

Data selection. Lower complexity bound for sorting

Lecturer: Georgy Gimel'farb

COMPSCI 220 Algorithms and Data Structures

Outline	Quickselect	Lower bound	Worst-case	Average-case	Counting sort

- 1 Data selection: Quickselect
- 2 Lower complexity bound for sorting
- 3 The worst-case complexity bound
- The average-case complexity bound
- **5** Lower sorting complexity under additional constraints

- Selection: finding only the k^{th} smallest element, called the element of rank k, or the k^{th} order statistic in a list of n items.
- Main question: can selection be done faster without sorting?

Quickselect: the average $\Theta(n)$ and worst-case $\Theta(n^2)$ complexity

- 1 If n = 0 or 1, return "not found" or the list item, respectively.
- 2 Otherwise, choose one of the list items as a pivot, p, and partition the list into disjoint "head" and "tail" sublists with j and n-j-1 items, respectively, separated by p at position with index j^a .
- **3** Return the result of quickselect on the head if k < j; the element p if k = j, or the result of quickselect on the tail otherwise.

^aAll head (tail) items are less (greater) than the pivot p and precede (follow) it.

イロト イポト イヨト イヨト

Analysis of Quickselect: Average-case Complexity

Theorem 2.33: The average-case time complexity of quickselect is linear, or $\Theta(n)$.

Proof. Up to cn operations to partition the list into the head and tail sublists of size j and n-1-j, respectively, where $0 \le j \le n-1$.

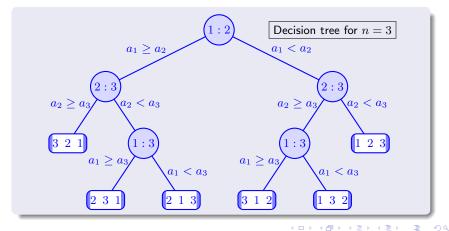
- As in quicksort, each final pivot index j with equal probability $\frac{1}{n}$.
- Average time T(n) to select the k^{th} smallest item out of n items: $T(n) = \frac{1}{n} \sum_{j=0}^{n-1} \frac{T(j)+T(n-j-1)}{2} + cn = \frac{1}{n} \sum_{j=0}^{n-1} T(j) + cn.$
- Therefore, $nT(n) = \sum_{j=0}^{n-1} T(j) + cn^2$.
 - nT(n) (n-1)T(n-1) = T(n-1) + c(2n-1), or
 - $T(n) \approx T(n-1) + c'$, so that $T(n) \in \Theta(n)$.

Implementation of Quickselect

algorithm quickSelect Array-based quickselect finds k^{th} smallest element in the subarray a[l..r]*Input:* array a[0..n-1]; array indices l, r; integer k begin if l < r then $i \leftarrow \texttt{pivot}(a, l, r)$ return initial position of pivot $i \leftarrow \text{partition}(a, l, r, i)$ return final position of pivot $q \leftarrow i - l + 1$ the pivot's rank in a[l..r]if k = q then return a[j]else if k < q then return quickSelect(a, l, j - 1, k)else return quickSelect(a, j + 1, r, k - q)end if else return "not found" end

Sorting by Pairwise Comparisons: Decision Tree

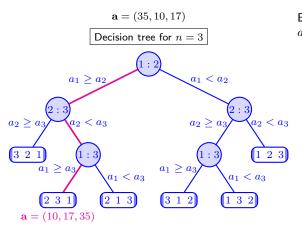
Representing any sorting of n items by pairwise comparisons with a binary **decision tree** having n! leaves (internal nodes: comparisons).



Sorting by Pairwise Comparisons: Decision Tree

- Each leaf *ijk*: a sorted array a_i, a_j, a_k obtained from the initial list a_1, a_2, a_3 .
- Each internal node: a pairwise comparison *i* : *j* between the elements *a_i* and *a_j*.
 - Two downward arcs: two possible results: $a_i \ge a_j$ or $a_i < a_j$.
- Any of n! permutations of n arbitrary items a_1, \ldots, a_n may be met after sorting: so the decision tree must have at least n! leaves.
- The path length from the root to a leaf is equal to the total number of comparisons for getting the sorted list at the leaf.
 - The longest path (the tree height) is equal to the worst-case number of comparisons.
 - Example: 3 items are sorted with no more than 3 comparisons, because the height of the tree for n = 3 is equal to 3.

