Recurrent Algorithms:
Divide-and-Conquer Principle

Lecturer: Georgy Gimel’farb

COMPSCI 220 Algorithms and Data Structures
1. Divide-and-Conquer principle in analysing algorithms

2. Finding the close-form expression by math induction

3. Finding a close-form recurrence with a telescoping series

4. Examples

5. Algorithm analysis: Capabilities and limitations
Divide-and-Conquer Principle

- **Divide** a large problem into smaller subproblems;
- **Recursively solve** each subproblem, then
- **Combine solutions** of them to solve the original problem.

Running time: by a recurrence relation accounting for:

1. The size and the number of the subproblems and
2. The cost of splitting the problem into these subproblems.

The recursive relation $F(n) = \psi(F(n'_1), \ldots, F(n'_k)); \; k \geq 1$, defines a function, $F(n)$, “in terms of itself”, i.e., by involving the same function.

- The non-circular definition: $n > n'_1 > n'_2 > \ldots > n'_k$.
- The recursion terminates at some base case $F(n_0)$, below which the function is undefined.
Divide-and-Conquer Principle

- **Divide** a large problem into smaller subproblems;
- **Recursively solve** each subproblem, then
- **Combine solutions** of them to solve the original problem.

Running time: by a *recurrence relation* accounting for:

1. The size and the number of the subproblems and
2. The cost of splitting the problem into these subproblems.

The recursive relation $F(n) = \psi(F(n'_1), \ldots, F(n'_k)); \ k \geq 1$, defines a function, $F(n)$, “in terms of itself”, i.e., by involving the same function.

- The non-circular definition: $n > n'_1 > n'_2 > \ldots > n'_k$.

- The recursion terminates at some base case $F(n_0)$, below which the function is undefined.
Divide-and-Conquer Principle

- **Divide** a large problem into smaller subproblems;
- **Recursively solve** each subproblem, then
- **Combine solutions** of them to solve the original problem.

Running time: by a **recurrence relation** accounting for:

1. The size and the number of the subproblems and
2. The cost of splitting the problem into these subproblems.

The recursive relation $F(n) = \psi(F(n'_1), \ldots, F(n'_k)); \ k \geq 1$, defines a function, $F(n)$, “in terms of itself”, i.e., by involving the same function.

- The non-circular definition: $n > n'_1 > n'_2 > \ldots > n'_k$.
- The recursion terminates at some base case $F(n_0)$, below which the function is undefined.
Recurrence Relation: A Simple Example $F(n) = 2^n$

The **implicit formula**: $F(n) = F(n-1) + F(n-1)$; $F(0) = 1,$

or

$$F(n) = 2F(n-1); \quad F(0) = 1; \quad n = 1, 2, \ldots$$

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F(n)$</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>2^0</td>
<td>2^1</td>
<td>2^2</td>
<td>2^3</td>
<td>2^4</td>
<td>2^5</td>
<td>2^6</td>
<td>2^7</td>
<td>2^8</td>
<td>2^9</td>
<td>...</td>
</tr>
</tbody>
</table>

The **explicit**, or **closed-form formula** with $F(0) = 1$: $F(n) = 2^n$
Guess and Prove an Explicit, or Closed-Form $F(n)$

Look at a sequence of results for the implicit recurrent formula:

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F(n)$</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>...</td>
</tr>
</tbody>
</table>

Guess the closed-form formula $F(n) = 2^n$ and prove it with

Mathematical Induction

- **Basis**: $F(0) = 2^0 = 1$
- **Induction hypothesis**: $F(n) = 2^n$ holds some $n \geq 1$.
- **Inductive step** from n to $n + 1$:

 $F(n + 1) = F(n) + F(n) = 2F(n) = 2 \cdot 2^n = 2^{n+1}$.

This proves the close-form formula having been guessed.
Mathematical Induction (recall Lecture 1)

The induction examines conditions for a closed-form expression, \(T(n) \), guessed, rather than derives it and proves directly.

1. **Basis**: \(T(n_{base}) \), e.g. \(T(0) \) or \(T(1) \), holds.

2. **Induction hypothesis**: Let \(T(n) \) hold for some \(n \geq n_{base} \) or

2'. **Strong induction hypothesis**: Let \(T(k) \) hold for every \(k = n_{base}, n_{base} + 1, \ldots, n; \) \(n \geq n_{base} \).

3. **Induction step**: Then \(T(n + 1) \) holds for \(n + 1 \).

