Directed Graphs (Digraphs) and Graphs
 Definitions Graph ADT Traversal algorithms DFS

Lecturer: Georgy Gimel’farb

COMPSCI 220 Algorithms and Data Structures
1. Basic definitions

2. Digraph Representation and Data Structures

3. Digraph ADT Operations

4. Graph Traversals and Applications

5. Depth-first Search in Digraphs
Graphs in Life: World Air Routes

http://milenomics.com/2014/05/partners-alliances-partner-awards/
Graphs in Life: Global Internet Connections

http://www.opte.org/maps/
Graphs in Life: Social Networks (Facebook)

A **digraph** $G = (V, E)$ is a finite nonempty set V of **nodes** together with a (possibly empty) set E of ordered pairs of nodes of G called **arcs**.

$V = \{ 0, 1, 2, 3, 4, 5, 6 \}$

$E = \{ (0, 1), (0, 3), (1, 2), (2, 0), (2, 5), (2, 6), (3, 1), (4, 0), (4, 3), (4, 5), (5, 3), (5, 6), (6, 5) \}$

o Set E is a **neighbourhood**, or adjacency **relation** on V.
If \((u, v) \in E\),

- \(v\) is **adjacent** to \(u\);
- \(v\) is an **out-neighbour** of \(u\), and
- \(u\) is an **in-neighbour** of \(v\).

Examples:

- Nodes (points) 1 and 3 are adjacent to 0.
- 1 and 3 are out-neighbours of 0.
- 0 is an in-neighbour of 1 and 3.
- Node 1 is adjacent to 3.
- 1 is an out-neighbour of 3.
- 3 is an in-neighbour of 1. . .
- 5 is an out-neighbour of 2, 4, and 6.
A graph \(G = (V, E) \) is a finite nonempty set \(V \) of vertices together with a (possibly empty) set \(E \) of unordered pairs of vertices of \(G \) called edges.

\[
V = \{a, b, c, d, e, f, g, h\}
\]

\[
E = \{\{a, b\}, \{a, d\}, \{b, d\}, \{b, c\}, \{c, d\}, \{d, f\}, \{d, h\}, \{f, h\}, \{e, g\}\}
\]

\(^\circ \) The symmetric digraph: each arc \((u, v)\) has the opposite arc \((v, u)\).

Such a pair is reduced into a single undirected edge that can be traversed in either direction.
Order, Size, and In-/Out-degree

The **order** of a digraph $G = (V, E)$ is the number of nodes, $n = |V|$.

The **size** of a digraph $G = (V, E)$ is the number of arcs, $m = |E|$.

For a given n, Sparse digraphs: $|E| \in O(n)$ Dense digraphs: $|E| \in \Theta(n^2)$

The **in-degree** or **out-degree** of a node v is the number of arcs entering or leaving v, respectively.

- A node of in-degree 0 – a **source**.
- A node of out-degree 0 – a **sink**.
- This example: the order $|V| = 6$ and the size $|E| = 9$.

![Diagram of a digraph with order and size annotations](image-url)
Order, Size, and In- / Out-degree

The **order** of a digraph $G = (V, E)$ is the number of nodes, $n = |V|$.

The **size** of a digraph $G = (V, E)$ is the number of arcs, $m = |E|$.

For a given n,

- **Sparse** digraphs: $|E| \in O(n)$
- **Dense** digraphs: $|E| \in \Theta(n^2)$

The **in-degree** or **out-degree** of a node v is the number of arcs entering or leaving v, respectively.

- A node of in-degree 0 – a **source**.
- A node of out-degree 0 – a **sink**.
- This example: the order $|V| = 6$ and the size $|E| = 9$.

Source

Sink
Order, Size, and In- / Out-degree

The **order** of a digraph $G = (V, E)$ is the number of nodes, $n = |V|$.

The **size** of a digraph $G = (V, E)$ is the number of arcs, $m = |E|$.

For a given n, \[m = 0 \quad \text{Sparse digraphs: } |E| \in O(n) \quad \text{Dense digraphs: } |E| \in \Theta(n^2) \quad n(n - 1) \]

The **in-degree** or **out-degree** of a node v is the number of arcs entering or leaving v, respectively.

- A node of in-degree 0 – a **source**.
- A node of out-degree 0 – a **sink**.
- This example: the order $|V| = 6$ and the size $|E| = 9$.

\[\text{Source} \quad \text{Sink} \]
A walk in a digraph $G = (V, E)$:

a sequence of nodes $v_0 v_1 \ldots v_n$, such that (v_i, v_{i+1}) is an arc in G, i.e., $(v_i, v_{i+1}) \in E$, for each i; $0 \leq i < n$.

