Data Sorting: Insertion sort

Georgy Gimel'farb

COMPSCI 220 Algorithms and Data Structures

@ Ordering
® Data sorting
© Efficiency of comparison-based sorting

@ Insertion sort

2/16

Ordering

Relations, Partial Order, and Linear Order

A relation on a set S is a set R of ordered pairs of elements of .5,
i.e. asubset, RC S x S of the set, S x S, of all pairs of these eIements.J

e An ordered pair (x,y) € R means the element y relates to z.
e The relation is denoted sometimes as yRx.
e An important type of relation: a partial order, which is
reflexive, antisymmetric, and transitive.
Main features of the partial order:
Reflexivity: — xzRx for every x € S.
Antisymmetry: If xRy and yRx then x = y for every x,y € S.
Transitivity: If Ry and yRz then xRz for every z,y,z € S.
¢ A linear order (or a total order) is a partial order, such that
every pair of elements is related (i.e. R =S x S5).

3/16

Ordering

Examples of Linear Order Relations

@ S — the set of real numbers; R — the usual "less than or equal
to” relation, x <y, for all pairs of numbers.
o Foreveryx € S, z < x.
e Forevery z,y € S, if z <y and y <z then x =y.
o Forevery z,y,z€ S, ifx <yandy < zthen z <z

® S — the set of Latin letters:

S: {q7w767T7t7y7u7i707p7a787d7f7g7h7j7k7l7z7x7c7v7b7n7m}

and R — the alphabetic relation for all pairs of letters:

(a,0) (a,0) (a,c) (a,d) (ae) (a,f) ... (a,y) (a,2)
(0,0) (be) (b,d) (bye) (b, f) ... (by) (b2)
R— (c.o) (ed) (ce) (ef) . (¢y) (¢2)

(v,y) (y,2)
(2,2)

2,2

4/16

Sorting

Data Ordering: Numerical Order

Ordering relation places each pair «, 5 of countable data items in
a fixed order denoted as (a,) or {(a,).

¢ Order notation: « < (3 (less than or equal to).

e Countable item: labelled by a specific integer key.

Comparable objects in Java and Python: if an object can be
less than, equal to, or greater than other object:

Java: object.compareTo(other_object) <0,=0,>0
Python: object.__cmp__(self,other) <0,=0,>0

Numerical order - on any set of numbers by values of elements:

5<5<6.45 <2279 < ... <£1056.32

5/16

Sorting

Alphabetical and Lexicographic Orders

Alphabetical order - on a set of letters by their position in an
alphabet:

a<b<c<d<e<f<g<h<i<..<y<z

Such ordering depends on the alphabet used: look into any
bilingual dictionary. . . J

Lexicographic order - on a set of strings (e.g. multi-digit
numbers or words) by the first differing character in the strings:

5456 < 5457 < 5500 < 6100 <
pork < ward < word < work <

The characters are compared in line with their numerical or alphabetical order:
look into any dictionary or thesaurus. ..

6/16

Sorting

The Problem of Sorting

Rearrange an input list of keys, which can be compared using a
total order <, into an output list such that key 7 precedes key j in
the output list if 7 < j.

The key is often a data field in a larger object: rather than move such objects,
a pointer from the key to the object is to be kept.

Sorting algorithm is comparison-based if the total order can be
checked only by comparing the order < of a pair of elements at a
time.

® Sorting is stable if any two objects, having the same key in the input,
appear in the same order in the output.

® Sorting is in-place if only a fixed additional memory space is required
independently of the input size.

7/16

Efficiency

Efficiency of Comparison-Based Sorting

No other information about the keys, except of only their order
relation, can be used.

The running time of sorting is usually dominated by two elementary
operations: a comparison of two items and a move of an item.

Every sorting algorithm in this course makes at most constant
number of moves for each comparison.

e Asymptotic running time in terms of elementary operations is
determined by the number of comparisons.
e Time for a data move depends on the list implementation.

e Sorting makes sense only for linear data structures.

The efficiency of a particular sorting algorithm depends on the number of items
to be sorted; place of sorting (fast internal or slow external memory); to what

extent data items are presorted, etc.
8/16

Insertion sort

Sorting with Insertion Sort

Insertion sort (the same scheme also in Selection Sort and Bubble Sort)

e Split an array into a unordered and ordered parts:

Head (ordered) Tail (unordered)
[@0,01, ..., Qi—1][G4, Aj41,--.,An—1]

e Sequentially contract the unordered part, one element per stage:

At the beginning of each stage i =1,...,n — 1:
7 ordered and n — 7 unordered elements.

’) The array to be sorted C; \ M,; ‘
44 113 135(18 | 15|10 | 20
11344 (3518|1510 |20 | 1 1
21133544 |18 |15 (1020 2 1
3131183544 [15|10(2014 & | 2

C; and M; — numbers of comparisons and moves at stage ¢, respectively.