Both the simple and strong induction are actively used to solve recurrences, which are often met in the algorithm analysis.
Example 1.25: Fibonacci Numbers

Italian mathematician, **Leonardo Fibonacci** [1170–1250]: “*Liber Abaci*” – a problem of breeding rabbits:

- A pair of rabbits takes a month to become mature and start to have pairs of baby rabbits, which also take a month to reach maturity.
- How many rabbits, \(F(n) \) would there be after \(n \) months?
- The Fibonacci Sequence:
 \[
 F(n) = F(n - 1) + F(n - 2); \quad n \geq 3; \quad F(1) = F(2) = 1.
 \]
Example 1.25: Fibonacci Numbers

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

\[
\begin{align*}
1 + 1 &= 2 \\
1 + 2 &= 3 \\
2 + 3 &= 5 \\
3 + 5 &= 8 \\
&\vdots \\
55 + 89 &= 144 \\
&\vdots
\end{align*}
\]

The implicit formula: \(F(n) = F(n - 1) + F(n - 2) \)

The recurrence analysis: Derive a closed-form formula for \(F(n) \)
Characteristic Equation for $F(n) = F(n - 1) + F(n - 2)$

Because $F(n) > F(n - 1) > F(n - 2)$ for all $n \geq 2$, it holds that:

$$2F(n - 1) > F(n) > 2F(n - 2), \text{ that is, } 2^n > F(n) > 2^{n-1}$$

- One may suggest that $F(n) = c\varphi^n; \ 1 < \varphi < 2$.
- The implicit equation $c\varphi^n = c\varphi^{n-1} + c\varphi^{n-2}$ leads to the quadratic characteristic equation for φ: $\varphi^2 = \varphi + 1$ – with two solutions: $\varphi_{1,2} = \frac{1}{2} \left(1 \pm \sqrt{5} \right)$.

General solution: the linear combination $F(n) = c_1\varphi_1^n + c_2\varphi_2^n$

- The coefficients c_1 and c_2 follow from the conditions $F(1) = F(2) = 1$, so that finally:

$$F(n) = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n$$
Characteristic Equation for $F(n) = F(n - 1) + F(n - 2)$

Because $F(n) > F(n - 1) > F(n - 2)$ for all $n \geq 2$, it holds that:

$$2F(n - 1) > F(n) > 2F(n - 2), \text{ that is, } 2^n > F(n) > 2^{n-1}$$

- One may suggest that $F(n) = c\varphi^n; \ 1 < \varphi < 2$.
- The implicit equation $c\varphi^n = c\varphi^{n-1} + c\varphi^{n-2}$ leads to the quadratic characteristic equation for φ: $\varphi^2 = \varphi + 1$ – with two solutions: $\varphi_{1,2} = \frac{1}{2} \left(1 \pm \sqrt{5}\right)$.

General solution: the linear combination $F(n) = c_1\varphi_1^n + c_2\varphi_2^n$

- The coefficients c_1 and c_2 follow from the conditions $F(1) = F(2) = 1$, so that finally:

$$F(n) = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2}\right)^n$$
Characteristic Equation for \(F(n) = F(n - 1) + F(n - 2) \)

Because \(F(n) > F(n - 1) > F(n - 2) \) for all \(n \geq 2 \), it holds that:

\[
2F(n - 1) > F(n) > 2F(n - 2), \quad \text{that is,} \quad 2^n > F(n) > 2^{n-1}
\]

- One may suggest that \(F(n) = c\varphi^n; \; 1 < \varphi < 2 \).
- The implicit equation \(c\varphi^n = c\varphi^{n-1} + c\varphi^{n-2} \) leads to the quadratic characteristic equation for \(\varphi \): \(\varphi^2 = \varphi + 1 \) – with two solutions: \(\varphi_{1,2} = \frac{1}{2} \left(1 \pm \sqrt{5} \right) \).

General solution: the linear combination \(F(n) = c_1\varphi_1^n + c_2\varphi_2^n \)

- The coefficients \(c_1 \) and \(c_2 \) follow from the conditions \(F(1) = F(2) = 1 \), so that finally:

\[
F(n) = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n
\]
“Telescoping” a Recurrence

Given: An implicit recurrence relation and its base condition (i.e., the difference equation and its initial condition), for example:

\[T(n) = 2T(n - 1) + 1; \quad T(0) = 0 \]

Find: The closed-form (explicit) formula for \(T(n) \) by recursive substitution of the same implicit formula:

\[
\begin{align*}
T(n) &= 2T(n - 1) + 1 \\
T(n - 1) &= 2T(n - 2) + 1 \\
&\quad \vdots \\
T(2) &= 2T(1) + 1 \\
T(1) &= 2T(0) + 1 = 1
\end{align*}
\]
"Telescoping" ≡ Substitution

\[
T(n) = 2T(n-1) + 1 \quad \text{Step 0: Initial recurrence}
\]

