
Outline Quickselect Lower bound Worst-case Average-case Counting sort

Data selection. Lower complexity bound for sorting

Lecturer: Georgy Gimel’farb

COMPSCI 220 Algorithms and Data Structures

1 / 12



Outline Quickselect Lower bound Worst-case Average-case Counting sort

1 Data selection: Quickselect

2 Lower complexity bound for sorting

3 The worst-case complexity bound

4 The average-case complexity bound

5 Lower sorting complexity under additional constraints

2 / 12



Outline Quickselect Lower bound Worst-case Average-case Counting sort

Data Selection vs. Data Sorting

• Selection: finding only the kth smallest element, called the element
of rank k, or the kth order statistic in a list of n items.

• Main question: can selection be done faster without sorting?

Quickselect: the average Θ(n) and worst-case Θ(n2) complexity

1 If n = 0 or 1, return “not found” or the list item, respectively.

2 Otherwise, choose one of the list items as a pivot, p, and partition
the list into disjoint “head” and “tail” sublists with j and n− j − 1
items, respectively, separated by p at position with index ja.

3 Return the result of quickselect on the head if k < j; the element p
if k = j, or the result of quickselect on the tail otherwise.

aAll head (tail) items are less (greater) than the pivot p and precede (follow) it.

3 / 12



Outline Quickselect Lower bound Worst-case Average-case Counting sort

Analysis of Quickselect: Average-case Complexity

Theorem 2.33: The average-case time complexity of quickselect
is linear, or Θ(n).

Proof. Up to cn operations to partition the list into the head and tail
sublists of size j and n− 1− j, respectively, where 0 ≤ j ≤ n− 1.

• As in quicksort, each final pivot index j with equal probability 1
n .

• Average time T (n) to select the kth smallest item out of n items:

T (n) = 1
n

n−1∑
j=0

T (j)+T (n−j−1)
2 + cn = 1

n

n−1∑
j=0

T (j) + cn.

• Therefore, nT (n) =
∑n−1

j=0 T (j) + cn2.

• nT (n)− (n− 1)T (n− 1) = T (n− 1) + c(2n− 1), or

• T (n) ≈ T (n− 1) + c′, so that T (n) ∈ Θ(n).

4 / 12



Outline Quickselect Lower bound Worst-case Average-case Counting sort

Implementation of Quickselect

algorithm quickSelect Array-based quickselect

finds kth smallest element in the subarray a[l..r]

Input: array a[0..n− 1]; array indices l, r; integer k
begin

if l ≤ r then
i← pivot(a, l, r) return initial position of pivot

j ← partition(a, l, r, i) return final position of pivot

q ← j − l + 1 the pivot’s rank in a[l..r]

if k = q then return a[j]
else if k < q then return quickSelect(a, l, j − 1, k)
else return quickSelect(a, j + 1, r, k − q)

end if
else return “not found”

end
5 / 12



Outline Quickselect Lower bound Worst-case Average-case Counting sort

Sorting by Pairwise Comparisons: Decision Tree

Representing any sorting of n items by pairwise comparisons with a
binary decision tree having n! leaves (internal nodes: comparisons).

Decision tree for n = 31 : 2

2 : 3 2 : 3

1 : 3 1 : 33 2 1

2 3 1 2 1 3

1 2 3

1 3 23 1 2

a1 ≥ a2 a1 < a2

a2 ≥ a3 a2 < a3 a2 ≥ a3 a2 < a3

a1 ≥ a3
a1 < a3

a1 ≥ a3
a1 < a3

6 / 12



Outline Quickselect Lower bound Worst-case Average-case Counting sort

Sorting by Pairwise Comparisons: Decision Tree

• Each leaf ijk:
a sorted array ai, aj , ak obtained from the initial list a1, a2, a3.

• Each internal node:
a pairwise comparison i : j between the elements ai and aj .

• Two downward arcs: two possible results: ai ≥ aj or ai < aj .

• Any of n! permutations of n arbitrary items a1, . . . , an may be met
after sorting: so the decision tree must have at least n! leaves.

• The path length from the root to a leaf is equal to the total number
of comparisons for getting the sorted list at the leaf.

• The longest path (the tree height) is equal to the worst-case
number of comparisons.

• Example: 3 items are sorted with no more than 3 comparisons,
because the height of the tree for n = 3 is equal to 3.

