Computer Science 210
Computer Systems

2006 Semester 2
Iecture Notes

The Alpha Computer
Architecture

Bruce Hutton
Department of Computer Science
University of Auckland
Tuesday, January 30, 2007

Alpha Computer Architecture 30 January 2007 Page i

1.

Contents

Overview of CompPUter ATChItECTIUTE.cciiiiiiiiiiiiiieiiee ettt e e e e e eeeeee e 1-6
§1.1 Components and CONMNECTIONScceerrrruuriririeeeererriiiiitteeeeeeesriiiireeeeeeeeesssnbaeeeeeeeeesssnnnnes 1-6
§1.2 Creating semicONAUCTOT ChIPS...cceeiiiiiiiiiiiiiiiieieieiieeeee e e e e e e 1-7
§1.3 Creating Boolean functions out Of ates...........eevviiiiiiiiiiiiiiriiiiiiieeee e eieeee e e e 1-9
SL.4 FLP-FlOPS. ittt e e e et e e e e e e e s eeeeeeeeas 1-10
§1.5 Registers and MEMOTYcc.uuuiiiiiiieiiiiiiiiiiteee e e e e ettt e e e e e e et teeeeeeeessibbbreeeeeeeeens I-11
§1.6 Motherboards, Cards And DUSESvivuniieniiiieeiee ettt et e etee et eereetaeeenneeraeeennns 1-11
§1.7 The eXECUtION CYCIE..cciiiiiiiiiiiiiiiieee et e e e e e e e reeeeeee e e 1-13
SL.8 TIE CLOCK «oveeiiieeee ettt e e et e et e et e e e s eaa s et s enansenaneennns 1-14
§1.9 Overlapping inStruCtion EXECULIONuuuvvvieiieeeeeriiiiiiitteeeeeeeesiireeeeeeeeeessiiaereeeeeeeeens 1-14
SL.T0 CACRE cveeiieee ettt ettt e et e et e et s et e e tasseaa s etanesenasenaneennns 1-15
ST 11 IMOOTE S LAW «eveiiiieeeiie ettt ettt e et e et e et e e s e s e e taeseaansesanesennnsenaneennns 1-16
§1.12 Speed Of @XECULION .eeeiiiiiiiiiiiiiiee ettt e e e e e e e e e reeeeeeeeens 1-17
§1.13 Size Of COMPULET AALAeeeiiiiiiiiiiiieeeee et e e e e e e e e e 1-18

Alpha Instruction FOTMALS........cc.uviiiiiiiiiiiiiieeee et e e e e 2-19

ASSEMDLY LANGUAZEeeviiiiiiieii et e e e e e e e e et eeeeeeeas 3-23

INSEIUCTION SYNEAX c.uuiiiiiiiieieeeeeeiie ettt e e e ettt e e e e e e e sttt e e e e e e e e s e anbbbbeeeeeeeaens 4-28
§4.1 Integer OPErate INSLIUCTIONS.uutttttterrriiiiitteeeeeeeeeiiiet ittt eeeeeessaibeeeeeeeeeeessnanbbereeeeeeeenns 4-28
§4.2 Load and StOre INSIIUCTIONS ...c.uuuiirentiiieie ettt etaeeerneetaeetaeeeraeetaeeernneesnesernsernneesnnes 4-30
§4.3 Unconditional branch and jump INStrUCtIONSeeevuuvviiiiiieeeeiiiiiiiiiieeee e e e e erieeeeeee e 4-31
§4.4 Subroutine invocation and return INStIUCHIONSuuveveeireneieeeree et eereerneeereereernnns 4-31
§4.5 Conditional branch INSITCTIONSuuivunniienntireeeiee ettt et eereeeraeetneeerneerneeeresesaeesnnns 4-31
§4.6 COMPATE INSLIUCTIONS ..eeiiiiiiiiiiiiieeeeeeeeeiiiieteeee e e e e ettt et e eeeeessaibbtteeeeeeeesannnnabaeeeeeeeesns 4-32
§4.7 Conditional MOVE INSTIUCTIONS ...eevunirnneirnnternneeteneeraeereeeenneeraeetneeerneernneeessesneesnnns 4-32
§4.8 SPECial INSTIUCTIONS. ¢.eeeiiiiiiiiiiiiiieeeee e ettt e e e e ettt e e e e e e et e e e e e e e e ssnbaraeeeeeeeenas 4-33
S4.9 PSEUAOINSIIUCTIONS ...uueiveeterenereeeerneetaeeeaneereeetaneesaeetaeeeansesaeesnnsesnnsesnesennsesnnessnnns 4-33

USE OF TEZISTEIS 1eeeieiiiiiiiiteee ettt e ettt e e e e e ettt e e e e e e sttt bt e e eeeeeeesannbbbeeaeeeeeanns 5-35

Programs, sections and BIOCKS...........cceiiiiiiiiiiiiiiiiiee e 6-36
SO.1 OVETALL STIUCTULE ...ceuveieeeiiee ettt ettt et e et e eae e et e eaa e et etansesansesansennnsenaneeennns 6-36
§6.2 Allocating space for global variablesccccoivriiiiiiiiiiiiiiiieee e 6-37
§6.3 Creating code for simple statements and eXPreSSIONSceeeeeerurvirrieeeeereerniiiiireeeeeeeenns 6-41
§6.4 Creating CONIOL SEIUCTUTES......uuvititiieiiiiiiiiteeee e e e ettt e e e e e e ettt eeeeeeessibbereeeeeeeeens 6-43

Alpha Computer Architecture 30 January 2007 Page ii

7N 11 4 1 1 PSPPI UUPPTPPPPPPPO 7-48
8. Running the Alpha SIMUIALOT.........coiiiiiiiiiiiiiiie e 8-60
§8.1 Specifying the code files t0 EXECULEuuviiiiiiiiiiiiiiiiiiieeeee e e e 8-60
Load File Specification ... 38Nccoeiiiiiiiiieeiiie e 8-61
QUIL FBQQ ittt et et e st e bttt e et e et e eane 8-61
§8.2 Loading and EXECULION..........uuiiiiiiiiiiiiiiiiiiiieeee ettt e e e e e e e e e e e eas 8-62
L0ad €ode FBL......iiiiiiiiiieiie ettt ettt e 8-62
REINIIALISE FBL ..ottt ettt et ettt et 8-63
RUN/RETUN FEX ...ttt ettt ettt et et e e e 8-63
Run/Rerun Update 3BE..........oooiiiiiiii et e e e e 8-63
0] 01 SRS 8-63
RUN/Continue 3Roooviiiiiiiiiii et 8-64
Run/Continue Update FBU..........c.ceeiiiiiiiiieiiieeeiee ettt e e e e e esaaeesssaeessseeeseseeennnes 8-64
LT oI 3 RSP PRSPR 8-64
Reverse Run/Continue {1 38Roooiiiiiiiiiiiie e 8-64
Reverse Run/Continue Update T 38Ucocviiiiiiiieiiieeeeeeeeee et 8-64

| S N 15 o B 2 SRR 8-64
§8.3 Reading from the Simple Terminal..............ccccoeviiiiiiiiiiiiiiiiiiee e 8-64
§8.4 Editing, Copying and Pastingccoeoiuiiiiiiiiiiiiiiiiiiiieeeeee et e e 8-64
SAVE SEIECTIONeeiiiiiiiiieiiie ettt e e e e e e e et e e e e 8-65
§8.5 SEAICHING oot e e e e eeeeeeeas 8-65
FINA .o 3B et ettt et ettt et 8-65
§8.6 Setting WatChPOINTScoeeiiuiiiiiiiiiiiiieeee et e et e e e e e e e eeeeeeeeas 8-66
Set WatChpoints FEWcocuiiiiiiiieeiie ettt e e te e et eestae e e sebaeessaaeesnsaeennseees 8-66
Clear Watchpoints T 3B Woooiiiiiiie ettt e e e et e e et e e sebee e snseeeenns 8-66
Watchpoint Setting FIagsccooiiiiiiiiiiiiiiieie e 8-66
§8.7 FOIMAHINE. ...coeiiiiiiiiieee et e ettt e e e e e ettt e e e e e e e e s nnbbbbeeeeeeeeeas 8-67
§8.8 Managing WiINAOWScceoviiiiiiiiiiiiiieiet ettt e ettt e e e e e e e st reeeeeeeeeas 8-69
FEO ThE traCe PANECL....ccvveeeeiieeiiieeeiieeetteeeiee e et e e et e e e tteeetaeeesaaeesseeesseeenssaeessseeennseeanns 8-69

