> > second edition

pductionfo
compuling systems

from bits and gates to C and beyond

Yale N. Patt

The University of Texas at Austin

Sanjay J. Patel

University of Illinois at Urbana-Champaign

% Higher Education

Boston Burr Ridge, IL Dubugue, IA Madison, Wl New York San Francisco St. Louis
Bangkok Bogot4d Caracas KualaLumpur Lisbon London Madrid Mexico City
Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto

Preface «xi 2.4.1 Binary to Decimal Conversion 27

Preface to the First Edition xvii 2.4.2 Decimal to Binary Conversion 28
2.5 Operations on Bits—Part I: Arithmetic 29
2.5.1 Addition and Subtraction 29

2.5.2 Sign-Extension 30

1 Welcome Aboard 1 253 Overflow 31
1.1 What We Will Tryto Do 1 2.6 Operations on Bits—Part II: Logical
1.2 How We Will Get There 2 Operations 33
1.3 Two Recurring Themes 3 2.6.1 The AND Function 33
1.3.1 The Notion of Abstraction 3 2.6.2 The OR Function 34
1.3.2 Hardware versus Software 5 2.6.3 The NOT Function 35
1.4 A Computer System 7 2.6.4 The Exclusive-OR Function 35
1.5 Two Very Important Ideas 9 2.7 Other Representations 36
1.6 Computers as Universal Computational 2.7.1 The Bit Vector 36
Devices 9 2.7.2 Floating Point Data Type 37
1.7 How Do We Get the Electrons to Do the 2.7.3 ASCII Codes 40
Work? 12 2.7.4 Hexadecimal Notation 41
1.7.1 The Statement of the Problem 13 Exercises 43

1.7.2 The Algorithm 13
1.7.3 The Program 14
1.7.4 The ISA 14

1.7.5 The Microarchitecture 15 3 Digital Logic Structures 51

1.7.6 The Logic Circuit 16 3.1 The Transistor 51

1.7.7 The Devices 16 3.2 Logic Gates 53

1.7.8 Putting It Together 16 3.2.1 The NOT Gate (Inverter) 53
Exercises 17 3.2.2 ORand NOR Gates 54

3.2.3 AND and NAND Gates 56
3.2.4 DeMorgan’s Law 58
3.2.5 Larger Gates 58

2 Bits, Data Types, and 3.3 Combinational Logic Circuits 59
Operations 21 3.3.1 Decoder 59
2.1 Bits and Data Types 21 3.3.2 Mux 60
2.1.1 The Bit as the Unit of 3.3.3 Full Adder 61
Information 21 3.3.4 The Programmable Logic Array
2.1.2 Data Types 22 (PLA) 63
2.2 Integer Data Types 23 3.3.5 Logical Completeness 64
2.2.1 Unsigned Integers 23 3.4 Basic Storage Elements 64
2.2.2 Signed Integers 23 3.4.1 The R-S Latch 64
2.3 2's Complement Integers 25 3.4.2 The Gated D Latch 66

2.4 Binary-Decimal Conversion 27 3.4.3 A Register 66

chapter 1 Welcome Aboard

12 How We Will Get There

We will start (in Chapter 2) by noting that the computer is a piece of electronic
equipment and, as such, consists of electronic parts interconnected by wires.
Every wire in the computer, at every moment in time, is either at a high voltage or
a low voltage. We do not differentiate exactly how high. For example, we do not
distinguish voltages of 115 volts from voltages of 118 volts. We only care whether
there is or is not a large voltage relative to 0 volts. That absence or presence of a
large voltage relative to O volts is represented as O or 1.

We will encode all information as sequences of Os and 1s. For example, one
encoding of the letter a that is commonly used is the sequence 01100001. One
encoding of the decimal number 35 is the sequence 00100011. We will see how
to perform operations on such encoded information.

Once we are comfortable with information represented as codes made up
of Os and 1s and operations (addition, for example) being performed on these
representations, we will begin the process of showing how a computer works.
In Chapter 3, we will see how the transistors that make up today’s microproces-
sors work. We will further seec how those transistors are combined into larger
structures that perform operations, such as addition, and into structures that allow
us to save information for later use. In Chapter 4, we will combine these larger
structures into the Von Neumann machine, a basic model that describes how a
computer works. In Chapter 5, we will begin to study a simple computer, the
LC-3. LC-3 stands for Little Computer 3; we started with LC-1 but needed
two more shots at it before we got it right! The LC-3 has all the important
characteristics of the microprocessors that you may have already heard of, for
example, the Intel 8088, which was used in the first IBM PCs back in 1981. Or
the Motorola 68000, which was used in the Macintosh, vintage 1984. Or the Pen-
tium IV, one of the high-performance microprocessors of choice in the PC of the
year 2003. That is, the LC-3 has all the important characteristics of these “real”
microprocessors, without being so complicated that it gets in the way of your
understanding.

Once we understand how the LC-3 works, the next step is to program it, first
in its own language (Chapter 6), then in a language called assembly language
that is a little bit easier for humans to work with (Chapter 7). Chapter 8 deals
with the problem of getting information into (input) and out of (output) the LC-3.
Chapter 9 covers two sophisticated LC-3 mechanisms, TRAPs and subroutines.