- The length of the walk $v_0 v_1 \ldots v_n$ is the number n of arcs involved.
- A path is a walk, in which no node is repeated.
- A cycle is a walk, in which $v_0 = v_n$ and no other nodes are repeated.

- By convention, a cycle in a graph is of length at least 3.
- It is easily shown that if there is a walk from u to v, then there is at least one path from u to v.
Walk, Path, and Cycle

A **walk** in a digraph $G = (V, E)$:

a sequence of nodes $v_0 v_1 \ldots v_n$, such that (v_i, v_{i+1}) is an arc in G, i.e., $(v_i, v_{i+1}) \in E$, for each $i; 0 \leq i < n$.

- The **length** of the walk $v_0 v_1 \ldots v_n$ is the number n of arcs involved.
- A **path** is a walk, in which no node is repeated.
- A **cycle** is a walk, in which $v_0 = v_n$ and no other nodes are repeated.

- By convention, a cycle in a graph is of length at least 3.
- It is easily shown that if there is a walk from u to v, then there is at least one path from u to v.
A walk in a digraph $G = (V, E)$:

a sequence of nodes $v_0 v_1 \ldots v_n$, such that (v_i, v_{i+1}) is an arc in G, i.e., $(v_i, v_{i+1}) \in E$, for each $i; 0 \leq i < n$.

- The length of the walk $v_0 v_1 \ldots v_n$ is the number n of arcs involved.
- A path is a walk, in which no node is repeated.
- A cycle is a walk, in which $v_0 = v_n$ and no other nodes are repeated.

- By convention, a cycle in a graph is of length at least 3.
- It is easily shown that if there is a walk from u to v, then there is at least one path from u to v.
Walks, Paths, and Cycles in a Digraph: an Example

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Walk?</th>
<th>Path?</th>
<th>Cycle?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 2 3</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>3 1 2</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>1 2 6 5 3 1</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>4 5 6 5</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>4 3 5</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
Walks, Paths, and Cycles in a Digraph: an Example

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Walk?</th>
<th>Path?</th>
<th>Cycle?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 2 3</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>3 1 2</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>1 2 6 5 3 1</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>4 5 6 5</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>4 3 5</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
Walks, Paths, and Cycles in a Digraph: an Example

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Walk?</th>
<th>Path?</th>
<th>Cycle?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 2 3</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>3 1 2</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>1 2 6 5 3 1</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>4 5 6 5</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>4 3 5</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
Walks, Paths, and Cycles in a Digraph: an Example

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Walk?</th>
<th>Path?</th>
<th>Cycle?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 2 3</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>3 1 2</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>1 2 6 5 3 1</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>4 5 6 5</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>4 3 5</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
Walks, Paths, and Cycles in a Digraph: an Example

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Walk?</th>
<th>Path?</th>
<th>Cycle?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 2 3</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>3 1 2</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>1 2 6 5 3 1</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>4 5 6 5</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>4 3 5</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
Walks, Paths, and Cycles in a Digraph: an Example

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Walk?</th>
<th>Path?</th>
<th>Cycle?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 2 3</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>3 1 2</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>1 2 6 5 3 1</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>4 5 6 5</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>4 3 5</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
Walks, Paths, and Cycles in a Graph: an Example

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Walk?</th>
<th>Path?</th>
<th>Cycle?</th>
</tr>
</thead>
<tbody>
<tr>
<td>abc</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>ege</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>dbcd</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>dadf</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>abdfh</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>
Walks, Paths, and Cycles in a Graph: an Example

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Walk?</th>
<th>Path?</th>
<th>Cycle?</th>
</tr>
</thead>
<tbody>
<tr>
<td>abc</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>ege</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>dbcd</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>dadf</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>abdfh</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>
Walks, Paths, and Cycles in a Graph: an Example

Sequence	Walk?	Path?	Cycle?
abc | yes | yes | no |
egc | yes | no | no |
$dbcd$ | yes | no | yes |
$dadf$ | yes | no | no |
$abdfh$ | yes | yes | no |
Walks, Paths, and Cycles in a Graph: an Example

Sequence	**Walk?**	**Path?**	**Cycle?**
\[abc\] | yes | yes | no
\[ege\] | yes | no | no
\[dbcd\] | yes | no | yes
\[dadf\] | yes | no | no
\[abdfh\] | yes | yes | no
Walks, Paths, and Cycles in a Graph: an Example

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Walk?</th>
<th>Path?</th>
<th>Cycle?</th>
</tr>
</thead>
<tbody>
<tr>
<td>abc</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>ege</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>dbcd</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>dadf</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>abdfh</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>
Walks, Paths, and Cycles in a Graph: an Example

Sequence	**Walk?**	**Path?**	**Cycle?**
abc | yes | yes | no
ege | yes | no | no
$dbcd$ | yes | no | yes
$dadf$ | yes | no | no
$abdfh$ | yes | yes | no
Digraph $G = (V, E)$: Distances and Diameter

The distance, $d(u, v)$, from a node u to a node v in G is the minimum length of a path from u to v.