1 The simple terminal PANEl...........ccccviieriuieeeiiiieeiieeeie et e ere e e eesreeesaeeesreeees 8-69

FE2 The re@iSter PANELcccuviieiiieeeiie ettt e e e e e et eeetaeeessbeeessbaeessseeesssaeanns 8-69

385 The uSer MEMOTY PANEL....c..viieriiieriieeiiieeeiieeeciteeeciteeeseeeeseaeeessaeeessbeeessseeessseeessseeanns 8-70

$§8.9 What the Kernel and PAL COAE dO...couuiiiniiiiiiieeiiee ettt e eans 8-70
0. INEEZET AITAYS teeeeeeeeiiiiiiiitieee e e ettt e e e e e ettt e e e e e e e s bbbttt eeeeesssantbbbeeeeeeeeesaanssbeaeeaeeeenns 9-72
10. Writing and Debugging Assembly language Programs...........cccooeiveiiiniiiiciiniiiecinnneeeen. 10-79

11. Function invocations and deClaratiOnNSeeueeveeuiereeeiieeiiee et et eernee et eereeernreeenneees 11-84

Alpha Computer Architecture 30 January 2007 Page iii

STT.1 OVEIVIEW .oeuiiieeiiie ettt ettt et e et e et eete s et s et s eaasetanesesasesansesnnsesanesennnes 11-84
§11.2 The special instructions involved in function iNVOCAtIONS...........eeeeerurreeerncireeeennnnnee. 11-85
§11.3 Function Invocation and Declaration Conventions...............ceeeeevvveeeeiviiieeeeeinneeennn. 11-86
Conventions related to use of the Stack...........ooocuieiimiiiiiiiiiiiiiiicee e 11-86
Conventions for the use of registers on the Alpha...........cocooiiiiiiiiiiiii, 11-87
Conventions for invoking functions on the Alpha...........ccoociiiiiiiiiiiiieee 11-89
Conventions for declaring functions on the Alpha..........cccoccviiiiiiiiiiiiiiiieeen 11-90
The Layout for a activation T€COTA.........ceeiiiiiiiiiiiiiiieieee ettt e e e e e 11-91
§11.4 Reference parameters and POINLETScceeiiiiriiiiiiiiiiiiiiiiiiiieeeee e 11-91
§11.5 Some programming €XEICISES L0 tIY ...uuuurriiieeererrriiiiiiieeeeeeeerriiieteeeeeeeeessiiareeeeeeeaeens 11-97
SETIIIES ettt ettt e ettt e e e e e ettt e e e e e e e s bbbttt e e e e e e e e e bttt e e eeeeeeennnbbtaaeeeeeaean 11-97

1\ (311 T0) o PP PPPU R RRPPPP 11-99
INEEEET ATTAYS ..eeeeeeieiieiieeteee ettt e e e e e s ettt e e e e s e e s sttt eeeeeeeessanatbeeeeas 11-100
Sorting and SEArCRINGccoiiiiiiiiiiiiiiiei e e 11-100
Input/Output, and conversion of teXt t0 @ NUMDETccooviiiiiiiiiiiiiiiieeeceeeeeen 11-100
STT.0 RECUISION toeuviiieiiiiteeiee ettt et et et e et e et e et s eansesanseannsesaneesnnsesaeesnnes 11-101
SL1.7 LOCAL ATTAYS. . uueeeiiiiieiiieiiteeee et e et e e e e e e ettt e e e e e e e s saabbeaeeeeeeeeas 11-103
12. Assembling and DiSassembIINGc.ccovvriiiiiiiiiiiiiiiiiiieeee e 12-111
SI2.1 OVEIVIEW ..ovuiiieeiiie ettt et et e et e et e s et s et s ea s et s aaansesaneesannseraeeennns 12-111
§12.2 Integer OPerate INSIIUCHIONSceeetierreiiiiiteeeeeeeeeriiirteeeeeeeesssiitrteeeeeeeeesaaarreeeeeeeeanns 12-113
§12.3 Memory aCCesS INSIITUCTIONSeeetteerrruiiiiiieeeeeeerriiiteteeeeeeeessiiirereeeeeeeessnaanrrreeeeeeanns 12-114
S12.4 BrancCh INStIUCTIONS ...cvuunitenntereeeeee ettt et ettt ettt eerneeraneeeaneeraeeennsesneesrneserneesnnns 12-115
13. Commonly used Alpha INSTIUCHONScccuuieiiiiieieeeiieiiiiieeeee et ee e e e e e eeeeeeas 13-119
Integer OPerate INSIITUCTIONS ..cceiierruiiiiiieeeeeeeeriiiit et ee e e e e e ettt e eeeeeessibbbreeeeeeeessaaanbeeeees 13-119
Arithmetic Integer Operate INSIIUCTIONSeeiirurrieeiriiieeeeeiieee e et e e e e e e sireeeeeeereeeens 13-119
Shift integer OPErate INSIITUCTIONSutettetirrriiiiiiieeeeeeeeeeeiiitteeeeeeeessirareeeeeeeesssnnnneeeees 13-119
Compare integer Operate INSIIUCIONS.cceeerrrruriiiiieeeeeeriiiiieeeeeeeeeeessiiaereeeeeeeessnianreeeees 13-119
Logical integer operate INSIIUCIONSceeeeerrriuriiiieeeeeeeeeriiiteeeeeeeeessiiaereeeeeeessssaanreeeees 13-119
Conditional MOVE INSTIUCHIONSceouuviiieiriiiieeeeiiieeeeeireee ettt e e e eitee e e e eeeesnreeeeesnneeeens 13-119
MEMOTY INSIIUCTIONSiiiiteeeeeeeeiiiiet ettt e e e e ettt e e e e e e sbbeeeeeeeseessanbabbeeeeeeeessnnnsraeeees 13-120
Load address INSIIUCTION. ...c.cuuuteiiiiiiieeeeiitee ettt et e ettt e et e e e e e e sbreeeeesanneeeeas 13-120
Load memory INStIUCHONScciiiiiiiiiiiiiieeeeeeeeiiiie et e e e e ettt e e e e e e e et e e e e e e e s saaeeeeeeas 13-120
StOre MEMOTY INSIIUCTIONS. ¢eeeiieieuiiiiiiiieeeeeeeeeeiiiteteeeeeeeeeeeiiibtreeeeeesessntrareeeeeeeessnnnnnsreeeees 13-120
Branch INStIUCHIONSevveiiiiiiiiiieiiiee e et e e e e e e eereee e 13-120
Conditional branch INSIrUCTIONSeeiiiiiiiiiiiiiiee et 13-120

Unconditional branch INStIUCHIONSvvveeiiieeiiiteiee ettt ettt e eteeeeaeeeraeetaeeesaeeens 13-121

Alpha Computer Architecture 30 January 2007 Page iv

14.

15.
16.
17.

