Data selection. Lower complexity bound for sorting

Lecturer: Georgy Gimel'farb
COMPSCI 220 Algorithms and Data Structures

(1) Data selection: Quickselect
(2) Lower complexity bound for sorting
(3) The worst-case complexity bound
(4) The average-case complexity bound

5 Lower sorting complexity under additional constraints

Data Selection vs. Data Sorting

- Selection: finding only the $k^{\text {th }}$ smallest element, called the element of rank k, or the $k^{\text {th }}$ order statistic in a list of n items.
- Main question: can selection be done faster without sorting?

Quickselect: the average $\Theta(n)$ and worst-case $\Theta\left(n^{2}\right)$ complexity

(1) If $n=0$ or 1 , return "not found" or the list item, respectively.
(2) Otherwise, choose one of the list items as a pivot, p, and partition the list into disjoint "head" and "tail" sublists with j and $n-j-1$ items, respectively, separated by p at position with index j^{a}.
(3) Return the result of quickselect on the head if $k<j$; the element p if $k=j$, or the result of quickselect on the tail otherwise.

[^0]
Analysis of Quickselect: Average-case Complexity

Theorem 2.33: The average-case time complexity of quickselect is linear, or $\Theta(n)$.

Proof. Up to cn operations to partition the list into the head and tail sublists of size j and $n-1-j$, respectively, where $0 \leq j \leq n-1$.

- As in quicksort, each final pivot index j with equal probability $\frac{1}{n}$.
- Average time $T(n)$ to select the $k^{\text {th }}$ smallest item out of n items:

$$
T(n)=\frac{1}{n} \sum_{j=0}^{n-1} \frac{T(j)+T(n-j-1)}{2}+c n=\frac{1}{n} \sum_{j=0}^{n-1} T(j)+c n .
$$

- Therefore, $n T(n)=\sum_{j=0}^{n-1} T(j)+c n^{2}$.
- $n T(n)-(n-1) T(n-1)=T(n-1)+c(2 n-1)$, or
- $T(n) \approx T(n-1)+c^{\prime}$, so that $T(n) \in \Theta(n)$.

Implementation of Quickselect

algorithm quickSelect
Array-based quickselect
finds $k^{\text {th }}$ smallest element in the subarray $a[l . . r]$
Input: array $a[0 . . n-1]$; array indices l, r; integer k
begin
if $l \leq r$ then
$i \leftarrow \operatorname{pivot}(a, l, r)$
$j \leftarrow \operatorname{partition}(a, l, r, i)$
$q \leftarrow j-l+1$
return initial position of pivot return final position of pivot the pivot's rank in $a[l . . r]$
if $k=q$ then return $a[j]$ else if $k<q$ then return quickSelect $(a, l, j-1, k)$ else return quickSelect $(a, j+1, r, k-q)$
end if
else return "not found"
end

Sorting by Pairwise Comparisons: Decision Tree

Representing any sorting of n items by pairwise comparisons with a binary decision tree having n ! leaves (internal nodes: comparisons).

Sorting by Pairwise Comparisons: Decision Tree

- Each leaf $i j k$:
a sorted array a_{i}, a_{j}, a_{k} obtained from the initial list a_{1}, a_{2}, a_{3}.
- Each internal node:
a pairwise comparison $i: j$ between the elements a_{i} and a_{j}.
- Two downward arcs: two possible results: $a_{i} \geq a_{j}$ or $a_{i}<a_{j}$.
- Any of n ! permutations of n arbitrary items a_{1}, \ldots, a_{n} may be met after sorting: so the decision tree must have at least n ! leaves.
- The path length from the root to a leaf is equal to the total number of comparisons for getting the sorted list at the leaf.
- The longest path (the tree height) is equal to the worst-case number of comparisons.
- Example: 3 items are sorted with no more than 3 comparisons, because the height of the tree for $n=3$ is equal to 3 .