- If no path exists, the distance is undefined or $+\infty$.
- For graphs, $d(u, v) = d(v, u)$ for all vertices u and v.

The diameter of G is the maximum distance $\max_{u,v \in V} [d(u, v)]$ between any two vertices.

The radius of G is $\min_{u \in V} \max_{v \in V} [d(u, v)]$.
Digraph $G = (V, E)$: Distances and Diameter

The **distance**, $d(u, v)$, from a node u to a node v in G is the *minimum* length of a path from u to v.

- If no path exists, the distance is undefined or $+\infty$.
- For graphs, $d(u, v) = d(v, u)$ for all vertices u and v.

The **diameter** of G is the *maximum* distance $\max_{u,v \in V} [d(u, v)]$ between any two vertices.

The **radius** of G is $\min_{u \in V} \max_{v \in V} [d(u, v)]$.

Path Distances in Digraphs: Examples

\[d(0, 3) = \min\{\text{length of } 0, 3; \text{length of } 0, 1, 2, 6, 5, 3; \text{length of } 0, 1, 2, 5, 3\} = \min\{1; 5; 4\} = 1 \]

\[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
- & 1 & 2 & 1 & \infty & 3 & 3 \\
u=0 & 2 & - & 1 & 3 & \infty & 2 & 2 \\
u=1 & 1 & 3 & - & 2 & \infty & 1 & 1 \\
u=2 & 3 & 1 & 2 & - & \infty & 3 & 3 \\
u=3 & 1 & 2 & 3 & 1 & - & 1 & 2 \\
u=4 & 4 & 2 & 3 & 1 & \infty & - & 1 \\
u=5 & 5 & 3 & 4 & 2 & \infty & 1 & - \\
u=6 & & & & & & & \\
\end{array}
\]

\[d(0, 1) = 1, \ d(0, 2) = 2, \ d(0, 5) = 3, \ d(0, 4) = \infty, \ d(5, 5) = 0, \ d(5, 2) = 3, \]
\[d(5, 0) = 4, \ d(4, 6) = 2, \ d(4, 1) = 2, \ d(4, 2) = 3 \]

Diameter: \(\max\{1, 2, 1, \infty, 3, \ldots, 4, \ldots, 5, \ldots, 1\} = \infty \)

Radius: \(\min\{\infty, \infty, \ldots, 3, \infty, \infty\} = 3 \)
Path Distances in Graphs: Examples

![Graph Diagram]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>u=a</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>∞</td>
<td>2</td>
<td>∞</td>
<td>2</td>
</tr>
<tr>
<td>u=b</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>∞</td>
<td>2</td>
<td>∞</td>
<td>2</td>
</tr>
<tr>
<td>u=c</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>∞</td>
<td>2</td>
<td>∞</td>
<td>2</td>
</tr>
<tr>
<td>u=d</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>∞</td>
<td>1</td>
<td>∞</td>
<td>1</td>
</tr>
<tr>
<td>u=e</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>1</td>
<td>∞</td>
</tr>
<tr>
<td>u=f</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>1</td>
</tr>
<tr>
<td>u=g</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>1</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
</tr>
<tr>
<td>u=h</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>∞</td>
<td>1</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>

- $d(a, b) = d(b, a) = 1$, $d(a, c) = d(c, a) = 2$, $d(a, f) = d(f, a) = 2$, $d(a, e) = d(e, a) = \infty$, $d(e, e) = 0$, $d(e, g) = d(g, e) = 1$, $d(h, f) = d(f, h) = 1$, $d(d, h) = d(h, d) = 1$

- **Diameter:** $\max\{0, 1, 2, 1, \infty, 2, \ldots, 2, \ldots, 2, \ldots, 0\} = \infty$
- **Radius:** $\min\{\infty, \ldots, \infty\} = \infty$
Diameter / Radius of an Unweighted Graph