JUMP INSTUCHION ..ceettiiiiiiiiteeee et e e e e ettt e e e e e e e sttt e e e e e e e ssaanbeeeees 13-121
REUIN INSTIUCTION. ..ceeiiiiiiieieiiie ettt e et e e e e e e e e e eaaneeeeas 13-121
Callpal INSTIUCTION ..eeiiiiiiiteeee ettt e e e e e ettt e e e e e e e st eeeeeeeeessaaasbeeeeas 13-121
PSEUAOINSTIUCTIONS .eeiniiiiieiiiiiiee ettt e et e e st e e e eireeeeeenreeeens 13-121
L0ad TMMEAIALEeeeiiiiiiiiiiiiiee ettt e e e e e e e e eerneeeas 13-121
CLEAT ..ttt et ettt e ettt e et e e e e e e e e e nneeeeas 13-121
Unary pSEUAOINSIIUCTIONS ...vveeeeteeiiiiiiiiieeeeeeeeriiiieteeeeeeeeseiittreeeeeeseessanbabreeeeeeeessnnnrreeeees 13-121
System calls and library functions in the sSimulator..............c.cceeeiiiiiiiiiiiiiieenieeeee, 14-122
User Call PAL instructions in the Simulator.............cceooiiiiiiiiiiiiiniiiiiiieeeeeeeeeeeee 14-122
Library functions in BIOCK SYS......c..uuiiiiiiiiiiiiee e 14-122
Library functions in bIOCK TOuuiiiiiiiiiii e 14-122
Library functions in block NUMDET.........cccoiiiiiiiiiiiiiiiiiiiee e 14-122
Library functions in bIOCK String..........cceeiiiiiiiiiiiiiiiieiiiieee e 14-123
Function invocation CONVENTIONSceeirruuiteeiriiiteeeniiteeeeeitreeeenreeeeennreeeeenanreeeeenannees 15-124
Handling of Exceptions and Interrupts in the Simulator...........cccoccoeeiniiiiiiiniieennne. 16-125
The Alpha Assembler Lexical and SyntactiC StruCtureccooecveeeerniiieeeeniieeeeennne. 17-127
SI7.1 LeXICAl STIUCIUIE «.euvvivnneiiee et ettt et et e et e et e et e ea e et e enaneesanesennnsesaeeennns 17-127
LAY OUL. ..ottt e ettt e e e e ettt e e e e e e ettt e e e e e e e e aabraaeeas 17-127
COMMEIIES ...ttt ettt e e et e e e ettt e e e et e e e e eabbe e e e esanreeeeenanneeeens 17-127
LIEEIALS et e e e e areee s 17-127
TA@NEITIETS ...ttt e e e et e e e e e e eereeeeas 17-127
K@Y WOTAS ...ttt e e e e et e e e e e e e e atbaeeeas 17-127
SPECIAl SYMDOLS .ot e e e e e e e e e e 17-128
§17.2 SyNtaCtIC SIIUCLUTE «eeeeieeiiiiiiiieeeee e ettt e e e e ettt e e e e e e ettt e e e e e e esssaabbeeeeeeeeaens 17-128
PrOGIamM ...t e e e e e ettt e e e e e e e 17-128
SECTIOMS ...ttt ettt e e ettt e e ettt e e e ettt e e e et e e e e bt e e e e eabr e e e e eanrneeeas 17-128
StALEMENT SEQUEIICESeeeteeeeeeeeriiiititeeeeeeeesritte et eeeeeeessaibabtteeeeeesasaataattaeeeeeeessnnssreeees 17-129
End Label Statements.ccooouuiiiiiiiiiiiiiiiieceeiiee et 17-129
Initialised STAEMENLScooiiiiiiiiiiiiee e e e e 17-130
Uninitialised STatemMENTS. ...c.couuviiiiiiiiieiiiiiie et 17-131
ADSOIULE STALBIMENESeeeiiiiiiiee ettt e ettt e et e e e e e e sanreeeeesaaneeeens 17-131
ACCESS MOMITIETS ..eeiiiiiiiiiiiiiiie et e e e e e et e e e eaereeeeas 17-131
Y DS ettt ettt e e e ettt e et e e e ettt e e e e e e e e e bbbttt e e e e e e e e aatbaaeeas 17-132
ATTAY S1Z€ SEQUETICEeeeiiiieeeeeeeiee ettt e e e ettt e e e e e e et e e e e e e e e ssaabbaeeeas 17-132
L0015 21 1 6 TSP PPPP PP 17-132

EXPIESSIONStttteeeeeeeiiie ettt e e ettt e e e e e e sttt e e e e e e e e sttt e e eeeeeeenantbeeeeas 17-133

Alpha Computer Architecture 30 January 2007 Page v

INAITIES ..ottt e e ettt e e et e e e ettt e et e e e e e e e et e e e anneeeeas 17-133
§17.3 Programs, sections and bIOCKScc.euuiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee e 17-134
NN R N 21 1< 0 0 1<) 01 - TSP PRPP 17-136

INSTIUCTIONS ...eeiiiiiieeeeie ettt e et e ettt e e e et e e e s eeesanreeeeeeannneeens 17-137

Label declaration StAEMENTSccuueeiiriiiieiiniiiieeerieeee et e et e e e e e eireeeeeeeneeeees 17-139

Identifier definition SEAEMENTSc.eveiiiiiiiiiiiiiiie et 17-139

SCOPE OF TAENEFIETSveeiiiieeieee et e et e e e e e e e s aeeeeeees 17-140

Memory allocation SLAtEIMENLSuvuviiieeeeeeiriiiiiiieeee e e e et e e e e e e et e e e e e e e ssaireeeeees 17-140

COmMPOUNA STALEIMENILSvvvieeeeeeeeiiiiiitieeeeeeee sttt eeeeeeseibbeeeeeeeeeesaanaatreeeeeeeesssansreeees 17-141

INUIL SLALEIMENIESeeeiiiiiiiee ittt e e e e st e e et e e e eaarneeeas 17-141

S17.5 EXPIESSIONS ..uuueviiiiieiiieiiiiiiittee e e e e ettt e e e e e e ettt e e e e e e s s sttt eeeeeeeesannabbereeeeeeaans 17-141

Alpha Computer Architecture 30 January 2007 Page 1-6
1. Overview of Computer Architecture

§1.1 Components and connections

For a very simple introduction to how computers and electronics work, refer to:
http://electronics.howstuffworks.com
http://wikipedia.org

and look for topics involving computers and electronics.

A simple view of a computer would be that it is composed of a CPU, memory, and input/output
devices, connected together by buses (sets of wires, used for communication between the
components).

Control CPU
Fetch
Decode
Load Program counter
Execute |- Integer registers
Store Floating point registers
|
MMU
Clock
L1 Cache
TLB L2 Cache
Host bus
. Memory bus
Graphics System
controller controller
| 1
Memory
Backplane | |
Monitor bus -
PCI bus
U0 T Ethernet bus
erne L
BIOS controller USB bus controller
[|
. USB hub
Serial Port IDE bus
-
Super /0 () -
- Disk drives ~
)
|_Keyboard

Disk drive)
I‘Q | Mouse

—

Overview of Computer Architecture

Alpha Computer Architecture 30 January 2007 Page 1-7
§1.2 Creating semiconductor chips

The CPU, memory, and controller chips are composed of packaged silicon wafers. The silicon
wafers are created by growing a silicon crystal from molten silicon, and slicing it into thin disks.
Hundreds of millions of transistors and connecting data and power paths are constructed on the
wafer.

Gases can be infused into the surface of the chip, by surrounding the chip by an appropriate gas that
is absorbed, to create a thin layer with a different chemical composition. For example infusing
oxygen into silicon generates SiO9, which is used as an insulator, and a barrier to ion implantation.

Firing high speed ions at the surface (ion implantation) can also be used to insert chemicals into
the surface. “Doping” elements (P, As, B) are often inserted in this manner.

Chemicals can be deposited on the surface, by condensing a hot gas containing the chemical. For
example, aluminium or copper can be deposited and later etched to form data and power paths.
Si3Ny, can be deposited to protect the underlying material from ion implantation.

Selective layers of chemicals can be removed (etched) by a chemical process. this is often used
after photolithography has been used to cover some of the material, and inhibit etching in those
areas.

Photosensitive material (photoresist) can be deposited on top of a layer of material that we want to
etch, and exposed to ultra-violet light or X rays shone through a mask, to create a pattern
(photolithography). The photoresist exposed to the light changes its chemical properties, and
either the exposed or unexposed photoresist is then developed and removed. The remaining
photoresist is hardened, and a chemical process is used to remove the exposed underlayer not
covered by the photoresist. The material exposed by removing the underlayer can then have a
doping material implanted. Finally, the remaining hardened photoresist and underlayer beneath it
can be removed.