Sorting by Pairwise Comparisons: Decision Tree

Example:

$$
a_{1}=35, a_{2}=10, a_{3}=17
$$

(1) Comparison 1:2 $(35>10) \rightarrow$ left branch $a_{1}>a_{2}$
(2) Comparison 2:3 $(10<17) \rightarrow$ right branch $a 2<a 3$
(3) Comparison 1:3: $(35>17) \rightarrow$ left branch $a 1>a 3$
(4) Sorted array $231 \rightarrow$

$$
a_{2}=10, a_{3}=17, a_{1}=35
$$

The Worst-case Complexity Bound

Lemma: A decision tree of height h has at most 2^{h} leaves.
Proof: by mathematical induction.

- Base cases: A tree of height 0 has at most 2^{0} leaves (i.e. one leaf).
- Hypothesis: Let any tree of height $h-1$ have at most 2^{h-1} leaves.
- Induction:
- Any tree of height h consists of a root and two subtrees of height at most $h-1$ each.
- The number of leaves in the whole decision tree of height h is equal to the total number of leaves in its subtrees, that is, at most $2^{h-1}+2^{h-1}=2^{h}$.

The Worst-case Complexity Bound

Theorem 2.35 (Textbook): Every pairwise-comparison-based sorting algorithm takes $\Omega(n \log n)$ time in the worst case.

Proof:

- Each binary tree, as shown in Slide 9, has at most 2^{h} leaves.
- The least height h such that $2^{h} \geq n$! has the lower bound $h \geq \lg (n!)$.
- By the Stirling's approximation, $n!\approx n^{n} e^{-n} \sqrt{2 \pi n}$ as $n \rightarrow \infty$.
- Therefore, asymptotically, $\lg (n!) \approx n \lg n-1.44 n$, or $\lg (n!) \in \Omega(n \log n)$.
Therefore, heapsort and mergesort have the asymptotically optimal worst-case time complexity for comparison-based sorting.

The Average-case Complexity Bound

Theorem 2.36 (Textbook): Every pairwise-comparison-based sorting algorithm takes $\Omega(n \log n)$ time in the average case.

Proof: Let $H(k)$ be the sum of all heights of k leaves in a balanced decision tree with equal numbers, $\frac{k}{2}$, of leaves on the left and right subtrees.

- Such a tree has the smallest height, i.e., in any other decision tree, the sum of heights cannot be smaller than $H(k)$.
- $H(k)=2 H\left(\frac{k}{2}\right)+k$ as the link to the root adds one to each height, so that $H(k)=k \lg k$.
- When $k=n$! (the number of permutations of an array of n keys), $H(n!)=n!\lg (n!)$.
- Given equiprobable permutations, the average height of a leaf is $H_{\text {avg }}(n!)=\frac{1}{n!} H(n!)=\lg (n!) \approx n \lg n-1.44 n$.
- Thus, the lower bound of the average-case complexity of sorting n items by pairwise comparisons is $\Omega(n \log n)$.

Counting Sort - Exercise 2.7.2 (Textbook)

Input: an integer array $\mathbf{a}_{n}=\left(a_{1}, \ldots, a_{n}\right)$; each $a_{i} \in \mathbb{Q}=\{0, \ldots, Q-1\}$.

- Make a counting array \mathbf{t}_{Q} and set $t_{q} \leftarrow 0$ for $q \in \mathbb{Q}$.
- Scan through \mathbf{a}_{n} to accumulate in the counters $t_{q} ; q \in \mathbb{Q}$, how many times each item q is found: if $a_{i}=q$, then $t[q] \leftarrow t[q]+1$.
- Loop through $0 \leq q \leq Q-1$ and output t_{q} copies of q at each step.

Linear worst- and average-case time complexity, $\Theta(n)$ when Q is fixed.

- $Q+n$ elementary operations to first set \mathbf{t}_{Q} to zero; count then how many times t_{q} each item q is found in \mathbf{a}_{n}, and successively output the sorted array \mathbf{a}_{n} by repeating t_{q} times each entry q.

Theorems 2.35 and 2.36 do not hold under additional data constraints!

[^0]: ${ }^{a}$ All head (tail) items are less (greater) than the pivot p and precede (follow) it.