$d(C, E) = d(E, C)$

$= \min\{1, 1 + 1, 1 + 1, 1 + 1 + 1, 1 + 1 + 1 + 1\} = 1$

$d(B, C) = d(C, B)$

$= \min\{1 + 1, 1 + 1 + 1, 1 + 1, 1 + 1 + 1 + 1, 1 + 1, 1 + 1 + 1 + 1\} = 2$

Radius = 1; diameter = 2.
Diameter / Radius of a Weighted Graph

\[d(C, E) = d(E, C) = \min\{5, 2 + 1, 3 + 1, 2 + 3 + 1, 3 + 2 + 1\} = 3 \]

\[d(B, C) = d(C, B) = \min\{3 + 2, 1 + 1 + 2, 1 + 5, 1 + 1 + 3, 2 + 3, 2 + 1 + 5\} = 4 \]

Radius = 2; diameter = 4.
The underlying graph of a digraph $G = (V, E)$ is the graph $G' = (V, E')$ where $E' = \{ \{u, v\} \mid (u, v) \in E \}$.
Sub(di)graphs

A subdigraph of a digraph $G = (V, E)$ is a digraph $G' = (V', E')$ where $V' \subseteq V$ and $E' \subseteq E$.

$G = \left(\begin{array}{l} V = \{0, 1, 2, 3, 4\}, \\ E = \{(0, 2), (1, 0), (1, 2), \\ (1, 3), (3, 1), (4, 2), \\ (3, 4)\} \end{array} \right)$

$G' = \left(\begin{array}{l} V' = \{1, 2, 3\}, \\ E' = \{(1, 2), (3, 1)\} \end{array} \right)$
A \textit{spanning} subdigraph contains all nodes, that is, \(V' = V\).

\[
G = \left(V = \{0, 1, 2, 3, 4\}, \left\{ (0, 2), (1, 0), (1, 2), (1, 3), (3, 1), (4, 2), (3, 4) \right\} \right)
\]

\[
G' = \left(V' = \{0, 1, 2, 3, 4\}, \left\{ (0, 2), (1, 2), (3, 4) \right\} \right)
\]
Induced Sub(digraph)s

The subdigraph **induced** by a subset V' of V is the digraph $G' = (V', E')$ where $E' = \{(u, v) \in E \mid u \in V' \text{ and } v \in V'\}$.
Digraphs: Computer Representation

For a digraph G of order n with the vertices, V, labelled $0, 1, \ldots, n - 1$:

The adjacency matrix of G:

The $n \times n$ boolean matrix (often encoded with 0’s and 1’s) such that its entry (i, j) is true if and only if there is an arc (i, j) from the node i to node j.

An adjacency list of G:

A sequence of n sequences, L_0, \ldots, L_{n-1}, such that the sequence L_i contains all nodes of G that are adjacent to the node i.

Each sequence L_i may not be sorted! But we usually sort them.
Digraphs: Computer Representation

For a digraph G of order n with the vertices, V, labelled $0, 1, \ldots, n-1$:

The adjacency matrix of G:

The $n \times n$ boolean matrix (often encoded with 0’s and 1’s) such that its entry (i, j) is true if and only if there is an arc (i, j) from the node i to node j.

An adjacency list of G:

A sequence of n sequences, L_0, \ldots, L_{n-1}, such that the sequence L_i contains all nodes of G that are adjacent to the node i.

Each sequence L_i may not be sorted! But we usually sort them.
Adjacency Matrix of a Digraph

![Digraph Diagram](image)

The number of 1’s in a row (column) is the out-(in-) degree of the related node.

Adjacency matrix of G:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

0 – a non-adjacent pair of vertices:
$(i, j) \notin E$

1 – an adjacent pair of vertices:
$(i, j) \in E$
Adjacency Lists of a Graph

Graph $G = (V, E)$

<table>
<thead>
<tr>
<th>symbolic</th>
<th>numeric</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 = a: b\ d$</td>
<td>1\ 3</td>
</tr>
<tr>
<td>$1 = b: a\ c\ d$</td>
<td>0\ 2\ 3</td>
</tr>
<tr>
<td>$2 = c: b\ d$</td>
<td>1\ 3</td>
</tr>
<tr>
<td>$3 = d: a\ b\ c\ f\ h$</td>
<td>0\ 1\ 2\ 5\ 7</td>
</tr>
<tr>
<td>$4 = e: g$</td>
<td>6</td>
</tr>
<tr>
<td>$5 = f: d\ h$</td>
<td>3\ 7</td>
</tr>
<tr>
<td>$6 = g: e$</td>
<td>4</td>
</tr>
<tr>
<td>$7 = h: d\ f$</td>
<td>3\ 5</td>
</tr>
</tbody>
</table>

Special cases can be stored more efficiently:

- A complete binary tree or a heap: in an array.
- A general rooted tree: in an array $pred$ of size n;
 - $pred[i]$ – a pointer to the parent of node i.
Digraph Operations w.r.t. Data Structures

