Binary Search Trees

Lecturer: Georgy Gimel'farb

COMPSCI 220 Algorithms and Data Structures

@ Properties of Binary Search Trees

® Basic BST operations

© The worst-case time complexity of BST operations
O The average-case time complexity of BST operations
@ Self-balancing binary and multiway search trees

@ Self-balancing BSTs: AVL trees

@ Self-balancing BSTs: Red-black trees

® Balanced B-trees for external search

N

27

Binary Search Tree: Left-Right Ordering of Keys

Left-to-right numerical ordering in a BST: for every node i,

e the values of all the keys kjefi.; in the left subtree are smaller than
the key k; in i and

e the values of all the keys Kiight:; in the right subtree are larger than
the key k; in it {Kiere:i} 21 < ki <7 € {Kright:s }

Compare to the bottom-up ordering in a heap where the key k; of every
parent node i is greater than or equal to the keys k; and k,. in the left
and right child node [and r, respectively: k; > k; and k; > k...
BST
@ Heap

{Kiere:i } {Kright:i }

BST

Binary Search Tree: Left-Right Ordering of Keys

Non- BST Non- BST
Key “2" cannot be in the Keys “11" and "“12" cannot be
right subtree of key “3". in the left subtree of key “10”.

Operations

Basic BST Operations

BST is an explicit data structure implementing the table ADT.

e BST are more complex than heaps: any node may be
removed, not only a root or leaves.

e The only practical constraint: no duplicate keys (attach them
all to a single node).

Basic operations:
e find a given search key or detect that it is absent in the BST.
e insert a node with a given key to the BST if it is not found.
e findMin: find the minimum key.
e findMax: find the maximum key.

e remove a node with a given key and restore the BST if
necessary.

Operations

BST Operations Find / Insert a Node

Found node

Inserted node

find: a successful binary search. insert: creating a new node at the point
where an unsuccessful search stops.

6 /27

Operations

BST Operations: FindMin / FindMax

Extremely simple: starting at the root, branch repeatedly left
(findMin) or right (findMax) as long as a corresponding child
exists.

e The root of the tree plays a role of the pivot in quicksort
and quickselect.
e As in quicksort, the recursive traversal of the tree can sort
the items:
@ First visit the left subtree;
@® Then visit the root, and
© Then visit the right subtree.
O(logn) average-case and O(n) worst-case running time for find,
insert, findMin, and findMax operations, as well as for selecting a
single item (just as in quickselect).

Operations

BST Operation: Remove a Node

The most complex because the tree may be disconnected.
e Reattachment must retain the ordering condition.

e Reattachment should not needlessly increase the tree height.

Standard method of removing a node ¢ with ¢ children:

ACTION

Simply remove the leaf 7.

Remove the node i after linking its child to its parent node.

Swap the node i with the node j having the smallest key k;
in the right subtree of the node .

After swapping, remove the node i (as now it has at most
one right child).

N = OO0

In spite of its asymmetry, this method cannot be really improved.

Operations

BST Operation: Remove a Node

Remove 10 = Replace 10 (swap with 12 and delete)

(5) (5)
(3) 19 (3) Nty
OO © O ® OO OO 6 O
©® ® OBOO @@09

Minimum key in
the right subtree

Worst case

Analysing BST: The Worst-case Time Complexity

Lemma 3.11: The search, retrieval, update, insert, and remove
operations in a BST all take time in O(h) in the worst case, where
h is the height of the tree.

Proof: The running time T'(n) of these operations is proportional
to the number of nodes v visited.

e Find /insert: v = 1 4 (the depth of the node).

e Remove: (the depth + at most the height of the node).

e In each case T'(n) = O(h). O
For a well-balanced BST, T'(n) € O(logn) (logarithmic time).

In the worst case T'(n) € ©(n) (linear time) because insertions and deletions
may heavily destroy the balance.

10/27

Worst case

Analysing BST: The Worst-case Time Complexity

BSTs of height h ~ logn BSTs of height h =~ n

11/27

Average case

Analysing BST: The Average-case Time Complexity

More balanced trees are more frequent than unbalanced ones.

Definition 3.12: The total internal path length, S;(n), of a binary
tree 7 is the sum of the depths of all its nodes. J

Depth 0 «ccceeeeeeeeranniiiiii., S.(8) =0 +

T cereenerne e +1+1

2 B + 242
+3+3+3=15

o Average complexity of a successful search in 7: the average
node depth, %ST(TL), e.g. £+5-(8) = 22 = 1.875 in this example.
e Average-case complexity of searching:

o Averaging S (n) for all the trees of size n, i.e. for all possible
n! insertion orders, occurring with equal probability, %

12 /27

Average case

The ©(logn) Average-case BST Operations

Let S(n) be the average of the total internal path length, S-(n), over all BST
T created from an empty tree by sequences of n random insertions, each

sequence considered as equiprobable.