7 / 12



Outline Quickselect Lower bound Worst-case Average-case Counting sort

Sorting by Pairwise Comparisons: Decision Tree

a = (35, 10, 17)

Decision tree for n = 3

1 : 2

2 : 3 2 : 3

1 : 3 1 : 33 2 1

2 3 1 2 1 3

1 2 3

1 3 23 1 2

a1 ≥ a2 a1 < a2

a2 ≥ a3 a2 < a3 a2 ≥ a3 a2 < a3

a1 ≥ a3
a1 < a3

a1 ≥ a3
a1 < a3

a = (10, 17, 35)

Example:
a1 = 35, a2 = 10, a3 = 17

1 Comparison 1 : 2
(35 > 10) →
left branch a1 > a2

2 Comparison 2 : 3
(10 < 17) →
right branch a2 < a3

3 Comparison 1 : 3:
(35 > 17) →
left branch a1 > a3

4 Sorted array 231 →
a2 = 10, a3 = 17, a1 = 35

8 / 12



Outline Quickselect Lower bound Worst-case Average-case Counting sort

The Worst-case Complexity Bound

Lemma: A decision tree of height h has at most 2h leaves.

Proof: by mathematical induction.

• Base cases: A tree of height 0 has at most 20 leaves (i.e.
one leaf).

• Hypothesis: Let any tree of height h− 1 have at most 2h−1

leaves.

• Induction:
• Any tree of height h consists of a root and two subtrees of

height at most h− 1 each.
• The number of leaves in the whole decision tree of height h is

equal to the total number of leaves in its subtrees, that is, at
most 2h−1 + 2h−1 = 2h. �

9 / 12



Outline Quickselect Lower bound Worst-case Average-case Counting sort

The Worst-case Complexity Bound

Theorem 2.35 (Textbook): Every pairwise-comparison-based
sorting algorithm takes Ω(n log n) time in the worst case.

Proof:

• Each binary tree, as shown in Slide 9, has at most 2h leaves.

• The least height h such that 2h ≥ n! has the lower bound
h ≥ lg(n!).

• By the Stirling’s approximation, n! ≈ nne−n
√

2πn as n→∞.

• Therefore, asymptotically, lg(n!) ≈ n lg n− 1.44n, or
lg(n!) ∈ Ω(n log n). �

Therefore, heapsort and mergesort have the asymptotically optimal
worst-case time complexity for comparison-based sorting.

10 / 12



Outline Quickselect Lower bound Worst-case Average-case Counting sort

The Average-case Complexity Bound

Theorem 2.36 (Textbook): Every pairwise-comparison-based sorting
algorithm takes Ω(n log n) time in the average case.

Proof: Let H(k) be the sum of all heights of k leaves in a balanced decision

tree with equal numbers, k
2

, of leaves on the left and right subtrees.

• Such a tree has the smallest height, i.e., in any other decision tree,
the sum of heights cannot be smaller than H(k).

• H(k) = 2H
(
k
2

)
+ k as the link to the root adds one to each height,

so that H(k) = k lg k.

• When k = n! (the number of permutations of an array of n keys),
H(n!) = n! lg(n!).

• Given equiprobable permutations, the average height of a leaf is
Havg(n!) = 1

n!H(n!) = lg(n!) ≈ n lg n− 1.44n.

• Thus, the lower bound of the average-case complexity of sorting n
items by pairwise comparisons is Ω(n log n). �

11 / 12



Outline Quickselect Lower bound Worst-case Average-case Counting sort

Counting Sort – Exercise 2.7.2 (Textbook)

Input: an integer array an = (a1, . . . , an); each ai ∈ Q = {0, . . . , Q− 1}.

• Make a counting array tQ and set tq ← 0 for q ∈ Q.

• Scan through an to accumulate in the counters tq; q ∈ Q, how
many times each item q is found: if ai = q, then t[q]← t[q] + 1.

• Loop through 0 ≤ q ≤ Q− 1 and output tq copies of q at each step.

Linear worst- and average-case time complexity, Θ(n) when Q is fixed.

• Q+ n elementary operations to first set tQ to zero; count then how
many times tq each item q is found in an, and successively output
the sorted array an by repeating tq times each entry q.

Theorems 2.35 and 2.36 do not hold under additional data constraints!

12 / 12


	Data selection: Quickselect
	Lower complexity bound for sorting
	The worst-case complexity bound
	The average-case complexity bound
	Lower sorting complexity under additional constraints