<table>
<thead>
<tr>
<th>Operation</th>
<th>Adjacency Matrix</th>
<th>Adjacency Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>arc ((i, j)) exists?</td>
<td>is entry ((i, j)) 0 or 1</td>
<td>find (j) in list (i)</td>
</tr>
<tr>
<td>out-degree of (i)</td>
<td>scan row and sum 1’s</td>
<td>size of list (i)</td>
</tr>
<tr>
<td>in-degree of (i)</td>
<td>scan column and sum 1’s</td>
<td>for (j \neq i), find (i) in list (j)</td>
</tr>
<tr>
<td>add arc ((i, j))</td>
<td>change entry ((i, j))</td>
<td>insert (j) in list (i)</td>
</tr>
<tr>
<td>delete arc ((i, j))</td>
<td>change entry ((i, j))</td>
<td>delete (j) from list (i)</td>
</tr>
<tr>
<td>add node</td>
<td>create new row/column</td>
<td>add new list at end</td>
</tr>
<tr>
<td>delete node (i)</td>
<td>delete row/column (i) and shuffle other entries</td>
<td>delete list (i) and for (j \neq i), delete (i) from list (j)</td>
</tr>
</tbody>
</table>
Adjacency Lists / Matrices: Comparative Performance

\[G = (V, E) \quad \rightarrow \quad n = |V|; \quad m = |E| \]

<table>
<thead>
<tr>
<th>Operation</th>
<th>array/array</th>
<th>list/list</th>
</tr>
</thead>
<tbody>
<tr>
<td>arc ((i, j)) exists?</td>
<td>(\Theta(1))</td>
<td>(\Theta(\alpha))</td>
</tr>
<tr>
<td>out-degree of (i)</td>
<td>(\Theta(n))</td>
<td>(\Theta(1))</td>
</tr>
<tr>
<td>in-degree of (i)</td>
<td>(\Theta(n))</td>
<td>(\Theta(n + m))</td>
</tr>
<tr>
<td>add arc ((i, j))</td>
<td>(\Theta(1))</td>
<td>(\Theta(1))</td>
</tr>
<tr>
<td>delete arc ((i, j))</td>
<td>(\Theta(1))</td>
<td>(\Theta(\alpha))</td>
</tr>
<tr>
<td>add node</td>
<td>(\Theta(n))</td>
<td>(\Theta(1))</td>
</tr>
<tr>
<td>delete node (i)</td>
<td>(\Theta(n^2))</td>
<td>(\Theta(n + m))</td>
</tr>
</tbody>
</table>

\(^\circ\) Here, \(\alpha\) denotes size of the adjacency list for vertex \(i\).
General Graph Traversal Algorithm (Part 1)

algorithm traverse
Input: digraph $G = (V, E)$
begin
array $colour[n]$, $pred[n]$
for $u \in V(G)$ do
 $colour[u] \leftarrow$ WHITE
end for
for $s \in V(G)$ do
 if $colour[s] = \text{WHITE}$ then
 visit(s)
 end if
end for
return $pred$
end

Three types of nodes each stage:
- WHITE – unvisited yet.
- GREY – visited, but some adjacent nodes are WHITE.
- BLACK – visited; only GREY adjacent nodes
algorithm visit
 Input: node \(s \) of digraph \(G \)
begin
 colour\[s\] \leftarrow \text{GREY}; \ pred[\!s] \leftarrow \text{NULL}
while there is a grey node do
 choose a grey node \(u \)
 if there is a white neighbour of \(u \)
 choose such a neighbour \(v \)
 colour\[v\] \leftarrow \text{GREY}; \ pred[\!v] \leftarrow u
 else colour\[u\] \leftarrow \text{BLACK}
end if
end while
end
Illustrating the General Traversal Algorithm

initialising all nodes WHITE
Illustrating the General Traversal Algorithm

visit(a); colour[a] ← GREY

e is WHITE neighbour of a:

colour[e] ← GREY; pred[e] ← a
Illustrating the General Traversal Algorithm

- **visit(a)**; \(\text{colour}[a] \leftarrow \text{GREY}\)
- \(\text{e is WHITE neighbour of a}\)
 - \(\text{colour}[e] \leftarrow \text{GREY}; \text{pred}[e] \leftarrow \text{a}\)
- **choose GREY a**: no WHITE neighbour:
 - \(\text{colour}[a] \leftarrow \text{BLACK}\)
Illustrating the General Traversal Algorithm

visit(a); colour[a] ← GREY

e is WHITE neighbour of a

colour[e] ← GREY; pred[e] ← a

choose GREY a: no WHITE neighbour:

colour[a] ← BLACK

choose GREY e: no WHITE neighbour:

colour[e] ← BLACK
Illustrating the General Traversal Algorithm

visit(b); colour[b] ← GREY

c is WHITE neighbour of b

colour[c] ← GREY; pred[c] ← b
Illustrating the General Traversal Algorithm

- **visit(b); colour[b] ← GREY**
- c is WHITE neighbour of b
 - colour[c] ← GREY; pred[c] ← b
- d is WHITE neighbour of c
 - colour[d] ← GREY; pred[d] ← c
Illustrating the General Traversal Algorithm