The wafer can be polished, to remove material that projects above the surface, and create a flat
plane (planarization). For example, holes can be etched, then the surface covered with another
material, then the surface polished to remove the material other than that filling the holes.

By performing the above processes many times, different materials can be added to different parts
of the wafer, and transistors built up. Perhaps about 450 processes, including about 30 masks may
be performed and 20 different layers may be built up.

In 2006, transisters have dimensions of about 65 nanoMetres, which is only a few hundred atoms
across. In 2007, Intel hope to produce 45 nanoMetre transisters. There is talk of decreasing the
dimensions down to around 20 nanoMetres in the future, which must be getting close to
fundamental limits on size. Something else, such as building more layers, or making thinner
connectors, will have to be done to pack more transistors on a chip.

Silicon has 4 valence electrons. Phosphorus or arsenic, with one more valence electron, can be
used for N-type (negative) doping. Boron or gallium, with one less valence electron, can be used
for P-type (positive) doping. N-type doping generates a material with free electrons that can easily
move out of the material. P-type doping generates a material with “holes” for electrons, that can
easily attract external electrons.

Overview of Computer Architecture

Alpha Computer Architecture 30 January 2007 Page 1-8

I II m 1mv Vv VI VIl VI
H He
Li Be B C N O F Ne
Na | Mg Al Si P S Cl Ar
K Ca |.. Ga |Ge |As |Se Br Kr

When N-type and P-type material are put together, they create a diode, which is essentially a one
way gate. If the N-type material is connected to a low voltage, and the P-type material is connected
to a high voltage, the electrons will flow through the connection, but not if the voltage difference is
the other way around. It is possible to create more complicated transistors (metal-oxide
semiconductor field-effect transistors, MOSFET), that allow electricity to flow or not flow,
depending on the voltage supplied to a “switch”. There are two types of such transistor, P-type
(switch on with low voltage) and N-type (switch on with high voltage).

e Switch

N source N drain

Symbolic Representation

Slibstrate contact

N-type FET Transistor

i rm—| i Switch

‘ ‘ msulator ‘ ‘ g

P drain P source

N substrate Symbolic Representation

Substrate contact (+35V)

P-type FET Transistor
By using such circuits, we can create higher level NAND, NOR, and NOT gates:

Overview of Computer Architecture

Alpha Computer Architecture 30 January 2007 Page 1-9

+ 5V Power

I: | I: Il I: Output
Inputs p~(A&B&C)
A

Red: high voltage
B Blue: low voltage
— Green: undefined voltage

0V Earth

Circuit representing a CMOS NAND gate, with 3 inputs

A
81 ~(A&B&C)

Symbolic representation of NAND gate with three inputs

§1.3 Creating Boolean functions out of gates

In fact any Boolean function can be built from transistors. For example, an integer value is
essentially composed of Boolean bit values. The bits that make up the sum of two integer values
are functions of the bits that make up the integers being added, so a circuit to add two integer values
can be built from transistors.

A “half adder” is a logic circuit that takes two binary digits, and computes their sum (the “exclusive
or” of the bits), and the carry (the “and” of the bits). For example, 1 + 0 =1, with carry 0, and 1 + 1
=0, with carry 1.
component { in opdl, opd2 } halfAdder { out sum, carry }
begin
{ in opdl opd2 } xor(
{ in opdl opd2 } and(

) { out sum };

2
2) { out carry };

end
Two half adders can be combined to produce a “full adder”, that takes two binary digits, together

with a carry in, and generates the sum and carry out. For example, if we have a carry in of 1, and

add 1 + 1, we get 1, with a carry out of 1.
component { in opdl, opd2, carryIn } fullAdder { out sum, carryOut }
begin
path suml, carryl, carry2;
{ in opdl, opd2 } halfAdder { out suml, carryl };
{ in suml, carryIn } halfAdder { out sum, carry2 };
{ in carryl carry2 } or(2) { out carryOut };
end

By combining an array of “n” full adders, we can add two “n” bit numbers. The carry out from
adding the “1’th bits becomes the carry in when adding the “i+1”th bits, so the carry ripples through
the circuit, and the component is called a “ripple adder”. The algorithm executes in O(n) time.

Overview of Computer Architecture

Alpha Computer Architecture 30 January 2007 Page 1-10
component { in opdl[n], opd2[n], carryIn } add(n)
{ out sum[n], carryOut }
begin
path carry[n + 1 1;
{ in carryIn } join(1) { out carryl 0 1 };
for i from 0 upto n do
{ in opdl[i 1, opd2[1], carry[i1] } fullAdder

{ out sum[i], carryl 1 + 1 1 };
end
{ in carry[n] } join(1) { out carryOut };
end
opd2[3] opd2[2] opd2[1] opd2[0]
opdl[3] opdl[2] opdl[1] opd1[0]
¢ carry[3] ¢ carry[2] ¢ carry[1] ¢ *carry[0]
fullAdder fullAdder fullAdder fullAdder
carry[4] ¢sum[3] cary[3] ¢sum[2] camy[2] ¢sum[] camy[l] ¢sum[0]

§1.4 Flip-Flops

We can create what is called a “flip-flop” to store a “bit” (binary digit). This is a logic circuit that
has feedback (cycles in the directed graph of components and paths) that provides an internal state.
An array of flip-flops can be used to represent the value of a register.

A simple flip-flop takes a clock signal “clock”, and a value “opd1” as inputs, and produces a value
“result]” as output.

If “clock == true”, and “opdl == true”, then “result2 = false”, and “resultl = true”. If “cloc
true”, and “opdl == false”, then “resultl = false”, and “result2 = true”. So if “clock == true”,
“result] = opd1”, and “result2 = lopd1”.

If “clock = false”, then “result]” and “result2” can take any value, so long as “result2 == !resultl”.

So, when the clock is set, a simple flip-flop stores the value of “opd1” in “resultl”. The value

remains there, even after the clock is cleared, and “opd1” changes.
component { in clock, opdl } simpleFlipFlop { out resultl }
begin
path opd2, clkOpdl, clkOpd2, result2;
{ in opdl } not(1) { out opd2 };
{ in clock opdl } and(2) { out clkOpdl };
{ in clock opd2 } and(2) { out clkOpd2 };
{ in clkOpdl resultl } or(2).not(1) { out result2 };
{ in clkOpd2 result2 } or(2).not(1) { out resultl };
end

clock clkOpd1
and

e T
D

clkOpd2

clock

Overview of Computer Architecture

Alpha Computer Architecture 30 January 2007 Page 1-11
To allow the input data to stabilise before the change is visible to the output, and to avoid problems
when the output feeds back to the input, it is best to pair two simple flip-flops, to form a “master-
slave flip-flop”. When “clock1” is true, the value of “opd” is transferred to the internal state
“value”, but does not pass through to the output “result”. When “clock1” is false, the internal state
“value” is transferred to “result”, but changes in the input have no effect. Thus the master-slave
flip-flop appears to transfer the data from “opd” to “result” when “clock1” changes from true to
false.

component { in clockl, opd } masterSlaveFlipFlop { out result }
begin
path clock2, value;
{ in clockl } not(1) { out clock2 };
{ in clockl, opd } simpleFlipFlop { out value };
{ in clock2, value } simpleFlipFlop { out result };
end

§1.5 Registers and memory

The CPU (central processing unit) contains electrical circuits, to decode and execute instructions,
load data from and store data to memory, etc. It also contains a small amount of fast local memory,
namely what are called registers. On the Alpha, all registers are composed of 64 bits. There is a
program counter (PC) register, that contains the memory address of the next instruction, 32
integer registers to contain integer data, and 32 floating point registers, to contain floating point
data. There are also other internal registers, to store temporary information, etc.