9/16

Insertion sort

Python Code of Insertion Sort

http://interactivepython.org/runestone/static/pythonds/SortSearch/TheInsertionSort.html

Insertion sort of an input array a of size n

Each leftmost unordered a[i] is compared right-to-left to the already
ordered elements al[i-1],...,a[0], being right-shifted to free place

between them for insertion of the element al[i]

def insertionSort(a)
for i in range (1, len(a))

tmp = al i] # pick alil

k=1

while k > 0 and tmp < al k- 171 : # compare to alk]
al k] =al k - 1] # shift al[k] right
k=k -1

al k] = tmp # insert ali]

10/16

Insertion sort

Java Code of Insertion Sort

// Insertion sort of an input array a of size n

//
// Each leftmost unordered al[i] is compared right-to-left to the already
// ordered elements a[i-1],...,a[0], being right-shifted to free place

// between them for insertion of the element al[il

public static void insertionSort(int [] a) {
for (int i = 1; i < a.length; i++) {

int tmp = al i 1; // pick alil

int k =i - 1;

while (k >= 0 && tmp < al k]) { // compare to alk]
alk+1]1 =alk]; // shift al[k] right
k--;

alk+11] = tmp; // insert alil

11/16

Insertion Sort: Stages:=1,2,3

Insertion sort

44

13

18

15

10

20

12 /16

Insertion Sort: Stages:=1,2,3

Insertion sort

44

18

15

10

20

13

12 /16

Insertion sort

Insertion Sort: Stages:=1,2,3

44 35 18 15 10 20

1 13

13 < 44?7 — Comparison 1 for i =1

12 /16

Insertion Sort: Stages:=1,2,3

Insertion sort

44

18

15

10

20

13

12 /16

Insertion Sort: Stages:=1,2,3

Insertion sort

13

44

18

15

10

20

12 /16

Insertion Sort: Stages:=1,2,3

t

Insertion sort

13

44

18

15

10

20

35

12 /16

Insertion sort

Insertion Sort: Stages:=1,2,3

13 44 18 15 10 20

2 35

35 < 447 — Comparison 1 for i = 2

12 /16

Insertion Sort: Stages:=1,2,3

t

Insertion sort

13

44

18

15

10

20

35

12 /16

Insertion sort

Insertion Sort: Stages:=1,2,3

0 1 2 3 4 5 6
13 44 18 15 10 20
il
2 35

35 < 13?7 — Comparison 2 for i = 2

12 /16

Insertion Sort: Stages:=1,2,3

t

Insertion sort

13

35

44

18

15

10

20

12 /16

Insertion Sort: Stages:=1,2,3

t

Insertion sort

13

35

44

15

10

20

18

12 /16

Insertion Sort: Stages:=1,2,3

ut

Insertion sort

13

35

44

15

10

20

18

18 < 44?7 — Comparison 1 for i = 3

12 /16

Insertion Sort: Stages:=1,2,3

Insertion sort

0 1 3 4 5 6
13 35 44 15 10 20
18

12 /16

Insertion Sort: Stages:=1,2,3

Insertion sort

0 1 3 4 5 6
13 35 44 15 10 20
18

18 < 35? — Comparison 2 for i = 3

12 /16

Insertion Sort: Stages:=1,2,3

Insertion sort

0 2 3 4 5 6
13 35 44 15 10 20
18

12 /16

Insertion Sort: Stages:=1,2,3

Insertion sort

0 2 3 4 5 6
13 35 44 15 10 20
18

18 < 13? — Comparison 3 for i = 3

12 /16

Insertion sort

Insertion Sort: Stages:=1,2,3

113 18 35 44 15 10 20

Ll ~O
m&&i

ol o ~| =

12 /16

Insertion Sort: Stage i =4

e (; — the number of comparisons at stage «.

e M; — the number of moves at stage 1.

(3|13]18[35]44[15][10]20]

4

44

15

18

(4] 13]15]18]35 [44[10]20]

i

AR RARARS

Q<[[IV|A|A|A] o

=l

Insertion Sort: Stage i =4

e (; — the number of comparisons at stage «.

e M; — the number of moves at stage 1.

(3] 13]18]35[44[15[10]20]

4

44

15

18

(4] 13]15]18]35 [44[10]20]

i

AR RARARS

Q<[[IV|A|A|A] o

=l

Insertion Sort: Stage i =4

e (; — the number of comparisons at stage «.

e M; — the number of moves at stage 1.

(3|13]18[35]44[15][10]20]

4

44

(4] 13]15]18]35 [44[10]20]

i

AR RARARS

Q<[[IV|A|A|A] o

=l

Insertion Sort: Stage i =4

e (; — the number of comparisons at stage «.

e M; — the number of moves at stage 1.

(3|13]18[35]44[15][10]20]

4

44

(4] 13]15]18]35 [44[10]20]

i

AR RARARS

Q<[[IV|A|A|A] o

=l

Insertion Sort: Stage i =4

e (; — the number of comparisons at stage «.

e M; — the number of moves at stage 1.