- visit(b); colour[b] ← GREY
- c is WHITE neighbour of b
 - colour[c] ← GREY; pred[c] ← b
- d is WHITE neighbour of c
 - colour[d] ← GREY; pred[d] ← c
- no more WHITE nodes:
 - colour[d] ← BLACK
 - colour[c] ← BLACK
 - colour[b] ← BLACK
Classes of Traversal Arcs

Search forest F: a set of disjoint trees spanning a digraph G after its traversal.

An arc $(u, v) \in E(G)$ is called a **tree arc** if it belongs to one of the trees of F.

The arc (u, v), which is not a tree arc, is called:

- a **forward arc** if u is an ancestor of v in F;
- a **back arc** if u is a descendant of v in F, and
- a **cross arc** if neither u nor v is an ancestor of the other in F.
Basic Facts about Traversal Trees (for further analyses)

Theorem 5.2: Suppose we have run traverse on G, resulting in a search forest F.

1. If T_1 and T_2 are different trees in F and T_1 was explored before T_2, then there are no arcs from T_1 to T_2.

2. If G is a graph, then there can be no edges joining different trees of F.

3. If $v, w \in V(G)$; v is visited before w, and w is reachable from v in G, then v and w belong to the same tree of F.

4. If $v, w \in V(G)$ and v and w belong to the same tree T in F, then any path from v to w in G must have all nodes in T.
Basic Facts about Traversal Trees (for further analyses)

Theorem 5.2: Suppose we have run \textit{traverse} on \(G \), resulting in a search forest \(F \).

1. If \(T_1 \) and \(T_2 \) are different trees in \(F \) and \(T_1 \) was explored before \(T_2 \), then there are no arcs from \(T_1 \) to \(T_2 \).
2. If \(G \) is a graph, then there can be no edges joining different trees of \(F \).
3. If \(v, w \in V(G) \); \(v \) is visited before \(w \), and \(w \) is reachable from \(v \) in \(G \), then \(v \) and \(w \) belong to the same tree of \(F \).
4. If \(v, w \in V(G) \) and \(v \) and \(w \) belong to the same tree \(T \) in \(F \), then any path from \(v \) to \(w \) in \(G \) must have all nodes in \(T \).
Basic Facts about Traversal Trees (for further analyses)

Theorem 5.2: Suppose we have run traverse on G, resulting in a search forest F.

1. If T_1 and T_2 are different trees in F and T_1 was explored before T_2, then there are no arcs from T_1 to T_2.

2. If G is a graph, then there can be no edges joining different trees of F.

3. If $v, w \in V(G)$; v is visited before w, and w is reachable from v in G, then v and w belong to the same tree of F.

4. If $v, w \in V(G)$ and v and w belong to the same tree T in F, then any path from v to w in G must have all nodes in T.
Basic Facts about Traversal Trees (for further analyses)

Theorem 5.2: Suppose we have run traverse on G, resulting in a search forest F.

1. If T_1 and T_2 are different trees in F and T_1 was explored before T_2, then there are no arcs from T_1 to T_2.

2. If G is a graph, then there can be no edges joining different trees of F.

3. If $v, w \in V(G)$; v is visited before w, and w is reachable from v in G, then v and w belong to the same tree of F.

4. If $v, w \in V(G)$ and v and w belong to the same tree T in F, then any path from v to w in G must have all nodes in T.
Basic Facts about Traversal Trees (for further analyses)

Theorem 5.2: Suppose we have run traverse on G, resulting in a search forest F.

1. If T_1 and T_2 are different trees in F and T_1 was explored before T_2, then there are no arcs from T_1 to T_2.

2. If G is a graph, then there can be no edges joining different trees of F.

3. If $v, w \in V(G)$; v is visited before w, and w is reachable from v in G, then v and w belong to the same tree of F.

4. If $v, w \in V(G)$ and v and w belong to the same tree T in F, then any path from v to w in G must have all nodes in T.

Run-time Analysis of Algorithm \texttt{traverse}

In the \textbf{while-loop} of subroutine \texttt{visit} let:

- \(a \) \((A)\) be lower (upper) time bound to choose a GREY node.
- \(b \) \((B)\) be lower (upper) time bound to choose a WHITE neighbour.