We conclude our introduction to programming the LC-3 in Chapter 10 by
first introducing two important concepts (stacks and data conversion), and then
by showing a sophisticated example: an LC-3 program that carries out the work
of a handheld calculator.

In the second half of the book (Chapters 11-19), we turn our attention to
a high-level programming language, C. We include many aspects of C that are
usually not dealt with in an introductory textbook. In almost all cases, we try to tie
high-level C constructs to the underlying LC-3, so that you will understand what
you demand of the computer when you use a particular construct in a C program.

Our treatment of C starts with basic topics such as variables and operators
(Chapter 12), control structures (Chapter 13), and functions (Chapter 14). We

1.3 Two Recurring Themes

then move on to the more advanced topics of debugging C programs (Chapter 15),
recursion (Chapter 16), and pointers and arrays (Chapter 17).

We conclude our introduction to C by examining two very common high-level
constructs, input/output in C (Chapter 18) and the linked list (Chapter 19).

1.3 Two Recurring Themes

Two themes permeate this book that we have previously taken for granted,
assuming that everyone recognized their value and regularly emphasized them
to students of engineering and computer science. Lately, it has become clear to
us that from the git-go, we need to make these points explicit. So, we state them
‘here up front. The two themes are (a) the notion of abstraction and (b) the impor-
tance of not separating in your mind the notions of hardware and software. Their
value to your development as an effective engineer or computer scientist goes
well beyond your understanding of how a computer works and how to program it.

The notion of abstraction is central to all that you will learn and expect to
use in practicing your craft, whether it be in mathematics, physics, any aspect of
engineering, or business. It is hard to think of any body of knowledge where the
notion of abstraction is not central. The misguided hardware/software separation
is directly related to your continuing study of computers and your work with
them. We will discuss each in turn.

1.3.1 The Notion of Abstraction

The use of abstraction is all around us. When we get in a taxi and tell the driver,
“Take me to the airport,” we are using abstraction. If we had to, we could probably
direct the driver each step of the way: “Go down this street ten blocks, and make
a left turn.” And, when he got there, “Now take this street five blocks and make
a right turn.” And on and on. You know the details, but it is a lot quicker to just
tell the driver to take you to the airport.

Even the statement “Go down this street ten blocks . . .” can be broken down
further with instructions on using the accelerator, the steering wheel, watching
out for other vehicles, pedestrians, etc.

Our ability to abstract is very much a productivity enhancer. It allows us to
deal with a situation at a higher level, focusing on the essential aspects, while
keeping the component ideas in the background. It allows us to be more efficient
in our use of time and brain activity. It allows us to not get bogged down in the
detail when everything about the detail is working just fine.

There is an underlying assumption to this, however: “when everything about
the detail is just fine.” What if everything about the detail is not just fine? Then,
to be successful, our ability to abstract must be combined with our ability to
un-abstract. Some people use the word deconstruct—the ability to go from the
abstraction back to its component parts.

Two stories come to mind.

The first involves a trip through Arizona the first author made a long time ago
in the hottest part of the summer. At the time I was living in Palo Alto, California,
where the temperature tends to be mild almost always. I knew enough to take

chapter 1 Welcome Aboard

the car to a mechanic before making the trip, and I told him to check the cooling
system. That was the abstraction: cooling system. What I had not mastered was
that the capability of a cooling system for Palo Alto, California is not the same as
the capability of a cooling system for the summer deserts of Arizona. The result:
two days in Deer Lodge, Arizona (population 3), waiting for a head gasket to be
shipped in.

The second story (perhaps apocryphal) is supposed to have happened during
the infancy of electric power generation. General Electric Co. was having trouble
with one of its huge electric power generators and did not know what to do.
On the front of the generator were lots of dials containing lots of information,
and lots of screws that could be rotated clockwise or counterclockwise as the
operator wished. Something on the other side of the wall of dials and screws was
malfunctioning and no one knew what to do. So, as the story goes, they called in
one of the early giants in the electric power industry. He looked at the dials and
listened to the noises for a minute, then took a small pocket screwdriver out of
his geek pack and rotated one screw 35 degrees counterclockwise. The problem
immediately went away. He submitted a bill for $1,000 (a lot of money in those
days) without any elaboration. The controller found the bill for two minutes’ work
a little unsettling, and asked for further clarification. Back came the new bill:

Turning a screw 35 degrees counterclockwise: $ 0.75
Knowing which screw to turn and by how much: 999.25

In both stories the message is the same. It is more efficient to think of entities
as abstractions. One does not want to get bogged down in details unnecessarily.
And as long as nothing untoward happens, we are OK. If I had never tried to make
the trip to Arizona, the abstraction “cooling system” would have been sufficient.
If the electric power generator never malfunctioned, there would have been no
need for the power engineering guru’s deeper understanding.

When one designs a logic circuit out of gates, it is much more efficient to
not have to think about the internals of each gate. To do so would slow down
the process of designing the logic circuit. One wants to think of the gate as a
component. But if there is a problem with getting the logic circuit to work, it
is often helpful to look at the internal structure of the gate and see if something
about its functioning is causing the problem.