Thus we can think of our CPU as roughly corresponding to the data structure
class CPU {

Quadword programCounter;

Quadword[] intReg = new Quadword[32];

Quadword[] floatReg = new Quadword[32];

// and some special registers

}

In fact intReg[31] and floatReg[31] always return zero if read, and writing to them has no
effect.

Memory corresponds to an array of bytes
byte[] memory = new byte[... 1;

that can be indexed by a memory address.

§1.6 Motherboards, cards and buses

Inside your computer, you will find a large green circuit board, called the motherboard. The
motherboard connects all the components of the computer together. Smaller boards called cards
can be plugged into the motherboard. ~Computer chips, including the CPU, memory, and
input/output controllers are plugged in to the boards. The CPU is usually surrounded by large
cooling fins with a fan. There is usually a central hub, that all communications between
components pass through. The wires that connect the components are called buses.

Overview of Computer Architecture

Alpha Computer Architecture

NYRIY

A motherboard

30 January 2007 Page 1-12
PS2
Audio USB Ethernet ~ Back Panel qo0p 0 q/mouse)
Ports Ports Port Connector __ Port

b

1 1T 1 L L.
ower
" | % Control

£ e []

DDR DIMM

[Memory Slots *=d

IDE Connector §& g wgATX Power
BN B msesEConnector

Connector =

Memory cards

Overview of Computer Architecture

Alpha Computer Architecture 30 January 2007 Page 1-13

A drawing representing a processor chip containing two dies (silicon wafers). The regular area at
the bottom of each die is the cache memory.

§1.7 The execution cycle

Instructions are stored in computer memory. The program counter register contains the memory
address of the next instruction. The CPU loops, obtaining an instruction, incrementing the program
counter, decoding and executing the instruction, etc.
while (true) {

Longword instruction = getLongwordAt (programCounter);

programCounter = programCounter + 4;

decode the instruction;

obtain the operands of the instruction;

perform the operation of the instruction;

save the result;

}
Memory containing

program
Program counter . .
> Current instruction
] Next instruction

Overview of Computer Architecture

Alpha Computer Architecture

§1.8 The clock

30 January 2007 Page 1-14

There is a processor clock that generates a step function with regular changes in voltage. Perhaps
the change from low to high voltage represents a clock tick. This clock is used to control the
activity of the CPU. A typical CPU clock speed in 2006 is about 3.8GHz, or 0.26 nanoSec for a
clock cycle.

/2 A W/ N

>

Time

All activity in the CPU is triggered by a clock tick, and data paths are opened and closed to permit
data to flow through from one part of the CPU to another. Excluding memory accesses, simple
instructions might take about 15-20 clock cycles to execute (say 5-6 clock cycles for an instruction
fetch, 3-4 cycles to obtain the operands, 2-3 cycles to compute the the result, and 3-6 cycles to save
the result).

§1.9 Overlapping instruction execution

Nowadays, instruction execution is “pipelined”, and execution of instructions overlap, so that when
one instruction is being executed, the next instruction is being decoded, and the one after that is
being fetched. In fact, if there are multiple copies of the circuitry in the CPU, several instructions
may even be “issued” (scheduled to execute) at the same time. Combined with pipelining,
perhaps a total of up to 50 instructions may be in the process of execution at the same time.
However, conditional branch instructions may limit the extent to which instruction execution may
be pipelined, because it is not possible to determine which instruction will be executed next, until
after the previous instruction has completed execution (although we can guess which one will be
executed, execute our guess, and discard computations if the guess turns out to be wrong).
Similarly, the operands for one instruction may depend on the results of previous instructions, and
hence an instruction might have to wait for the result of a previous instruction. Also, instructions
can only execute in parallel if independent circuits are available for use.

Time

Pipelining of instructions

Overview of Computer Architecture

Fetch Decode Load Execute Store Instrn 1
Fetch Decode Load Execute Store Instrn 2
Fetch Decode Load Execute Store Instrn 3

Alpha Computer Architecture 30 January 2007 Page 1-15

Fetch Decode Load Execute Store Instrn 1
Fetch Decode Load Execute Store Instrn 2
Fetch Decode Load Execute Store Instrn 3
Fetch Decode Load Execute Store Instrn 4
>
Time

Dual issue (concurrent scheduling of instructions)

§1.10 Cache

External memory, stored on separate chips, takes much longer for the CPU to access than registers.
External memory has its own clock, which in 2006 is about 667 MHz, much slower than the CPU
clock. To decrease the delay in external memory access, the CPU “caches” (keeps a copy of)
recently used memory. The memory in the CPU used for the cache (static RAM) is faster, but
requires more transistors and is more expensive to build than the external memory (dynamic
RAM). Nowadays, there are at least two levels of cache. In 2006, the smallest and fastest (level 1)
cache is about 56 KBytes in size, and takes about 2 CPU clock cycles to access. Level 2 cache is is
about 512 KBytes - 2 MByte in size, and takes about 6-10 clock cycles to access, if part of the CPU.
Some CPUs even have a level 3 cache (around 8MBytes). External memory is much larger, about
512 MBytes - 1 GByte, and takes about 100 - 300 CPU clock cycles to access. But access to
memory is fast compared with disk access times. The seek time (time to move the disk head to the
right track) is around 5 - 10 milliSec, and the rotation delay, while the track spins to the correct
sector of the track is similar. This is tens of millions of clock cycles! But hard disks provide large
amounts of permanent storage — 160 - 250 GBytes is fairly typical for a personal computer in 2006,
and Weta Workshop, the special effects company for “Lord of the Rings”, have hundreds of
teraBytes of disk space.

Registers 32 -64 1 cycle

L1 cache 56 KB 2 cycles

L2 cache 512 KB - 2MB 6 - 10 cycles
External Memory 512MB - 1 GB 100 - 300 cycles
Disks 160 GB - 250 GB | 107 cycles to seek

Overview of Computer Architecture

Alpha Computer Architecture 30 January 2007 Page 1-16
§1.11 Moore’s law

As a general rule, the number of transistors that can fit on a processor chip doubles every couple of
years, due to the increased ability to manufacture smaller features on a chip. The number of
transistors on a memory chip doubles about every 18 months.

Intel Processor Year of Transistors

introduction

4004 1971 2,250

8008 1972 2,500

8080 1974 5,000

8086 1978 29,000

286 1982 120,000

386™ processor 1985 275,000

486™ DX processor 1989 1,180,000

Pentium® processor 1993 3,100,000

Pentium II processor 1997 7,500,000

Pentium III processor 1999 24,000,000

Pentium IV processor 2000 42,000,000

Pentium IV processor 2005 178,000,000
20077 410,000,000

Number of transistors

9.0

8.0

7.0

6.0

5.0

4.0

log number of transistors

3.0

2.0

1.0

0.0
1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
Year

Overview of Computer Architecture

Alpha Computer Architecture 30 January 2007 Page 1-17

Year | Feature size (nm)
1980 3000
1983 2000
1984 1500
1987 1000
1989 600
1991 500
1992 400
1994 350
1997 250
1998 180
2002 130
2004 90
2006 65
2007 45

Because everything is smaller, it takes less time for information to propagate between components.
Because more transistors are available, the circuitry on the chip can be duplicated, and instructions
can be executed in parallel. More space is available on the chip to implement more complex
algorithms. More space is available for such things as cache memory (which takes up about a third
of the space in a modern CPU). So the performance of computers also increases at a comparable
rate (perhaps even faster). The density of storage of data on a hard disk also increases at a similar
rate. However, disk access times depend primarily on the time taken to position the disk head, so
disk “latency” (the time delay before the data can be accessed) does not change much.

CPU manufacturers are now finding it more difficult to achieve speed improvements by increasing
the parallelism withing a single processor, or increasing the size of cache, and are now tending to
develop chips with multiple processors instead.

§1.12 Speed of execution

It is important to have an appreciation of how much difference there is in the times taken to perform
various operations in a computer. Disk movements occur at speeds comparable to the 1/10th of the
speed of sound, while electronic signals within the CPU travel at speeds around 2/3 of the speed of
light.

100 (1 second) Time for light to travel to the moon.