Given a (di)graph \(G = (V, E) \) of order \(n = |V| \) and size \(m = |E| \), the running time of \texttt{traverse} is:

- \(O(An + Bm) \) and \(\Omega(an + bm) \) with adjacency lists, and
- \(O(An + Bn^2) \) and \(\Omega(an + bn^2) \) with an adjacency matrix.

Time to find a GREY node: \(O(An) \) and \(\Omega(an) \)

Time to find a WHITE neighbour: \(O(Bm) \) and \(\Omega(bm) \) (adjacency lists)
- \(O(Bn^2) \) and \(\Omega(bn^2) \) (an adjacency matrix)

- Generally, \(A, B, a, b \) may depend on \(n \).
- A more detailed analysis depends on the rules used.
Main Rules for Choosing Next Nodes

- **Depth-first search (DFS):**
 - Starting at a node \(v \).
 - Searching as far away from \(v \) as possible via neighbours.
 - Continue from the next neighbour until no more new nodes.

- **Breadth-first search (BFS):**
 - Starting at a node \(v \).
 - Searching through all its neighbours, then through all their neighbours, etc.
 - Continue until no more new nodes.

- More complicated priority-first search (PFS).
Depth-first Search (DFS) Algorithm (Part 1)

algorithm dfs

Input: digraph $G = (V(G), E(G))$

begin

stack S; array $colour[n], pred[n], seen[n], done[n]$

for $u \in V(G)$ do

$colour[u] \leftarrow$ WHITE; $pred[u] \leftarrow$ NULL

end for

time \leftarrow 0

for $s \in V(G)$ do

if $colour[s] =$ WHITE then

dfsvisit(s)

end if

end for

return $pred, seen, done$

end
Depth-first Search (DFS) Algorithm (Part 2)

algorithm dfsvisit
 Input: node s
 begin
 colour[s] ← GREY; seen[s] ← time + +;
 S.push_top(s)
 while not S.isempty() do
 u ← S.get_top()
 if there is a v adjacent to u and colour[v] = WHITE then
 colour[v] ← GREY; pred[v] ← u
 seen[v] ← time + +; S.push_top(v)
 else S.del_top();
 colour[u] ← BLACK; done[u] ← time + +;
 end if
 end while
 end
Recursive View of DFS Algorithm

algorithm rec_dfs_visit
 Input: node s
 begin
 colour[s] ← GREY
 seen[s] ← time + +
 for each v adjacent to s do
 if colour[v] = WHITE then
 pred[v] ← s
 rec_dfs_visit(v)
 end if
 end for
 colour[s] ← BLACK
 done[s] ← time + +
 end
DFS: An Example \((\text{seen}[v] \mid \text{done}[v])\): \(\text{time} = 0; 1\)
DFS: An Example ($seen[v] \mid done[v]$): $time = 1; 2$
DFS: An Example \((\text{seen}[v] \mid \text{done}[v])\): time = 2, 3
DFS: An Example \((seen[v] \mid done[v])\): \(time = 3; 4\)
DFS: An Example \((seen[v] \mid done[v])\): \(time = 4; 5\)
DFS: An Example \((\text{seen}[v] \mid \text{done}[v] \colon \text{time} = 5, 6)\)
DFS: An Example (seen[v] | done[v]): time = 6, 7
DFS: An Example ($seen[v] \mid done[v]$): $time = 7, 8$
DFS: An Example \((\text{seen}[v] \mid \text{done}[v])\): \(\text{time} = 8, 9\)
DFS: An Example \((seen[v] \mid done[v])\): \(time = 9, 10\)
Basic Properties of Depth-first Search

Next GREY node chosen ← the last one coloured GREY thus far.

- Data structure for this “last in, first out” order – a stack.

Each call to dfs_visit(v) terminates only when all nodes reachable from v via a path of WHITE nodes have been seen.

If (v, w) is an arc, then for a

- tree or forward arc: seen[v] < seen[w] < done[w] < done[v]
 - Example in Slide 52: (a, b) : 0 < 1 < 8 < 9; (b, c) : 1 < 2 < 5 < 8; (a, c) : 0 < 2 < 5 < 9;

- back arc: seen[w] < seen[v] < done[v] < done[w]:
 - Example in Slide 52: (d, a) : 0 < 6 < 7 < 9;

 - Example in Slide 52: (d, e) : 3 < 4 < 6 < 7;

Hence, there are no cross edges on a graph.
Tree, Forward, Back, and Cross Arcs

- **Tree arc**
- **Forward arc**
- **Back arc**
- **Cross arc**

(Example in Slide 52)
Using DFS to Determine Ancestors of a Tree

Theorem 5.5

Suppose that DFS on a digraph \(G \) results in a search forest \(F \). Let \(v, w \in V(G) \) and \(\text{seen}[v] < \text{seen}[w] \).