When one designs a sophisticated computer application program, whether it
be a new spreadsheet program, word processing system, or computer game, one
wants to think of each of the components one is using as an abstraction. If one-
spent time thinking about the details of a component when it is not necessary, the
distraction could easily prevent the total job from ever getting finished. But when
there is a problem putting the components together, it is often useful to examine
carefully the details of each component in order to uncover the problem.

The ability to abstract is a most important skill. In our view, one should try to
keep the level of abstraction as high as possible, consistent with getting everything
to work effectively. Our approach in this book is to continually raise the level of
abstraction. We describe logic gates in terms of transistors. Once we understand
the abstraction of gates, we no longer think in terms of transistors. Then we build

1.3 Two Recurring Themes

larger structures out of gates. Once we understand these larger abstractions, we
no longer think in terms of gates.

The Bottom Line

Abstractions allow us to be much more efficient in dealing with all kinds of
situations. It is also true that one can be effective without understanding what is
below the abstraction as long as everything behaves nicely. So, one should not
pooh-pooh the notion of abstraction. On the contrary, one should celebrate it since
it allows us to be more efficient.

In fact, if we never have to combine a component with anything else into a
larger system, and if nothing can go wrong with the component, then it is perfectly
fine to understand this component only at the level of its abstraction.

But if we have to combine multiple components into a larger system, we
should be careful not to allow their abstractions to be the deepest level of
our understanding. If we don’t know the components below the level of their
abstractions, then we are at the mercy of them working together without our
intervention. If they don’t work together, and we are unable to go below the level
of abstraction, we are stuck. And that is the state we should take care not to find
ourselves in.

1.3.2 Hardware versus Software

Many computer scientists and engineers refer to themselves as hardware people
or software people. By hardware, they generally mean the physical computer and
all the specifications associated with it. By software, they generally mean the
programs, whether operating systems like UNIX or Windows, or database sys-
tems like Oracle or DB-terrific, or application programs like Excel or Word. The
implication is that the person knows a whole lot about one of these two things and
precious little about the other. Usually, there is the further implication that it is OK
to be an expert at one of these (hardware OR software) and clueless about the other.
Itis as if there were a big wall between the hardware (the computer and how itactu-
ally works) and the software (the programs that direct the computer’s bidding),
and that one should be content to remain on one side of that wall or the other.
As you approach your study and practice of computing, we urge you to take
the opposite approach—that hardware and software are names for components
of two parts of a computing system that work best when they are designed by
someone who took into account the capabilities and limitations of both.
Microprocessor designers who understand the needs of the programs that
will execute on that microprocessor they are designing can design much more
effective microprocessors than those who don’t. For example, Intel, Motorola,
and other major producers of microprocessors recognized a few years ago that
a large fraction of future programs would contain video clips as part of e-mail,
video games, and full-length movies. They recognized that it would be important
for such programs to execute efficiently. The result: most microprocessors today
contain special hardware capability to process these video clips. Intel defined addi-
tional instructions, collectively called their MMX instruction set, and developed

chapter 1 Welcome Aboard

special hardware for it. Motorola, IBM, and Apple did essentially the same thing,
resulting in the AltaVec instruction set and special hardware to support it.

A similar story can be told about software designers. The designer of a large
computer program who understands the capabilities and limitations of the hard-
ware that will carry out the tasks of that program can design the program more
efficiently than the designer who does not understand the nature of the hardware.
One important task that almost all large software systems have to carry out is
called sorting, where a number of items have to be arranged in some order. The
words in a dictionary are arranged in alphabetical order. Students in a class are
often arranged in numeric order, according to their scores on the final exam. There
are a huge number of fundamentally different programs one can write to arrange
a collection of items in order. Donald Knuth devoted 391 pages to the task in The
Art of Computer Programming, vol. 3. Which sorting program works best is often
very dependent on how much the software designer is aware of the characteristics
of the hardware.

The Bottom Line

We believe that whether your inclinations are in the direction of a computer
hardware career or a computer software career, you will be much more capable if
you master both. This book is about getting you started on the path to mastering
both hardware and software. Although we sometimes ignore making the point
explicitly when we are in the trenches of working through a concept, it really is
the case that each sheds light on the other.

When you study data types, a software concept (in C, Chapter 12), you will
understand how the finite word length of the computer, a hardware concept, affects
our notion of data types.

When you study functions (in C, Chapter 14), you will be able to tie the rules
of calling a function with the hardware implementation that makes those rules
necessary.

When you study recursion (a powerful algorithmic device, in Chapter 16),
you will be able to tie it to the hardware. If you take the time to do that, you will
better understand when the additional time to execute a procedure recursively is
worth it.

When you study pointer variables (in C, in Chapter 17), your knowledge of
computer memory will provide a deeper understanding of what pointers provide,
when they should be used, and when they should be avoided.

When you study data structures (in C, in Chapter 19), your knowledge of com-
puter memory will help you better understand what must be done to manipulate
the actual structures in memory efficiently.