10-1 Blink of an eye. Duration for a frame of a
movie. Sattelite communication delay.

10-2 Disk seek time. Time for a disk to rotate. TV
refresh rate.

10-3 (1 millisecond) Time for sound to travel 30cm. Sound
frequency.

10-4 Time to transfer 1 byte over 56Kb/sec modem.

10

10-6 (1 microsecond) Time to transfer 1 byte over broadband modem.

10-7 Time to transfer 1 byte over ethernet. Time to
access memory. Time to transfer 1 byte from
disk.

10-8

10-9 (1 nanosecond) CPU clock speed. Time to execute an

Overview of Computer Architecture

Alpha Computer Architecture

30 January 2007

instruction. Time for light to travel 30cm.

10-10

Microwave frequency

§1.13 Size of computer data

It is also nice to get an idea of how small the components of a computer are.

100 (1 metre)

Wavelength of VHF/UHF.

10-1

Wavelength of audible sound.

10-2 (1 centimetre)

Wavelength of microwaves.

10-3 (1 millimetre)

10-4 (100 micrometre)

Width of human hair. Dimensions of a dust
mite.

10-5 (10 micrometre)

Dimensions of a eukaryotic cell.

10-6 (1 micrometre)

Dimensions of a bacterium. Wavelength of
visible light.

10-7 (100 nanometre)

Dimensions of a bit in a computer memory or on
disk. Dimensions of a transistor. Dimensions of
a virus.

10-8 (10 nanometre)

10-9 (1 nanometre)

Wavelength of soft X-rays.

10-10 (1 Angstrom)

Dimensions of an atom.

Overview of Computer Architecture

Page 1-18

Alpha Computer Architecture 30 January 2007 Page 2-19

2. Alpha Instruction Formats

On the Alpha, each instruction is stored in a longword, and hence is composed of 32 bits or 4 bytes.
Instructions must be aligned (stored at an address divisible by 4).

Normally, instructions at successive addresses are executed in sequence (or at least appear to be),
because the program counter is incremented by the size of an instruction after loading the
instruction into the CPU. However, some instructions (called branch instructions) can modify the
program counter. This is how we deviate from a straight line path of execution and manage to
create loops, if statements, etc.

Many modern machines have the following kinds of instructions:

J Instructions that perform arithmetic and logical operations on registers. For example,
there might be an instruction to add the contents of two registers, and store the result in a third
register. On the Alpha, we could write “addg $0, $1, $2;” to generate an instruction that
adds the quadwords in integer registers 0 and 1, and stores the result in register 2.

J Instructions that load data from memory into a register, or store data from a register
into memory. For example, there might be an instruction to load a quadword from memory
into an integer register, or save the contents of an integer register into a quadword in memory.
On the Alpha we could write “1dg $2, 0($1);” to generate an instruction that loads the
quadword at the address specified by the contents of integer register 1, into integer register 2.

J Instructions that check the value of a register, and, based on this value, either do
nothing, or modify the program counter, so that the next instruction is obtained from a
different place. On the Alpha we could write “bne $1, loop;” to generate an instruction
that checks the value of integer register 1, and if it is not equal to 0, changes the program
counter to the address corresponding to the label “1oop”.

On the Alpha, all instructions have a 6 bit opcode stored in bits 26-31, which indicates the kind of
instruction. Given this opcode, the CPU knows how to decode the rest of the instruction.

31 26 25 0

Opcode Other Information

Common format for all instructions

Alpha Instruction Formats

Alpha Computer Architecture 30 January 2007 Page 2-20

Opcodes
00 call_pal 10 inta 20 1df 30 br
01 call_xfc 11 intl 21 1dg 31 fbeq
02 Res 12 ints 22 lds 32 fblt
03 Res 13 intm 23 1dt 33 fble
04 Res 14 itfp 24 stf 34 bsr
05 Res 15 fltv 25 stg 35 fbne
06 Res 16 flt 26 sts 36 fbge
07 Res 17 fltl 27 stt 37 fbgt
08 1da 18 misc 28 1dl 38 blbc
09 ldah 19 hw_mfpr 29 1dq 39 beq
Oa 1dbu la jsr 2a 1dl_1 3a blt
0Ob 1dq_u Ib hw_Id 2b ldq_l 3b ble
Oc 1dwu Ic fpti 2¢ stl 3c blbs
0d stw 1d hw_mtpr 2d stq 3d bne
Oe stb le hw_rei 2e stl_c 3e bge
0f stq_u If hw_st 2f stq_c 3f bgt
The integer operate instruction formats on the Alpha are shown below.
31 26 25 2120 1615 131211 54 0
Opcode regA regB 0 (0 Function regC

Integer operate instruction with second operand a register

31 26 25 2120 131211 54 0

Opcode regA Unsigned literal |] Function regC

Integer operate instruction with second operand a literal

Integer operate instructions also have a function code, stored in bits 5-11, which gives more detail
about what operation the instruction should perform. The operands are specified in other fields.
Bits 21-25 specify the register that contains the first operand. The second operand can be either a
register or a constant, and the appropriate alternative is specified by a flag in bit 12. If the flag is O,
the second operand is a register, and this register is specified in bits 16-20. If the flag is 1, the
second operand is an unsigned 8 bit constant, and this constant is specified in bits 13-20. The result
is stored in a register, and the destination register is specified in bits 0-4. There are similar formats
for other instructions.

The size of each field in the instruction is important. Because the field for a register number

contains 5 bits, we can specify at most 25 = 32 different registers. Thus it is not possible to have
more than 32 integer registers. The field for the unsigned constant is 8 bits, so must be in the range
0..255.

It must be possible to determine the meaning of an instruction by a straightforward algorithm. The
opcode determines the overall format of the rest of the instruction. Given that we know the
instruction is an integer operate instruction, we can check the function code to determine exactly
which integer operate instruction it is, and check the literal flag to determine whether the second
operand is a constant or register.

Alpha Instruction Formats

Alpha Computer Architecture
Function code for opcode 0x10

20 addq 40

00
01
02
03
04
05
06
07
08
09
Oa
Ob
Oc
0d
Oe
Of
10
11
12
13
14
15
16
17
18
19
la
1b
1c
1d
le
1f

addl

s4addl

subl

sdsubl

cmpbge

s8addl

s8subl

cmpult

21 41
22 sdaddq 42
23 43
24 44
25 45
26 46
27 47
28 48
29 subq 49
2a 4a
2b s4subq 4b
2c 4c
2d cmpeq 4d
2e 4e
2f 4f
30 50
31 51
32 s8addq 52
33 53
34 54
35 55
36 56
37 57
38 58
39 59
3a Sa
3b s8subq 5b
3c 5c
3d cmpule 5d
3e Se
3f 5t

30 January 2007

addlv

sublv

cmplt

60 addqv
61
62
63
64
65
66
67
68
69 subqv
6a
6b
6¢
6d cmple
6e
6f
70
71
72
73
74
75
76
77
78
79
Ta
7b
Tc
7d
Te
7f

The other instruction formats on the Alpha are shown below.

31 2625 2120 16 15 54
Opcode regA regB Function regC
Floating point operate instruction
31 2625 2120 16 15
Opcode regA regB Signed displacement

Memory access instruction

Alpha Instruction Formats

Page 2-21

Alpha Computer Architecture 30 January 2007 Page 2-22
31 2625 2120 0

Opcode regA Signed displacement / 4

Branch instruction

31 26 25 0

Opcode Function

Special instruction

There are some instructions that ignore some fields, or use them for some other purpose, but all
instructions still more or less conform to one of these formats.

Alpha Instruction Formats

Alpha Computer Architecture 30 January 2007 Page 3-23

3. Assembly language

How do we create machine code? We write a program, in textual form, and use another program to
translate this into machine code instructions. The name given to the translator depends on how high
level the textual version of the program is. If the original program is written in a typical high level
language, such as C, and is fairly machine independent, then the translator is called a compiler. If
the original program is written in a low level language that does little more than specify the
instructions in a textual form, the language is called assembly language, and the translator is called
an assembler. Because different kinds of computers have different instruction sets, assembly
language is very different on different kinds of computers.