Sorting by Pairwise Comparisons: Decision Tree



Example: $a_1 = 35, a_2 = 10, a_3 = 17$ Comparison 1:20 $(35 > 10) \rightarrow$ left branch $a_1 > a_2$ Comparison 2:32 $(10 < 17) \rightarrow$ right branch a2 < a3 \bigcirc Comparison 1 : 3: $(35 > 17) \rightarrow$ left branch a1 > a34 Sorted array $231 \rightarrow$ $a_2 = 10, a_3 = 17, a_1 = 35$ **Lemma:** A decision tree of height h has at most 2^h leaves.

Proof: by mathematical induction.

- Base cases: A tree of height 0 has at most 2⁰ leaves (i.e. one leaf).
- **Hypothesis**: Let any tree of height h 1 have at most 2^{h-1} leaves.
- Induction:
 - Any tree of height h consists of a root and two subtrees of height at most h-1 each.
 - The number of leaves in the whole decision tree of height h is equal to the total number of leaves in its subtrees, that is, at most 2^{h-1} + 2^{h-1} = 2^h.

The Worst-case Complexity Bound

Theorem 2.35 (Textbook): Every pairwise-comparison-based sorting algorithm takes $\Omega(n \log n)$ time in the worst case.

Proof:

- Each binary tree, as shown in Slide 9, has at most 2^h leaves.
- The least height h such that $2^h \ge n!$ has the lower bound $h \geq \lg(n!).$
- By the Stirling's approximation, $n! \approx n^n e^{-n} \sqrt{2\pi n}$ as $n \to \infty$.
- Therefore, asymptotically, $\lg(n!) \approx n \lg n 1.44n$, or $\lg(n!) \in \Omega(n \log n).$

Therefore, heapsort and mergesort have the asymptotically optimal worst-case time complexity for comparison-based sorting.

The Average-case Complexity Bound

Theorem 2.36 (Textbook): Every pairwise-comparison-based sorting algorithm takes $\Omega(n \log n)$ time in the average case.

Proof: Let H(k) be the sum of all heights of k leaves in a balanced decision tree with equal numbers, $\frac{k}{2}$, of leaves on the left and right subtrees.

- Such a tree has the smallest height, i.e., in any other decision tree, the sum of heights cannot be smaller than H(k).
- $H(k) = 2H\left(\frac{k}{2}\right) + k$ as the link to the root adds one to each height, so that $H(k) = k \lg k$.
- When k = n! (the number of permutations of an array of n keys), $H(n!) = n! \lg(n!)$.
- Given equiprobable permutations, the average height of a leaf is $H_{\text{avg}}(n!) = \frac{1}{n!}H(n!) = \lg(n!) \approx n \lg n 1.44n.$
- Thus, the lower bound of the average-case complexity of sorting n items by pairwise comparisons is $\Omega(n \log n)$.

Outline Quickselect Lower bound Worst-case Average-case Counting sort

Counting Sort – Exercise 2.7.2 (Textbook)

Input: an integer array $\mathbf{a}_n = (a_1, \dots, a_n)$; each $a_i \in \mathbb{Q} = \{0, \dots, Q-1\}$.

- Make a counting array \mathbf{t}_Q and set $t_q \leftarrow 0$ for $q \in \mathbb{Q}$.
- Scan through a_n to accumulate in the counters t_q; q ∈ Q, how many times each item q is found: if a_i = q, then t[q] ← t[q] + 1.
- Loop through $0 \le q \le Q 1$ and output t_q copies of q at each step.

Linear worst- and average-case time complexity, $\Theta(n)$ when Q is fixed.

• Q + n elementary operations to first set \mathbf{t}_Q to zero; count then how many times t_q each item q is found in \mathbf{a}_n , and successively output the sorted array \mathbf{a}_n by repeating t_q times each entry q.

Theorems 2.35 and 2.36 do not hold under additional data constraints!