We understand that most of the terms in the preceding five short paragraphs
are not familiar to you yet. That is OK; you can reread this page at the end of the
semester. What is important to know right now is that there are important topics
in the software that are very deeply interwoven with topics in the hardware. Our
contention is that mastering either is easier if you pay attention to both.

Most importantly, most computing problems yield better solutions when the
problem solver has the capability of both at his or her disposal.

1.4 A Computer System

14 A Computer Sysrem

We have used the word computer many times in the preceding paragraphs, and
although we did not say so explicitly, we used it to mean a mechanism that does
two things: It directs the processing of information and it performs the actual
processing of information. It does both of these things in response to a com-
puter program. When we say “directing the processing of information,” we mean
figuring out which task should get carried out next. When we say “performing
the actual processing,” we mean doing the actual additions, multiplications, and
so forth that are necessary to get the job done. A more precise term for this mech-
anism is a central processing unit (CPU), or simply a processor. This textbook is
primarily about the processor and the programs that are executed by the processor.

Twenty years ago, the processor was constructed out of ten or more 18-inch
electronic boards, each containing 50 or more electronic parts known as inte-
grated circuit packages (see Figure 1.1). Today, a processor usually consists
of a single microprocessor chip, built on a piece of silicon material, measur-
ing less than an inch square, and containing many millions of transistors (see
Figure 1.2).

However, when most people use the word computer, they usually mean more
than the processor. They usually mean the collection of parts that in combination

Figure 1.1 A processor board, vintage 1980s (Courtesy of Emilio Salgueiro, Unisys
Corporation.) :

chapter 1 Welcome Aboard

Figure 1.2 A microprocessor, vintage 1998 (Courtesy of Intel Corporation.)

Figure 1.3 A personal computer (Courtesy of Deil Computer.)

form their computer system (see Figure 1.3). A computer system usually includes,
in addition to the processor, a keyboard for typing commands, a mouse for clicking
on menu entries, a monitor for displaying information that the computer system
has produced, a printer for obtaining paper copies of that information, memory for
temporarily storing information, disks and CD-ROMs of one sort or another for
storing information for a very long time, even after the computer has been turned
off, and the collection of programs (the software) that the user wishes to execute.

1.5 Two Very Important Ideas

These additional items are useful in helping the computer user do his or her
job. Without a printer, for example, the user would have to copy by hand what
is displayed on the monitor. Without a mouse, the user would have to type each
command, rather than simply clicking on the mouse button.

So, as we begin our journey, which focuses on how we get less than 1 square
inch of silicon to do our bidding, we note that the computer systems we use
contain a lot of other components to make our life more comfortable.

15 Two Very Important Ideas

Before we leave this first chapter, there are two very important ideas that we
would like you to understand, ideas that are at the core of what computing is all
about.

Ideal: All computers (the biggest and the smallest, the fastest and the
slowest, the most expensive and the cheapest) are capable of computing
exactly the same things if they are given enough time and enough memory.
That is, anything a fast computer can do, a slow computer can do also.
The slow computer just does it more slowly. A more expensive computer
cannot figure out something that a cheaper computer is unable to figure
out as long as the cheap computer can access enough memory. (You may
have to go to the store to buy disks whenever it runs out of memory in
order to keep increasing memory.) All computers can do exactly the same
things. Some computers can do things faster, but none can do more than any
other.

Idea2: We describe our problems in English or some other language spo-
ken by people. Yet the problems are solved by electrons running around
inside the computer. It is necessary to transform our problem from the lan-
guage of humans to the voltages that influence the flow of electrons. This
transformation is really a sequence of systematic transformations, developed
and improved over the last 50 years, which combine to give the computer
the ability to carry out what appears to be some very complicated tasks. In
reality, these tasks are simple and straightforward.

The rest of this chapter is devoted to discussing these two ideas.

16 Computers as Universal Computational Devices

It may seem strange that an introductory textbook begins by describing how com-
puters work. After all, mechanical engineering students begin by studying physics,
not how car engines work. Chemical engineering students begin by studying
chemistry, not oil refineries. Why should computing students begin by studying
computers?

The answer is that computers are different. To learn the fundamental prin-
ciples of computing, you must study computers or machines that can do what

10

chapter 1 Welcome Aboard

computers can do. The reason for this has to do with the notion that computers
are universal computational devices. Let’s see what that means.

Before modern computers, there were many kinds of calculating machines.
Some were analog machines—machines that produced an answer by measuring
some physical quantity such as distance or voltage. For example, a slide rule is
an analog machine that multiplies numbers by sliding one logarithmically graded
ruler next to another. The user can read a logarithmic “distance” on the second
ruler. Some early analog adding machines worked by dropping weights on a scale.
The difficulty with analog machines is that it is very hard to increase their accuracy.

This is why digital machines—machines that perform computations by
manipulating a fixed finite set of digits or letters—came to dominate comput-
ing. You are familiar with the distinction between analog and digital watches. An
analog watch has hour and minute hands, and perhaps a second hand. It gives
the time by the positions of its hands, which are really angular measures. Digital
watches give the time in digits. You can increase accuracy just by adding more
digits. For example, if it is important for you to measure time in hundredths of
a second, you can buy a watch that gives a reading like 10:35.16 rather than just
10:35. How would you get an analog watch that would give you an accurate read-
ing to one one-hundredth of a second? You could do it, but it would take a mighty
long second hand! When we talk about computers in this book, we will always
mean digital machines.