2T(n - 1) = 2^2T(n - 2) + 2 \quad \text{Step 1: Substitute } T(n-1)

2^2T(n - 2) = 2^3T(n - 3) + 2^2 \quad \text{Step 2: Substitute } T(n-2)

\cdots

2^{n-1}T(1) = 2^n T(0) + 2^{n-1} \quad \text{Step } n-1: \text{ Substitute } T(1)

\[
T(n) = 2^n T(0) + 1 + 2 + 2^2 + \ldots + 2^{n-1}
\]

\[
1 + 2 + 2^2 + \ldots + 2^{n-1} = 2^n - 1
\]
"Telescoping" \equiv Substitution

\[T(n) = 2T(n-1) + 1 \quad \text{Step 0: Initial recurrence} \]

\[2T(n-1) = 2^2T(n-2) + 2 \quad \text{Step 1: Substitute } T(n-1) \]

\[2^2T(n-2) = 2^3T(n-3) + 2^2 \quad \text{Step 2: Substitute } T(n-2) \]

\[\ldots \]

\[2^{n-1}T(1) = 2^nT(0) + 2^{n-1} \quad \text{Step } n-1: \text{ Substitute } T(1) \]

\[T(n) = 2^nT(0) + 1 + 2 + 2^2 + \ldots + 2^{n-1} \]

\[2^n \cdot 0 = 0 \]

\[1 + 2 + 2^2 + \ldots + 2^{n-1} = 2^n - 1 \]
“Telescoping” \equiv Substitution

\[T(n) = 2T(n-1) + 1 \quad \text{Step 0: Initial recurrence} \]

\[2T(n-1) = 2^2T(n-2) + 2 \quad \text{Step 1: Substitute } T(n-1) \]

\[2^2T(n-2) = 2^3T(n-3) + 2^2 \quad \text{Step 2: Substitute } T(n-2) \]

\[\vdots \]

\[2^{n-1}T(1) = 2^nT(0) + 2^{n-1} \quad \text{Step } n-1: \text{ Substitute } T(1) \]

\[T(n) = 2^nT(0) + 1 + 2 + 2^2 + \ldots + 2^{n-1} \]

\[2^n T(0) + 1 + 2 + 2^2 + \ldots + 2^{n-1} = 2^n - 1 \]
“Telescoping” ≡ Substitution

\[T(n) = 2T(n-1) + 1 \quad \text{Step 0: Initial recurrence} \]

\[2T(n-1) = 2^2T(n-2) + 2 \quad \text{Step 1: Substitute } T(n-1) \]

\[2^2T(n-2) = 2^3T(n-3) + 2^2 \quad \text{Step 2: Substitute } T(n-2) \]

\[\ldots \]

\[2^{n-1}T(1) = 2^nT(0) + 2^{n-1} \quad \text{Step } n-1: \text{ Substitute } T(1) \]

\[T(n) = 2^nT(0) + 1 + 2 + 2^2 + \ldots + 2^{n-1} \]

\[= 2^n \cdot 0 + 1 + 2 + 2^2 + \ldots + 2^{n-1} = 2^n - 1 \]
"Telescoping" ≡ Substitution

\[T(n) = 2T(n-1) + 1 \quad \text{Step 0: Initial recurrence} \]

\[2T(n-1) = 2^2T(n-2) + 2 \quad \text{Step 1: Substitute } T(n-1) \]

\[2^2T(n-2) = 2^3T(n-3) + 2^2 \quad \text{Step 2: Substitute } T(n-2) \]

\[\ldots \]

\[2^{n-1}T(1) = 2^nT(0) + 2^{n-1} \quad \text{Step } n-1: \text{ Substitute } T(1) \]

\[T(n) = \underbrace{2^nT(0) + 1 + 2 + 2^2 + \ldots + 2^{n-1}}_{2^n \cdot 0 = 0} \]

\[1 + 2 + 2^2 + \ldots + 2^{n-1} = 2^n - 1 \]
"Telescoping" ≡ Substitution

\[T(n) = 2T(n-1) + 1 \quad \text{Step 0: Initial recurrence} \]

\[2T(n-1) = 2^2T(n-2) + 2 \quad \text{Step 1: Substitute } T(n-1) \]

\[2^2T(n-2) = 2^3T(n-3) + 2^2 \quad \text{Step 2: Substitute } T(n-2) \]

\[\ldots \]

\[2^{n-1}T(1) = 2^nT(0) + 2^{n-1} \quad \text{Step } n-1: \text{Substitute } T(1) \]

\[T(n) = 2^nT(0) + 1 + 2 + 2^2 + \ldots + 2^{n-1} \]

\[2^n \cdot 0 = 0 \]

\[1 + 2 + 2^2 + \ldots + 2^{n-1} = 2^n - 1 \]
Show that the recurrence $T(n) = T(n - 1) + n; \ T(0) = 0$, results in the closed-form (explicit) formula $T(n) = \frac{n(n+1)}{2}$.