1. If \(v \) is an ancestor of \(w \) in \(F \), then
 \[
 \text{seen}[v] < \text{seen}[w] < \text{done}[w] < \text{done}[v].
 \]

2. If \(v \) is not an ancestor of \(w \) in \(F \), then
 \[
 \text{seen}[v] < \text{done}[v] < \text{seen}[w] < \text{done}[w].
 \]

Proof.

1. This part follows from the recursive nature of DFS.

2. If \(v \) is not an ancestor of \(w \) in \(F \), then \(w \) is also not an ancestor of \(v \).
 - Thus \(v \) is in a subtree, which was completely explored before the subtree of \(w \).
DFS: *seen/done*: step 1

Preorder (WHITE to GREY): *seen* A

1

Postorder (GREY to BLACK) *done*
DFS: seen/done: step 2

Preorder (WHITE to GREY): seen A B

Postorder (GREY to BLACK) done
DFS: *seen/done*: step 3

Preorder (WHITE to GREY): *seen* A B

Postorder (GREY to BLACK) *done* B
DFS: *seen/done*: step 4

Preorder (WHITE to GREY): *seen* A B S
1 2 4

Postorder (GREY to BLACK) *done* B
3
DFS: *seen/done*: step 5

Preorder (WHITE to GREY): *seen* A B S C
1 2 4 5

Postorder (GREY to BLACK): *done* B
3
DFS: seen/done: step 6

Preorder (WHITE to GREY): seen A B S C D 1 2 4 5 6

Postorder (GREY to BLACK) done B 3
DFS: **seen/done**: step 7

Preorder (WHITE to GREY): seen A B S C D

Postorder (GREY to BLACK) done B D
DFS: seen/done: step 8

Preorder (WHITE to GREY): seen A B S C D E
1 2 4 5 6 8

Postorder (GREY to BLACK) done B D
3 7
DFS: seen/done: step 9

Preorder (WHITE to GREY): seen A B S C D E H

Postorder (GREY to BLACK) done B D
DFS: seen/done: step 10

Preorder (WHITE to GREY): seen A B S C D E H G
1 2 4 5 6 8 9 10

Postorder (GREY to BLACK) done B D
3 7
DFS: \textit{seen/done}: step 11

Preorder (WHITE to GREY): \textit{seen} A B S C D E H G F

\begin{align*}
 &1/\sim \\
 &4/\sim
 &5/\sim
 &10/\sim
 &11/\sim
 &2/3
 &6/7
 &8/\sim
 &9/\sim

\end{align*}

Postorder (GREY to BLACK) \textit{done} B D

\begin{align*}
 &3/\sim \\
 &7
\end{align*}
DFS: *seen/done*: step 12

Preorder (WHITE to GREY): *seen* A B S C D E H G F 1 2 4 5 6 8 9 10 11

Postorder (GREY to BLACK) *done* B D F 3 7 12
DFS: **seen/done**: step 13

Preorder (WHITE to GREY): **seen** A B S C D E H G F

Postorder (GREY to BLACK) **done** B D F G
DFS: *seen/done*: step 14

Preorder (WHITE to GREY): *seen* A B S C D E H G F

1 2 4 5 6 8 9 10 11

Postorder (GREY to BLACK) *done* B D F G H

3 7 12 13 14
DFS: seen/done: step 15

Preorder (WHITE to GREY): seen A B S C D E H G F
1 2 4 5 6 8 9 10 11

Postorder (GREY to BLACK) done B D F G H E
3 7 12 13 14 15
DFS: seen/done: step 16

Preorder (WHITE to GREY): seen A B S C D E H G F 1 2 4 5 6 8 9 10 11

Postorder (GREY to BLACK) done B D F G H E C 3 7 12 13 14 15 16
DFS: \textit{seen}/\textit{done}: step 17

Preorder (WHITE to GREY): \textit{seen} A B S C D E H G F

Postorder (GREY to BLACK) \textit{done} B D F G H E C S
DFS: *seen/done*: step 18

Preorder (WHITE to GREY): *seen* A B S C D E H G F
1 2 4 5 6 8 9 10 11

Postorder (GREY to BLACK) *done* B D F G H E C S A
3 7 12 13 14 15 16 17 18
Determining Ancestors of a Tree: Examples

S → H: seen[S] = 4 < seen[H] = 9 < done[H] = 14 < done[S] = 17