Before modern digital computers, the most common digital machines in the
West were adding machines. In other parts of the world another digital machine,
the abacus, was common. Digital adding machines were mechanical or elec-
tromechanical devices that could perform a specific kind of computation: adding
integers. There were also digital machines that could multiply integers. There
were digital machines that could put a stack of cards with punched names in
alphabetical order. The main limitation of all of these machines is that they could
do only one specific kind of computation. If you owned only an adding machine
and wanted to multiply two integers, you had some pencil and paper work to do.

This is why computers are different. You can tell a computer how to add
numbers. You can tell it how to multiply. You can tell it how to alphabetize a list or
perform any computation you like. When you think of a new kind of computation,
you do not have to buy or design a new computer. You just give the old computer a
new set of instructions (or program) to carry out the computation. This is why we
say the computer is a universal computational device. Computer scientists believe
that anything that can be computed, can be computed by a computer provided it
has enough time and enough memory. When we study computers, we study the
fundamentals of all computing. We learn what computation is and what can be
computed.

The idea of a universal computational device is due to Alan Turing. Tur-
ing proposed in 1937 that all computations could be carried out by a particular
kind of machine, which is now called a Turing machine. He gave a mathemat-
ical description of this kind of machine, but did not actually build one. Digital
computers were not operating until 1946. Turing was more interested in solving
a philosophical problem: defining computation. He began by looking at the kinds
of actions that people perform when they compute; these include making marks

1.6 Computers as Universal Computational Devices

Tapp TauL
a, b —»- »a+b a b—>» F+axb
(Turing machine (Turing machine
that adds) that multiplies)

Figure 1.4 Black box models of Turing machines

on paper, writing symbols according to certain rules when other symbols are
present, and so on. He abstracted these actions and specified a mechanism that
could carry them out. He gave some examples of the kinds of things that these
machines could do. One Turing machine could add two integers; another could
multiply two integers.

Figure 1.4 provides what we call “black box” models of Turing machines
that add and multiply. In each case, the operation to be performed is described in
the box. The data on which to operate is shown as input to the box. The result
of the operation is shown as output from the box. A black box model provides no
information as to exactly how the operation is performed, and indeed, there are
many ways to add or multiply two numbers.

Turing proposed that every computation can be performed by some Turing
machine. We call this Turing’s thesis. Although Turing’s thesis has never been
proved, there does exist a lot of evidence to suggest it is true. We know, for
example, that various enhancements one can make to Turing machines do not
result in machines that can compute more.

Perhaps the best argument to support Turing’s thesis was provided by Turing
himself in his original paper. He said that one way to try to construct a machine
more powerful than any particular Turing machine was to make a machine U
that could simulate all Turing machines. You would simply describe to U the
particular Turing machine you wanted it to simulate, say a machine to add two
integers, give U the input data, and U would compute the appropriate output, in
this case the sum of the inputs. Turing then showed that there was, in fact, a Turing
machine that could do this, so even this attempt to find something that could not
be computed by Turing machines failed.

Figure 1.5 further illustrates the point. Suppose you wanted to compute
g - (e + f). You would simply provide to U descriptions of the Turing machines
to add and to multiply, and the three inputs, e, f, and g. U would do the rest.

In specifying U, Turing had provided us with a deep insight: He had given us
the first description of what computers do. In fact, both a computer (with as much

Taop: TmuL - y
L —m-gx(e+f)
efg— » (Universal
Turing machine)

Figure 1.5 Black box model of a universal Turing machine

11

12

chapter 1 Welcome Aboard

memory as it wants) and a universal Turing machine can compute exactly the same
things. In both cases you give the machine a description of a computation and the
data it needs, and the machine computes the appropriate answer. Computers and
universal Turing machines can compute anything that can be computed because
they are programmable.

This is the reason that a big or expensive computer cannot do more than a
small, cheap computer. More money may buy you a faster computer, a monitor
with higher resolution, or a nice sound system. But if you have a small, cheap
computer, you already have a universal computational device.

1.7 How Do We Gef the Electrons to Do the Work?

Figure 1.6 shows the process we must go through to get the electrons (which
actually do the work) to do our bidding. We call the steps of this process the

Problems

Algorithms

Language

Machine (ISA) Architecture

Microarchitecture

Circuits

Devices

Figure 1.6 Levels of transformation

1.7 How Do We Get the Electrons to Do the Work?

“Levels of Transformation.” As we will see, at each level we have choices. If we
ignore any of the levels, our ability to make the best use of our computing system
can be very adversely affected.