"Telescoping" the recurrence:

\[
\begin{align*}
T(n) & = T(n - 1) + n \\
T(n - 1) & = T(n - 2) + n - 1 \\
& \quad \vdots \\
T(2) & = T(1) + 2 \\
T(1) & = T(0) + 1 = 1
\end{align*}
\]
Example 1.29: Textbook, p.23

Show that the recurrence $T(n) = T(n - 1) + n; \ T(0) = 0$, results in the closed-form (explicit) formula $T(n) = \frac{n(n+1)}{2}$.

“Telescoping” the recurrence:

\[
\begin{align*}
T(n) &= T(n - 1) + n \\
T(n - 1) &= T(n - 2) + n - 1 \\
&\quad \vdots \\
T(2) &= T(1) + 2 \\
T(1) &= T(0) + 1 = 1
\end{align*}
\]
1.29: $T(n)$ by Telescoping in More Detail

Successive substitution:

$$T(n) = T(n - 1) + n$$

$$= \frac{T(n - 2) + (n - 1) + n}{\ldots}$$

$$= \frac{T(2) + 3 + \ldots + (n - 2) + (n - 1) + n}{\ldots}$$

$$= \frac{T(1) + 2 + 3 + \ldots + (n - 2) + (n - 1) + n}{\ldots}$$

$$= 1 + 2 + 3 + \ldots + (n - 2) + (n - 1) + n = \frac{n(n+1)}{2}$$
1.29: $T(n)$ by Guessing and Proving by Math Induction

Numerical sequence: $T(1) = 0 + 1 = 1$; $T(2) = 1 + 2 = 3$; $T(3) = 3 + 3 = 6$; $T(4) = 6 + 4 = 10$; $T(5) = 10 + 5 = 15$; ...

Guessing: $T(n) = \frac{n(n+1)}{2}$?

Base condition holds: $T(1) = \frac{1 \cdot 2}{2} = 1$.

Induction hypothesis: If the guessed formula $T(n)$ holds for $n - 1$, then it holds also for n.

The proof: $T(n) = T(n - 1) + n = \frac{(n-1)n}{2} + n$, i.e.

$$T(n) = \frac{1}{2} (n^2 - n + 2n) = \frac{1}{2} (n^2 + n) = \frac{n(n + 1)}{2}$$

Thus, the guessed formula for $T(n)$ holds for all $n \geq 1$.

Example 1.30, p.23

Repeated halving principle: halve the input in one step

- Recurrence (implicit formula): \(T(n) = T\left(\frac{n}{2}\right) + 1; \ T(1) = 0. \)
- Closed-form (explicit) formula: \(T(n) \approx \log_2 n \)

"Telescoping" (for \(n = 2^m \)):

\[
\begin{align*}
T(2^m) &= T(2^{m-1}) + 1 \\
T(2^{m-1}) &= T(2^{m-2}) + 1 \\
&\vdots \\
T(2) &= T(2^0) + 1 = 1
\end{align*}
\]
Example 1.30, p.23

Repeated **halving principle**: halve the input in one step

- Recurrence (implicit formula): $T(n) = T\left(\frac{n}{2}\right) + 1; T(1) = 0$.
- Closed-form (explicit) formula: $T(n) \approx \log_2 n$

“Telescoping” (for $n = 2^m$):

\[
\begin{align*}
T(2^m) &= T(2^{m-1}) + 1 \\
T(2^{m-1}) &= T(2^{m-2}) + 1 \\
&\quad \vdots \\
T(2^2) &= T(2^1) + 1 \\
T(2^1) &= T(2^0) + 1 = 1
\end{align*}
\]
1.30: \(T(n) \) by Telescoping in More Detail

\[
T(2^m) = T(2^{m-1}) + 1
= T(2^{m-2}) + 1 + 1
= T(2^{m-3}) + 1 + 1 + 1
\quad \ldots
= T(2^1) + 1 + \ldots + 1 + 1 + 1
= T(2^0) + 1 + 1 + \ldots + 1 + 1 + 1
= 1 + 1 + \ldots + 1 + 1 + 1 = m, \text{ or } T(2^m) = m
\]

