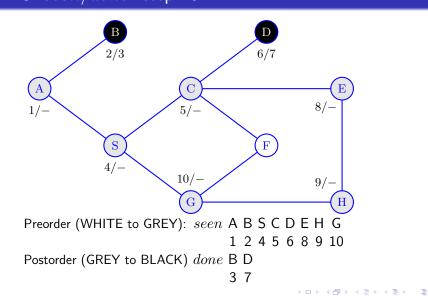


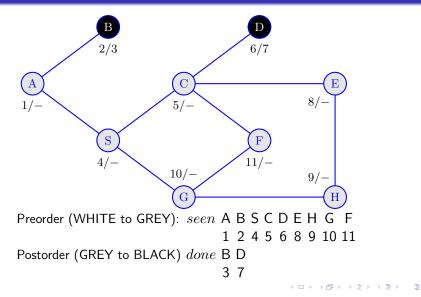


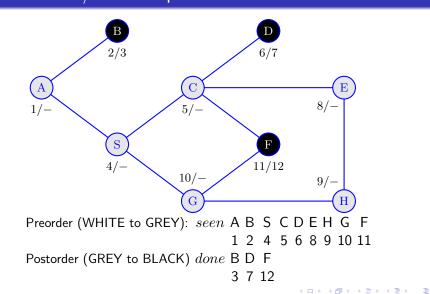
Postorder (GREY to BLACK) $done \ \mathsf{B} \ \mathsf{D}$

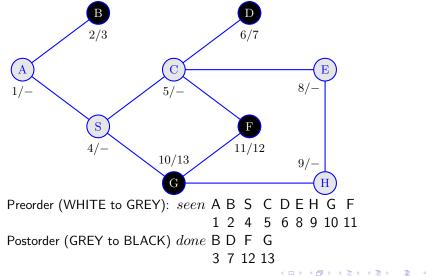
3

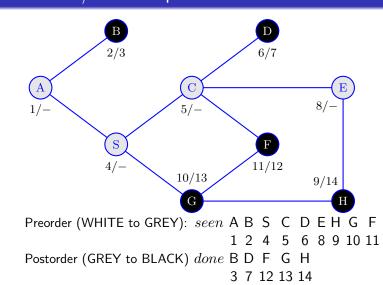
<ロ> <同> <同> < 回> < 回>



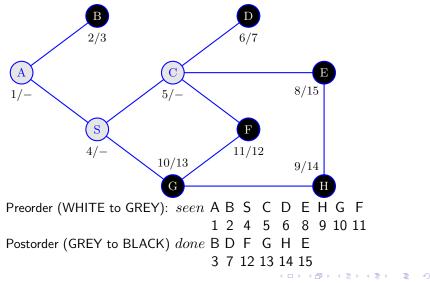


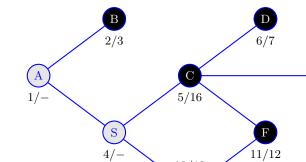






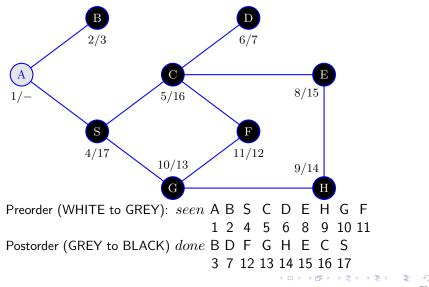
イロン イヨン イヨン イヨン 三日



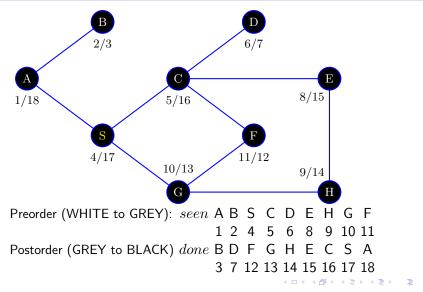


10/13 9/14 Preorder (WHITE to GREY): seen A B S C D E H G F 1 2 4 5 6 8 9 10 11 Postorder (GREY to BLACK) done B D F G H E C 3 7 12 13 14 15 16

 \mathbf{E}

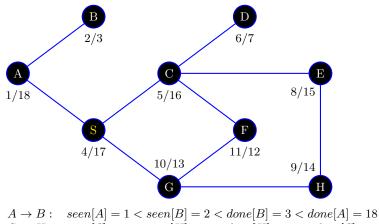


Outline	Definitions	Representation	ADT	DFS
DEC	m/demos	. 10		



Outline	Definitions	Representation	ADT	Traversal	DFS

Determining Ancestors of a Tree: Examples



 $\begin{array}{lll} S \rightarrow H: & seen[S] = 4 < seen[H] = 9 < done[H] = 14 < done[S] = 17 \\ B \not\rightarrow D: & seen[B] = 2 < done[B] = 3 < seen[D] = 6 < done[D] = 7 \\ D \not\rightarrow G: & seen[D] = 6 < done[D] = 7 < seen[G] = 10 < done[G] = 13 \\ \hline \end{array}$