1.7.1 The Statement of the Problem

We describe the problems we wish to solve with a computer in a “natural
language.” Natural languages are languages that people speak, like English,
French, Japanese, Italian, and so on. They have evolved over centuries in accor-
dance with their usage. They are fraught with a lot of things unacceptable for
providing instructions to a computer. Most important of these unacceptable
attributes is ambiguity. Natural language is filled with ambiguity. To infer the
meaning of a sentence, a listener is often helped by the tone of voice of the
speaker, or at the very least, the context of the sentence.

An example of ambiguity in English is the sentence, “Time flies like an
arrow.” At least three interpretations are possible, depending on whether (1) one is
noticing how fast time passes, (2) one is at a track meet for insects, or (3) one
is writing a letter to the Dear Abby of Insectville. In the first case, a simile, one
is comparing the speed of time passing to the speed of an arrow that has been
released. In the second case, one is telling the timekeeper to do his/her job much
like an arrow would. In the third case, one is relating that a particular group of
flies (time flies, as opposed to fruit flies) are all in love with the same arrow.

Such ambiguity would be unacceptable in instructions provided to a com-
puter. The computer, electronic idiot that it is, can only do as it is told. To tell it to
do something where there are multiple interpretations would cause the computer
to not know which interpretation to follow.

1.7.2 The Algorithm

The first step in the sequence of transformations is to transform the natural lan-
guage description of the problem to an algorithm, and in so doing, get rid of
the objectionable characteristics. An algorithm is a step-by-step procedure that is
guaranteed to terminate, such that each step is precisely stated and can be carried
out by the computer. There are terms to describe each of these properties.

We use the term definiteness to describe the notion that each step is precisely
stated. A recipe for excellent pancakes that instructs the preparer to “stir until
lumpy” lacks definiteness, since the notion of lumpiness is not precise.

We use the term effective computability to describe the notion that each step
can be carried out by a computer. A procedure that instructs the computer to “take
the largest prime number” lacks effective computability, since there is no largest
prime number.

We use the term finiteness to describe the notion that the procedure terminates.

For every problem there are usually many different algorithms for solving
that problem. One algorithm may require the fewest number of steps. Another
algorithm may allow some steps to be performed concurrently. A computer that
allows more than one thing to be done at a time can often solve the problem in

13

14

chapter 1 Welcome Aboard

less time, even though it is likely that the total number of steps to be performed
has increased.

1.7.3 The Program

The next step is to transform the algorithm into a computer program, in one of the
programming languages that are available. Programming languages are “mechan-
ical languages.” That is, unlike natural languages, mechanical languages did not
evolve through human discourse. Rather, they were invented for use in specifying
a sequence of instructions to a computer. Therefore, mechanical languages do not
suffer from failings such as ambiguity that would make them unacceptable for
specifying a computer program.

There are more than 1,000 programming languages. Some have been designed
for use with particular applications, such as Fortran for solving scientific calcula-
tions and COBOL for solving business data-processing problems. In the second
half of this book, we will use C, a language that was designed for manipulating
low-level hardware structures.

Other languages are useful for still other purposes. Prolog is the language of
choice for many applications that require the design of an expert system. LISP
was for years the language of choice of a substantial number of people working
on problems dealing with artificial intelligence. Pascal is a language invented as
a vehicle for teaching beginning students how to program.

There are two kinds of programming languages, high-level languages and
low-level languages. High-level languages are at a distance (a high level) from the
underlying computer. At their best, they are independent of the computer on which
the programs will execute. We say the language is “machine independent.” All the
languages mentioned thus far are high-level languages. Low-level languages are
tied to the computer on which the programs will execute. There is generally one
such low-level language for each computer. That language is called the assembly
language for that computer.

1.7.4 The ISA

The next step is to translate the program into the instruction set of the particular
computer that will be used to carry out the work of the program. The instruction set
architecture (ISA) is the complete specification of the interface between programs
that have been written and the underlying computer hardware that must carry out
the work of those programs.

The ISA specifies the set of instructions the computer can carry out, that
is, what operations the computer can perform and what data is needed by each
operation. The term operand is used to describe individual data values. The ISA
specifies the acceptable representations for operands. They are called data types.
A data type is a legitimate representation for an operand such that the computer
can perform operations on that representation. The ISA specifies the mechanisms
that the computer can use to figure out where the operands are located. These
mechanisms are called addressing modes.

1.7 How Do We Get the Electrons to Do the Work?

The number of operations, data types, and addressing modes specified by
an ISA vary among the different ISAs. Some ISAs have as few as a half dozen
operations, whereas others have as many as several hundred. Some ISAs have
only one data type, while others have more than a dozen. Some ISAs have one or
two addressing modes, whereas others have more than 20. The x86, the ISA used
in the PC, has more than 100 operations, more than a dozen data types, and more
than two dozen addressing modes.

The ISA also specifies the number of unique locations that comprise the
computer’s memory and the number of individual Os and 1s that are contained in
each location. _

Many ISAs are in use today. The most common example is the x86, introduced
by Intel Corporation in 1979 and currently also manufactured by AMD and other
companies. Other ISAs are the Power PC (IBM and Motorola), PA-RISC (Hewlett
Packard), and SPARC (Sun Microsystems).