4

3] 13]18[35 44 [15]10]20] 2
T15]44 -

151135 —

151418 —

15

(4] 13]15]18]35 [44[10]20]

i

Q<[[IV|A|A|A] o

=l

13 /16

Insertion Sort : Stage ¢ = 5

e (C; — the number of comparisons at stage .

e M; — the number of moves at stage i.

(4] 13]15]18 35 [44[10]20]

5

| 10

10

35

18

10

1013

(5[10]13]15]18[35[44]20]

7

SIS I R A A A

Q& A[ATATAA >

Insertion Sort : Stage ¢ = 5

e (C; — the number of comparisons at stage .

e M; — the number of moves at stage i.

5

(5[10]13]15]18[35[44]20]

7

[a]13]15]18[35 [44[10][20] 4 [&
(10 < |-

1035 <|=

18 < | =

10 < | =

1013 <|=
515

Ci M;

Insertion Sort : Stage ¢ = 5

e (C; — the number of comparisons at stage .

e M; — the number of moves at stage i.

(5[10]13]15]18[35[44]20]

[4]13]15]18[35 [44]10[20] 4 [&]
5 10'T 44 < | = |
10'] 35 <| = |e
1018 <|=
10] 15 < | =
1013 <|=
515
Ci M

14 /16

Insertion Sort : Stage ¢ = 5

e (C; — the number of comparisons at stage .

e M; — the number of moves at stage i.

(5[10]13]15]18[35[44]20]

[4]13]15]18[35 [44]10[20] 4 [&]
5 10'T 44 < | = |
J 10T 35 <| = |e
10'] 18 <[=]
10] 15 < | =
1013 <]-
515
Ci M

14 /16

Insertion Sort : Stage ¢ = 5

e (C; — the number of comparisons at stage .

e M; — the number of moves at stage i.

(5[10]13]15]18[35[44]20]

[4]13]15]18[35 [44]10[20] 4 [&]
5 10'T 44 < | = |
J 10T 35 <| = |e
A 10'T 18 <[=]
10T 15 <[]
1013 <]-
515
Ci M

14 /16

Insertion Sort : Stage ¢ = 5

e (C; — the number of comparisons at stage .

e M; — the number of moves at stage i.

(5[10]13]15]18[35[44]20]

[4]13]15]18[35 [44]10[20] 4 [&]
5 10'T 44 < | = |
J 10T 35 <| = |e
A 10'T 18 <[=]
J 10T 15 <[]
10'7 13 <] =]
515
Ci M;

14 /16

Insertion sort

Insertion Sort : Stage ¢ = 6

e (; — the number of comparisons per insertion

e M; — the number of moves per insertion

[s[[10]13]15[18[35][44]20] 5 | 5 |
5 2044 <]~
20 | 35 <=

20 >
6[10]13 15[182035 [44] 3| 2
i Ci M,

15/16

Insertion sort

Insertion Sort : Stage ¢ = 6

e (; — the number of comparisons per insertion

e M; — the number of moves per insertion

[s[[10]13]15[18[35][44]20] 5 | 5 |
5 20144 <] —]
20 | 35 <=
20 >
6[10]13 15[182035 [44] 3| 2
i Ci M,

15/16

Insertion sort

Insertion Sort : Stage ¢ = 6

e (; — the number of comparisons per insertion

e M; — the number of moves per insertion

[s[[10]13]15[18[35][44]20] 5 | 5 |
5 J20Ta <=
20'7 35 <[—=]-
20 >
6[10]13 15[182035 [44] 3| 2
i Ci M,

15/16

Insertion sort

Insertion Sort : Stage ¢ = 6

e (; — the number of comparisons per insertion

e M; — the number of moves per insertion

[s[[10]13]15[18[35][44]20] 5 | 5 |

5 J20Ta <=
| 207 35 <[=]
20 > .

6[10]13 15[182035 [44] 3| 2

i Ci M,

15/16

Insertion sort

Total Number of Moves and Comparisons

Insertion sort:
{44,13,35,18,15,10,20} — {10,13,15,18,20,35,44}}

[1]2]38]4a]5]6] Total

’ Stage i
Comparisons C; || 1 |2 |8 |45 |3 18
Moves M; 111121852 14

® The best case — an already sorted array, e.g. {10, 13,15, 18,20, 35,44}:
® 1 comparison and 0 moves per each stage ¢t =1,...,n — 1.
e |n total, 0 moves and n — 1 comparisons for the already sorted array

of size n.
® The worst case — a reversely sorted array. e.g. {44, 35,20, 18,15, 13, 10}:

® ¢ comparisons and ¢ moves per each stage i =1,...,n— 1.
e Intotal, 1 +...+(n—1) = @ moves and w comparisons

for the reversely sorted array of size n.
16/16

	Ordering
	Data sorting
	Efficiency of comparison-based sorting
	Insertion sort