- For \(n = 2^m \), \(T(n) = \lg n \), which is \(\Theta(\log n) \).
- For general \(n \), the total number of halving steps cannot be greater than \(m = \lceil \lg n \rceil \), so \(T(n) \leq \lceil \lg n \rceil \) for all \(n \).
Example 1.31, p.23

Scan and halve the input:

- Recurrence (implicit formula): $T(n) = T\left(\frac{n}{2}\right) + n; \ T(1) = 1$.
- Closed-form (explicit) formula: $T(n) \approx 2n$

“Telescoping” (for $n = 2^m$):

\[
egin{align*}
T(2^m) &= T(2^{m-1}) + 2^m \\
T(2^{m-1}) &= T(2^{m-2}) + 2^{m-1} \\
&\vdots \\
T(2^2) &= T(2^1) + 2^2 \\
T(2^1) &= T(2^0) + 2^1 \\
T(2^0) &= 2^0 = 1
\end{align*}
\]
Example 1.31, p.23

Scan and halve the input:

- Recurrence (implicit formula): \(T(n) = T\left(\frac{n}{2}\right) + n; \ T(1) = 1. \)
- Closed-form (explicit) formula: \(T(n) \approx 2n \)

“Telescoping” (for \(n = 2^m \)):

\[
\begin{align*}
T(2^m) &= T(2^{m-1}) + 2^m \\
T(2^{m-1}) &= T(2^{m-2}) + 2^{m-1} \\
&\quad \vdots \\
T(2^2) &= T(2^1) + 2^2 \\
T(2^1) &= T(2^0) + 2^1 \\
T(2^0) &= 2^0 = 1
\end{align*}
\]
1.31: $T(n)$ by Telescoping in More Detail

$$T(2^m) = T(2^{m-1}) + 2^m$$

$$= T(2^{m-2}) + 2^{m-1} + 2^m$$

$$= T(2^{m-3}) + 2^{m-2} + 2^{m-1} + 2^m$$

$$\vdots$$

$$= T(2^1) + 2^2 + \ldots + 2^{m-2} + 2^{m-1} + 2^m$$

$$= T(2^0) + 2^1 + 2^2 + \ldots + 2^{m-2} + 2^{m-1} + 2^m$$

$$= 1 + 2 + \ldots + 2^{m-2} + 2^{m-1} + 2^m = 2^{m+1} - 1$$

Therefore, $T(2^m) \approx 2 \cdot 2^m$, or $T(n) \approx 2n$.
Example 1.32, p.23

“Divide-and-conquer” prototype; \(n \geq 2 \):

- Recurrence (implicit formula): \(T(n) = 2T\left(\frac{n}{2}\right) + n; \ T(1) = 0 \).
- Closed-form (explicit) formula: \(T(n) \approx n \log_2 n \)

Equivalent representation for “telescoping”:

\[
T(n) = 2T\left(\frac{n}{2}\right) + n \quad \Rightarrow \quad \frac{1}{n}T(n) = \frac{2}{n}T\left(\frac{n}{2}\right) + 1
\]

\[
\Rightarrow \quad \frac{T(n)}{n} = \frac{T\left(\frac{n}{2}\right)}{\frac{n}{2}} + 1
\]

For \(n = 2^m \), \(\frac{T(2^m)}{2^m} = \frac{T(2^{m-1})}{2^{m-1}} + 1 \)
1.32: \(T(n) \) by Telescoping in More Detail

\[
\frac{T(2^m)}{2^m} = \frac{T(2^{m-1})}{2^{m-1}} + 1
\]
\[
= \frac{T(2^{m-2})}{2^{m-2}} + 1 + 1
\]
\[
= \frac{T(2^{m-3})}{2^{m-3}} + 1 + 1 + 1
\]
\[
= \ldots
\]
\[
= \frac{T(2^1)}{2^1} + 1 + \ldots + 1 + 1 + 1
\]
\[
= \frac{T(2^0)}{2^0} + 1 + 1 + \ldots + 1 + 1 + 1
\]
\[
= 0 + 1 + \ldots + 1 + 1 + 1 = m
\]

Therefore, \(T(2^m) = m \cdot 2^m \), or \(T(n) \approx n \log_2 n \).
Capabilities and Limitations

Rough time complexity analysis cannot result immediately in an efficient program.

- But it helps to predict empirical running time of the program.

Limitations of the “Big-Oh / Theta / Omega” analysis:

- It hides the constants (e.g. \(c \) and \(n_0 \)) crucial for a practical task.
- It is unsuitable for small input.
- It is unsuitable if costs of access to input data items vary.
- It is unsuitable if there is lack of sufficient memory.

However, time complexity analysis provides ideas how to develop new and efficient algorithms.