The translation from a high-level language (such as C) to the ISA .of the
computer on which the program will execute (such as x86) is usually done by a
translating program called a compiler. To translate from a program written in C
to the x86 ISA, one would need an x86 C compiler. For each high-level language
and each desired target computer, one must provide a corresponding compiler.

The translation from the unique assembly language of a computer toits ISA
is done by an assembler.

1.7.5 The Microarchitecture

The next step is to transform the ISA into an implementation. The detailed organ-
ization of an implementation is called its microarchitecture. So, for example, the
x86 has been implemented by several different microprocessors over the years,
each having its own unique microarchitecture. The original implementation was
the 8086 in 1979. More recently, in 2001, Intel introduced the Pentium IV micro-
processor. Motorola and IBM have implemented the Power PC ISA with more
than a dozen different microprocessors, each having its own microarchitecture.
Two of the more recent implementations are the Motorola MPC 7455 and the
IBM Power PC 750FX.

Each implementation is an opportunity for computer designers to make dif-
ferent trade-offs between the cost of the microprocessor and the performance that
microprocessor will provide. Computer design is always an exercise in trade-offs,
as the designer opts for higher (or lower) performance at greater (or lesser) cost.

The automobile provides a good analogy of the relationship between an ISA
and a microarchitecture that implements that ISA. The ISA describes what the
driver sees as he/she sits inside the automobile. All automobiles provide the same
interface (an ISA different from the ISA for boats and the ISA for airplanes).
Of the three pedals on the floor, the middle one is always the brake. The one on
the right is the accelerator, and when it is depressed, the car will move faster. The
ISA is about basic functionality. All cars can get from point A to point B, can
move forward and backward, and can turn to the right and to the left.

15

16

chapter 1 Welcome Aboard

The implementation of the ISA is about what goes on under the hood. Here
all automobile makes and models are different, depending on what cost/perfor-
mance trade-offs the automobile designer made before the car was manufactured.
So, some automobiles come with disc brakes, others (in the past, at least) with
drums. Some automobiles have eight cylinders, others run on six cylinders,
and still others have four. Some are turbocharged, some are not. In each case,
the “microarchitecture” of the specific automobile is a result of the automobile
designers’ decisions regarding cost and performance.

1.7.6 The Logic Circuit

The next step is to implement each element of the microarchitecture out of simple
logic circuits. Here, also, there are choices, as the logic designer decides how to
best make the trade-offs between cost and performance. So, for example, even
for the simple operation of addition, there are several choices of logic circuits to
perform this operation at differing speeds and corresponding costs.

1.7.7 The Devices

Finally, each basic logic circuit is implemented in accordance with the require-
ments of the particular device technology used. So, CMOS circuits are different
from NMOS circuits, which are different, in turn, from gallium arsenide
circuits.

1.7.8 Putting It Together

In summary, from the natural language description of a problem to the electrons
running around that actually solve the problem, many transformations need to be
performed. If we could speak electron, or the electrons could understand English,
perhaps we could just walk up to the computer and get the electrons to do our
bidding. Since we can’t speak electron and they can’t speak English, the best we
can do is this systematic sequence of transformations. At each level of transfor-
mation, there are choices as to how to proceed. Our handling of those choices
determines the resulting cost and performance of our computer.

In this book, we describe each of these transformations. We show how tran-
sistors combine to form logic circuits, how logic circuits combine to form the
microarchitecture, and how the microarchitecture implements a particular ISA,
in our case, the LC-3. We complete the process by going from the English-
language description of a problem to a C program that solves the problem,
and we show how that C program is translated (i.e., compiled) to the ISA of
the LC-3.

We hope you enjoy the ride.

Exercises 17

-) ' : Exercises

1.1 Explain the first of the two important ideas stated in Section 1.5.

1.2 Can a higher-level programming language instruct a computer to
compute more than a lower-level programming language?

1.3 What difficulty with analog computers encourages computer designers to
use digital designs?

1.4 . Name one characteristic of natural languages that prevents them from
being used as programming languages.

1.5 Say we had a “black box,” which takes two numbers as input and outputs
their sum. See Figure 1.7a. Say we had another box capable of
multiplying two numbers together. See Figure 1.7b. We can connect these
boxes together to calculate p x (m + n). See Figure 1.7c. Assume we
have an unlimited number of these boxes. Show how to connect the
together to calculate: '

a ax+b
b. The average of the four input numbers w, x, y, and z
c. a*+2ab + b* (Can you do it with one add box and one multiply box?)

1.6 Write a statement in a natural language and offer two different
interpretations of that statement.

1.7 The discussion of abstraction in Section 1.3.1 noted that one does not
need to understand the makeup of the components as long as “everything
about the detail is just fine.” The case was made that when everything is
not fine, one must be able to deconstruct the components, or be at the
mercy of the abstractions. In the taxi example, suppose you did not
understand the component, that is, you had no clue how to get to the
airport. Using the notion of abstraction, you simply tell the driver,

(a) (b) ()

m n m n m n P
4o b
+ X +
m+n mxn
X
px{m+n)

Figure 1.7 “Black boxes” capable of (a) addition, (b) multiplication, and (c) a
combination of addition and multiplication

18

chapter 1 Welcome Aboard

1.8

1.9
110

111

1.12

“Take me to the airport.” Explain when this is a productivity enhancer,
and when it could result in very negative consequences.