Lemma 3.13: The expected time for successful and unsuccessful
search (update, retrieval, insertion, and deletion) in such BST is O(log n)J

Proof: It should be proven that S(n) € ©(nlogn).
e Obviously, S(1) =0.
e Any n-node tree, n > 1, contains a left subtree with i nodes,
a root at height 0, and a right subtree with n — ¢ — 1 nodes;
0<1<n-—1.
e For afixed i, S(n) = (n — 1) 4+ S(i) + S(n —i — 1), as the
root adds 1 to the path length of each other node.

13 /27

Average case

The ©(logn) Average-case BST Operations

Proof of Lemma 3.13 (continued):

o After summing these recurrences for 0 <: <n —1 and
averaging, just the same recurrence as for the average-case
quicksort analysis is obtained:

n—1
S(n)=(n—-1)+2 Y S(i)
i=0
e Therefore, S(n) € ©(nlogn), and the expected depth of a
node is 15(n) € O(logn).
e Thus, the average-case search, update, retrieval and insertion
time is in ©(logn).

e It is possible to prove (but in a more complicate way) that the
average-case deletion time is also in ©(logn). O

The BST allow for a special balancing, which prevents the tree height from
growing too much, i.e. avoids the worst cases with linear time complexity ©(n).

14 /27

Balancing

Self-balanced Search Trees

Balancing ensures that the total internal path lengths of the trees
are close to the optimal value of nlogn.

e The average-case and the worst-case complexity of operations is
O(logn) due to the resulting balanced structure.

e But the insertion and removal operations take longer time on the
average than for the standard binary search trees.

Balanced BST:
o AVL trees (1962: G. M. Adelson-Velskii and E. M. Landis).

e Red-black trees (1972: R. Bayer) — “symmetric binary B-trees”;
the present name and definition: 1978; L. Guibas and R. Sedgewick.

e AA-trees (1993: A. Anderson).
Balanced multiway search trees:
e B-trees (1972: R. Bayer and E. McCreight).

15 /27

Self-balancing BSTs: AVL Trees

Complete binary trees have a too rigid balance condition to be
maintained when new nodes are inserted.

Definition 3.14: An AVL tree is a BST with the following
additional balance property:

e for any node in the tree, the height of the left and right
subtrees can differ by at most 1.

The height of an empty subtree is —1.

Advantages of the AVL balance property:
o Guaranteed height ©(logn) for an AVL tree.
e Less restrictive than requiring the tree to be complete.

o Efficient ways for restoring the balance if necessary.

16 /27

Self-balancing BSTs: AVL Trees

Lemma 3.15: The height of an AVL tree with n nodes is ©(log n)J

Proof: Due to the possibly different heights of subtrees, an AVL tree of
height h may contain fewer than 2" — 1 nodes of the complete tree.

e Let S;, be the size of the smallest AVL tree of height h.
e Sp =1 (the root only) and S; = 2 (the root and one child).

e The smallest AVL tree of height h has the smallest subtrees of
height h — 1 and h — 2 by the balance property, so that

i1 2 3 4 5 6 7
h 01 2 3 4

Sy =8n_1+ Sh_ 1=Fp3—1&
h h—1+Oh—2+ h+3 1T 1 2 3 5 8 13
Sh 1 2 4 7 12

where F; is the i* Fibonacci number (recall Lecture 6).

17 /27

Self-balancing BSTs: AVL Trees (Proof of Lemma 3.15 - cont.)

That Sj, = Fj+3 — 1 is easily proven by induction:
e Basecase: Sy=F;—1=1and S1=F;—1=2.
° HypOthESiS: Let Sz = Fi+3 —1 and Si,1 = F7;+2 — 1.

e Inductive step: Then
Sip1 =8+ 8 1-1=F3—-1+F—1+1=F 4-1
—_—— ——
S; Si—1

Therefore, for each AVL tree of height h and with n nodes:

n> Sy~ L\/?—l where ¢ ~ 1.618,

so that its height h < 1.441g(n + 1) — 1.33. O

® The worst-case height is at most 44% more than the minimum height for
binary trees.

® The average-case height of an AVL tree is provably close to Ign.

18 /27

Self-balancing BSTs: AVL Trees

Rotation to restore the balance after BST insertions and deletions:

Right rotation

Left rotation

If there is a subtree of large height below the node a, the right rotation will
decrease the overall tree height.

® All self-balancing binary search trees use the idea of rotation.

® Rotations are mutually inverse and change the tree only locally.

® Balancing of AVL trees requires extra memory and heavy computations.

® More relaxed efficient BSTs, r.g., red-black trees, are used more often in
practice.