What does an assembly language program look like? Here is a very simple piece of assembly
language:
entry main.enter;

import "../IMPORT/callsys.h";

// void main () {

// while (TRUE) {

// char c;

// c = getChar();

// if (¢ < 0)

// break;

// putchar(c);

// }

// exit(0);

// }

block main uses CALLSYS {
code {

public enter:

{

loop:
ldig $a0, CALLSYS GETCHAR;
call pal CALL PAL CALLSYS;
blt $v0, end;
mov $v0, sal;
ldig $a0, CALLSYS PUTCHAR;
call pal CALL PAL CALLSYS;

br loop;
end:
}
{
clr $al;
ldig $ao0, CALLSYS EXIT;
call pal CALL PAL CALLSYS;
}
} code

} block main

It should be pointed out that this is my own home grown assembler. It is a bit different from most
conventional assemblers.

Altogether, the program reads characters from the keyboard, and outputs them to the screen.
The line

entry main.enter;
just specifes the entry point for the program (in other words, where the program starts executing).

The line
import "../IMPORT/callsys.h";

Assembly language

Alpha Computer Architecture 30 January 2007 Page 3-24
specify that the code in the specified file is imported (included).

The C-like code, with // to the left of each line, is really just a sequence of comments. They are
there for people, but the assembler ignores them. Because assembly language programs are very
low level and difficult to read, it is desirable to always document your assembly language program
by comments written in a high level language.

The lines
block main uses CALLSYS {
} block main

just specify that we are creating a block of code called main, using some definitions in a block
called register that specifies the register numbers for the symbolic names a0, a1, v0, etc, and using

some definitions in a block called carisys that specifies the values of cALL PAL CALLSYS,
CALLSYS GETCHAR, CALLSYS PUTCHAR, efcC.

The lines

code {
} code

just specify that we are defining code (instructions), rather than data. The assembled bit patterns
are placed in the section of memory used for code.

The line

public enter:

labels some code, with the name “enter”. This code can be referred to outside the block, as

main.enter.

The lines

{

loop:
ldig $a0, CALLSYS GETCHAR;
call pal CALL PAL CALLSYS;
blt $v0, end;
mov $v0, sal;
ldig $ao0, CALLSYS PUTCHAR;
call pal CALL PAL CALLSYS;
br loop;

end:

}

represent the real work.

We label the beginning of the loop by the identifier “100p”. As in all computer languages, the
name is arbitrary, and could be consistently replaced by any other identifier.

The line
1dig $a0, CALLSYS GETCHAR;

loads the constant value carLsys GETCHAR (whatever that has been defined to be in the block
CALLSYS, In ““. . /IMPORT/callsys.h”) into register a0.

The line
call pal CALL PAL CALLSYS;

then makes a request (rather like a function invocation) to the operating system to do something
(read a character from the keyboard). The operating system uses the value in register $a0 to
determine what action to perform (in this case read a character), and returns the result in register
sv0. Other parameters to system calls may be passed in registers $a1, $a2, $a3, ...

The line
blt $v0, end;

Assembly language

Alpha Computer Architecture 30 January 2007 Page 3-25
causes a branch out of the loop if the returned characacter is < O (indicating end of file).

The lines
mov $v0, Sal;
1dig $ao0, CALLSYS_PUTCHAR;
call pal CALL PAL CALLSYS;

move the character from register v0 into register a1, load the constant value CALLSYS PUTCHAR into
register $a0 (to specify that the action is to write a character), and makes a request to the operating
system (to write the character to the screen).

The line
br loop;

causes the program to branch back to the address corresponding to the label 1o0p.

The lines

{

clr $al;

ldig $ao0, CALLSYS EXIT;
call pal CALL PAL CALLSYS;
}

Cause the program to terminate and control to be returned to the operating system.

Now, to really understand this program, you have to not only understand what each instruction
does, but also know the general conventions for making system calls, and what the two system calls
that read and write a character, and the exit system call actually do.

There is also the additional complication that many of these instructions are not real instructions,
and get converted into something different. However, it still gives a feeling for the manner in
which assembly language programs are written, and the low level they correspond to. We have to
build loops and if statements out of branch instructions.

In fact the instructions for making system call requests are usually put inside functions, and the

functions are called instead.
block Sys {
// char getChar () {

// // read a character from the simple terminal;
// }
public block getChar uses proc, CALLSYS {
code {
public enter:
lda $sp, -sav0 (Ssp);
stqg Sra, savRet ($sp);
body:

ldig $a0, CALLSYS GETCHAR;
call pal CALL PAL CALLSYS;

return:
ldg $ra, savRet ($sp);
lda $sp, +sav0 (Ssp);
ret;
} code

} block getChar
// void putChar(char c) {

// // write a character to the simple terminal;

// }

Assembly language

Alpha Computer Architecture 30 January 2007 Page 3-26
public block putChar uses proc, CALLSYS ({

code {
public enter:
lda Ssp, —-sav0 ($sp);
stqg Sra, savRet ($sp);
body:
mov $a0, sal;

ldig $a0, CALLSYS PUTCHAR;
call pal CALL PAL CALLSYS;

return:
ldg Sra, savRet ($sp);
lda Ssp, +sav0 ($sp);
ret;
} code

} block putChar

} block main

The code
lda Ssp, —-sav0 ($sp);
stqg Sra, savRet ($sp);
at the beginning and
ldg Sra, savRet ($sp);
lda Ssp, +sav0 ($Ssp);
ret;

at the end is code to save registers on entry to a function and restore them on exit. Don’t worry
about this code for the moment.

Let’s consider another piece of assembly language that uses the putchar function.
block IO {

// void print(char *s) {

// while (*s !'= 0) {
// putChar(*s);
// S++;
// }
// }
//
public block print uses proc {
abs {
S = s0;
} abs
code {
public enter:
lda Ssp, —-savl ($sp):;
stqg Sra, savRet ($sp);
stq $s0, sav0 (S$Ssp);
body:
mov $a0, S$s; // Pointer to char in string
{
while:
ldbu $a0, ($s); // Get character
beq $a0, end; // Break if at end of string
do:
bsr Sys.putChar.enter; // Print char
addg $s, 1; // Increment pointer
br while;
end:

Assembly language

Alpha Computer Architecture 30 January 2007 Page 3-27

return:
ldg $s0, sav0 ($Ssp);
1ldg Sra, savRet ($sp);
lda $Ssp, t+savl($sp);
ret;
} code

} block print

Again, don’t worry about the function entry/exit code.

This assembly language represents a function, that prints out a string. The address of the string is
initially in register a0, and is moved to another register we have named s.

Strings are represented by the address of memory containing the text. The end of the string is
indicated by a null byte.

The line

s = s0;
specifies that the identifier s really means s0 (the name of a register).
The line

mov $a0, S$s; // Pointer to char in string
says copy the contents of register a0 into register s.

The line
1ldbu $a0, ($s); // Get character

says load the byte at the address indicated by s, into register a0.

The line
beq $a0, end; // Break if at end of string

says if a0 is equal to O, branch to the label “end” (in other words, set the program counter to the
address corresponding to the label “end”). This is based on the convention of using a zero byte to
indicate the end of a text string.

The line

bsr Sys.putChar.enter; // Print char
says invoke the function “putChar”. (bsr stands for branch to subroutine. Subroutine is another

name for function, procedure, or method.) “sys.putChar.enter” is in fact a function that prints
the character passed in register a0.

The line
addg $s, 1; // Increment pointer

says add 1 to the register s. In other words, increment the pointer, to point to the next character.

The line
br while;

says branch back to the start of the loop, to process the next character.

9 ¢ 9 ¢

Again, the names given to the labels (“while”, “do”, “end”) are chosen by the programmer. I chose
them because I am implementing a while loop, and these names make the structure of the program
clearer.

Altogether, the program goes through a loop, printing the character pointed to, and incrementing the
pointer. It terminates when it finds a null byte.