John said, “I saw the man in the park with a telescope.” What did he
mean? How many reasonable interpretations can you provide for this
statement? List them. What property does this sentence demonstrate that
makes it unacceptable as a statement in a program.

Are natural languages capable of expressing algorithms?

Name three characteristics of algorithms. Briefly explain each of these
three characteristics.

For each characteristic of an algorithm, give an example of a procedure
that does not have the characteristic, and is therefore not an algorithm.

Are items a through e in the following list algorithms? If not, what
qualities required of algorithms do they lack?

a. Add the first row of the following matrix to another row whose first
column contains a nonzero entry. (Reminder: Columns run vertically;
rows run horizontally.)

1 2 0 4
0 3 2 4
2 3 10 22
12 4 3 4

b. In order to show that there are as many prime numbers as there are
natural numbers, match each prime number with a natural number in
the following manner. Create pairs of prime and natural numbers by
matching the first prime number with 1 (which is the first natural
number) and the second prime number with 2, the third with 3, and so
forth. If, in the end, it turns out that each prime number can be paired
with each natural number, then it is shown that there are as many
prime numbers as natural numbers.

¢. Suppose you're given two vectors each with 20 elements and asked to
perform the following operation. Take the first element of the first
vector and multiply it by the first element of the second vector. Do the
same to the second elements, and so forth. Add all the individual
products together to derive the dot product.

d. Lynne and Calvin are trying to decided who will take the dog for a
walk. Lynne suggests that they flip a coin and pulls a quarter out of
her pocket. Calvin does not trust Lynne and suspects that the quarter
may be weighted (meaning that it might favor a particular outcome
when tossed) and suggests the following procedure to fairly determine
who will walk the dog.

1. Flip the quarter twice.

2. If the outcome is heads on the first flip and tails on the second,
then I will walk the dog.

3. If the outcome is tails on the first flip, and heads on the second,
then you will walk the dog.

113

1.14

115

116
1.17

Exercises

4. If both outcomes are tails or both outcomes are heads, then we flip
twice again.

Is Calvin’s technique an algorithm?
e. Given a number, perform the following steps in order:
Multiply it by four
Add four
Divide by two
Subtract two
Divide by two
Subtract one
At this point, add one to a counter to keep track of the fact that you
performed steps 1 through 6. Then test the result you got when you
subtracted one. If 0, write down the number of times you
performed steps 1 through 6 and stop. If not 0, starting with the
result of subtracting 1, perform the above 7 steps again.

NNk W=

Two computers, A and B, are identical except for the fact that A has a
subtract instruction and B does not. Both have add instructions. Both
have instructions that can take a value and produce the negative of that
value. Which computer is able to solve more problems, A or B? Prove
your result.

Suppose we wish to put a set of names in alphabetical order. We call the
act of doing so sorting. One algorithm that can accomplish that is called
the bubble sort. We could then program our bubble sort algorithm in C,
and compile the C program to execute on an x86 ISA. The x86 ISA can
be implemented with an Intel Pentium IV microarchitecture. Let us call
the sequence “Bubble Sort, C program, x86 ISA, Pentium IV
microarchitecture” one transformation process.

Assume we have available four sorting algorithms and can
program in C, C++, Pascal, Fortran, and COBOL. We have available
compilers that can translate from each of these to either x86 or SPARC,
and we have available three different microarchitectures for x86 and
three different microarchitectures for SPARC.

a. How many transformation processes are possible?

b. Write three examples of transformation processes.

c. How many transformation processes are possible if instead of three
different microarchitectures for x86 and three different
microarchitectures for SPARC, there were two for x86 and four for
SPARC?

Identify one advantage of programming in a higher-level language
compared to a lower-level language. Identify one disadvantage.

Name at least three things specified by an ISA.

Briefly describe the difference between an ISA and a microarchitecture.

19

20

chapter 1 Welcome Aboard

1.18

1.19
1.20

1.21

1.22

123

How many ISAs are normally implemented by a single
microarchitecture? Conversely, how many microarchitectures could exist
for a single ISA?

List the levels of transformation and name an example for each level.

The levels of transformation in Figure 1.6 are often referred to as levels
of abstraction. Is that a reasonable characterization? If yes, give an
example. If no, why not?

Say you go to the store and buy some word processing software. What
form is the software actually in? Is it in a high-level programming
language? Is it in assembly language? Is it in the ISA of the computer on
which you’ll run it? Justify your answer.

Suppose you were given a task at one of the transformation levels shown
in Figure 1.6, and required to tranform it to the level just below. At which
level would it be most difficult to perform the transformation to the next
lower level? Why?

Why is an ISA unlikely to change between successive generations of
microarchitectures that implement it? For example, why would Intel want
to make certain that the ISA implemented by the Pentium III is the same
as the one implemented by the Pentium II? Hint: When you upgrade your
computer (or buy one with a newer CPU), do you need to throw out all
your old software?

	0a..pdf
	0b..pdf
	Chapter1..pdf