19/27

Red-black

Self-balancing BSTs: Red-black Trees

Definition 3.17: A red-black tree is a BST such that

Every node is coloured either red or black.

Every non-leaf node has two children.
The root is black.
All children of a red node must be black.

Every path from the root to a leaf must
contain the same number of black nodes.

Theorem 3.18: If every path from the root to a leaf contains b
black nodes, then the tree contains at least 2° — 1 black nodes.

20 /27

Red-black

Self-balaning BSTs: Red-black Trees

Proof of Theorem 3.18:

e Base case: Holds for b = 1 (either the black root only or the black
root and one or two red children).

e Hypothesis: Let it hold for all red-black trees with b black nodes in
every path.

e Inductive step: A tree with b+ 1 black nodes in every path and
two black children of the root contains two subtrees with b black
nodes just under the root and has in total at least
1+2-(2°—1) =21 — 1 black nodes.

o |f the root has a red child, the latter has only black children, so that
the total number of the black nodes can become even larger. O

21/27

Red-black

Self-balancing BSTs: Red-black and AA Trees

Searching in a red-black tree is logarithmic, O(logn).

e Each path cannot contain two consecutive red nodes and increase
more than twice after all the red nodes are inserted.

e Therefore, the height of a red-black tree is at most 2[lgn].

No precise average-case analysis (only empirical findings or properties of
red-black trees with n random keys):

e The average case: ~ lgn comparisons per search.
e The worst case: < 21gn + 2 comparisons per search.

e O(1) rotations and O(logn) colour changes to restore the tree after
inserting or deleting a single node.

AA-trees: the red-black trees where the left child may not be red — are
even more efficient if node deletions are frequent.

B-trees

Balanced B-trees

The “Big-Oh” analysis is invalid if the assumed equal time
complexity of elementary operations does not hold.
e External ordered databases on magnetic or optical disks.
e One disk access — hundreds of thousands of computer
instructions.
e The number of accesses dominates running time.
e Even logarithmic worst-case complexity of red-black or
AA-trees is unacceptable.
e Each search should involve a very small number of disk

accesses.
e Binary tree search (with an optimal height lgn) cannot solve

the problem.

Height of an optimal m-ary search tree (m-way branching):

~ e o lan
~ log,, n, i.e. = Tem

23 /27

B-trees

Balanced B-trees

Height of the optimal m-ary search tree with n nodes:

n 10° [105 [107 [108 [10% [10™ [10T | 102
[log, 1] 170 20| 24| 27] 30| 33| 36| 39
[logon] 5/ 6 7| 8| 9| 10| 11| 12
[loggo 7] 3| 3| 4] 4| 5 5 6 6
[log1000 7] 21 2| 3| 3| 3 4 4 4

Multiway search tree of order m = 4:

Data records are associated only with leaves (most of definitions).

24 /27

B-trees

Balanced B-trees

A B-tree of order m is an m-ary search tree such that:

@ The root either is a leaf, or has ;€ {2,...,m} children.

@® There are € {[2],...,m} children of each non-leaf node,
except possibly the root.

© p—1keys, (0;: i=1,...,u—1), guide the search in each non-leaf
node with p children, 6; being the smallest key in subtree 7 + 1.

@ All leaves at the same depth.

© Data items are in leaves, each leaf storing A € {[£],...,1} items,
for some .

e Conditions 1-3: to define the memory space for each node.

e Conditions 4-5: to form a well-balanced tree.

25 /27

B-trees

Balanced B-trees

B-trees are usually named by their branching limits [Z2']| — m:
e.g., 2-3 trees with m = 3 or 2—4 trees with m = 4.

m=4; =T

2—-4 B-tree with the leaf storage

size 7 (2..4 children per node and
4..7 data items per leaf)

75

B8RALB2

26 /27

B-trees

Balanced B-trees

Because the nodes are at least half full, a B-tree with m > 8 cannot be a
simple binary or ternary tree.

o Simple data insertion if the corresponding leaf is not full.

o Otherwise, splitting a full leaf into two leaves, both having the
minimum number of data items, and updating the parent node.

o |f necessary, the splitting propagates up until finding a parent that
need not be split or reaching the root.

e Only in the extremely rare case of splitting the root, the tree height
increases, and a new root with two children (halves of the previous
root) is created.

Data insertion, deletion, and retrieval in the worst case: about [log% n—‘
disk accesses.

e This number is practically constant if m is sufficiently big.

27 /27

	Properties of Binary Search Trees
	Basic BST operations
	The worst-case time complexity of BST operations
	The average-case time complexity of BST operations
	Self-balancing binary and multiway search trees
	Self-balancing BSTs: AVL trees
	Self-balancing BSTs: Red-black trees
	Balanced B-trees for external search