Assembly language

Alpha Computer Architecture 30 January 2007 Page 4-28

4. Instruction Syntax

What is the syntax of instructions written in assembly language? Consider a couple of examples:
addqg $t0, $tl, $t3;
subg $t0, 23, St4;

We start with a symbolic opcode (operation code), representing the operation to be performed. This
is used to specify the opcode field in the assembled instruction, together with the function code, for
operate instructions. For example, the above instructions have symbolic opcodes “addg” and
“subg”. These instructions happen to translate into an actual opcode of 0x10, with function codes
0x20 and 0x29, respectively.

We follow the opcodes by a comma separated sequence of operands, then a semicolon.

In the above examples, we add the contents of registers $t0 and st1 together, and put the answer in
register $t3, and we subtract the value 23 (decimal) from the contents of register $t0, and put the
answer in register $t4.

There are five kinds of operands. The opcode determines the number and kind of legal operands.
. Register.

The operand represents a source or destination register. It is written as “$register”, for
example, $a0, $vO0.

. Unsigned 8 bit constant.

The second operand of an integer operate instruction can be of this form. The constant is
written directly, without any additional annotation, for example 23 in the above subg
instruction.

. Memory address.

The operand represents a memory address, computed as a displacement (offset) from a base
register. It is written as “displacement ($Sregister)”, and means the displacement +
contents of integer register $register. The displacement is a signed 16 bit integer. The
displacement may be omitted if it is O, allowing the notation “($register)”. If the register is
$zero (register 31), which always contains 0, then the operand can be written with just the
displacement. For example, we can write 24 ($t0). The notation ($t0) is an abbreviation for
0($t0), and the notation 1234 is an abbreviation for 1234 ($zero). Displacement operands
can only be used in load and store instructions.

o Branch destination.

The operand represents a destination address for a branch instruction. It is written directly as
the destination address, but is stored as a displacement from the address just after the branch
instruction. The last two bits of the displacement are not stored in the instruction, because
they are always 0.

. Unsigned 26 bit constant.

The operand of a special instruction is of this form. For example, CALL PAL CALLSYS in a
call pal instruction.

§4.1 Integer operate instructions

Integer operate instructions are used to perform operations on values in integer registers.

Instructions corresponding to integer operate instructions have three operands.

Instruction Syntax

Alpha Computer Architecture 30 January 2007 Page 4-29

An integer operate instruction of the form
opcode S$reghA, S$SregB, SregC;

means
intReg[regC] = intReg[regA] operation intReg[regB];

for the specified operation. For example, “subg $t0, $t2, $t4;” means
intReg[t4] = intReg[t0] - intReg[t2 1];

An operate instruction of the form
opcode S$regA, constant, S$regC;

means
intReg[regC] = intReg[regA] operation constant;

for the specified operation. For example, “subg $t0, 3, $t4;” means
intReg[t4] = intReg[t0] - 3;

We can omit the destination operand $regc, if it is the same as the first source. The assembler puts

it in for us. for example “addg $t1, 1;” means
intReg[tl] = intReg[tl1] + 1;

Floating point operate instructions are similar, except all registers are floating point registers, and a
constant is not allowed for the second operand.

bh) (13

Some integer operate instructions for performing arithmetic are “addq”, “subq”, “mulq”, “divqg”,
“modq”, to evaluate expressions involving +, -, *, /, and %. The last two do not exist on the real
machine, but do on the simulator. There is also a “umulh”instruction, that computes the high
quadword of the product of two quadwords, to permit the full 128 bit result to be computed. It is
useful for performing arithmetic on large values.

9 <

Some integer operate instructions for performing boolean computations are “and”, “bic” (bit clear),

b5 (13 be)

“pis” (bit set) or “or”, “eqv” (equivalent) or “xornot” (exclusive or not), “ornot”, “xor

(exclusive or), corresponding to &, & ~, |, A ~, | ~, A. For example, “bic $1, $2, $3;” means
intReg[3] = intReg[1] & ~ intReg[2 1;

These instructions interpret the data as bit patterns of boolean flags, rather than integers.

There are also three shift instructions, “s11” (shift left logical), “sra” (shift right arithmetic), and
“sr1” (shift right logical), corresponding to <<, >> and >>>. these instructions are used to shift the
bit patterns left and right. The shift logical instructions fill the vacated bits with 0, while the shift
right arithmetic instruction fills the vacated bits with the sign bit. These instructions can be used to
extract fields out of a bit pattern, and interpret them as either unsigned or signed numbers. They
also provide a cheap way to multiply or divide by a power of 2.

Exercise DATAREP1

Suppose we have the following values in registers.
$t0 0x0000000000000000
$tl Oxffffffffffffffo3
$t2 0x123456789%abcdef0
$t3 0x8888888888888888
s$td 0x7777777777777777
$t5 0x0000000000000000
$t6 0x0000000000000000
$t7 0x0000000000000000
$t8 0x0000000000000000

How will the registers change after executing the instructions
subg $t0, 1;

addg $tl, 0x94;

sl $t2, 7;

srl $t3, 1, $t5;

Instruction Syntax

Alpha Computer Architecture 30 January 2007 Page 4-30
sra $t3, 1, $te;
srl $t4, 1, $t7;
sra $t4, 1, $t8;

§4.2 Load and store instructions

To operate on memory values, we must first load the source data from memory, perform the
computation, then store the result back in memory.

Load and store instructions have the form
opcode S$regA, displacement ($regB) ;

All involve computing a memory address displacement + intReg[regB].

Integer load instructions load an appropriate number of bytes starting at the specified address, and
store them in intReg[rega]. For example, 1dq (load quadword) loads the 8 bytes corresponding to
a quadword, starting at the memory address, into register intReg[rega]. The instruction 1dbu
(load byte unsigned) loads a single byte from the memory address, into the low byte of register
intReg[rega], making the high 7 bytes zero.

Integer store instructions store an appropriate number of bytes from register intReg[rega] to the
memory starting at the specified address. For example, stg (store quadword) stores all 8 bytes
from register intReg[rega] corresponding to a quadword, into memory starting at the memory
address. The instruction stb (store byte) stores the low byte of register intReg[regA], into
memory at the memory address.

The default on the Alpha is to store data in memory in little endian format.

For example the 1dq instruction performs the following algorithm:
Quadword address = displacement + intReg[regB];
Quadword data = 0;
for (int 1 = 0; 1 < 8; 1 ++)

data |= memory[address + 1] << (8 * 1);
intReg[regA] = data;

There is also a 1da (load address) instruction, that loads the address into the register, rather than the
contents of the memory at the address.

Quadword address = displacement + intReg[regB];

intReg[regA] = address;

Really the load address instruction is like an add instruction with a constant, except that the
constant is a 16 bit signed value, rather than an 8 bit unsigned value. It is often used when passing
reference parameters to functions.

Floating point load and store instructions are similar to integer load and store instructions, except
regA is a floating point register.

Exercise DATAREP2

Suppose we have memory

0x1000000 0x123456789%abcdef0
0x1000008 0x0000000000000000
0x1000010 0x0000000000000000

How will the registers and memory change after executing the instructions
1diq $t0, 0x1000000;

ldg $tl, ($t0);

stb $tl, 8(St0);

ldbu $t2, 2(St0);

sll $t2, 56, S$t3;

sra $t3, 56, S$t4;

stg $t4, 16($t0);

Instruction Syntax

Alpha Computer Architecture 30 January 2007 Page 4-31
§4.3 Unconditional branch and jump instructions

Branch instructions are used to change the flow of control in a program.

The unconditional branch instruction has the form
br destination;

It is used to branch to the specified destination address (usually a label).

Essentially it corresponds to
programCounter = destination;

The unconditional jump instruction has the form
jmp (Sreg);

It is, used to jump to an address when the destination has to be computed at run time. It is often
used to implement switch statements.

Essentially it corresponds to
programCounter = intReg[reg];

§4.4 Subroutine invocation and return instructions

The bsr (branch to subroutine) instruction has the form
bsr destination;

It is used to branch to code for a function (subroutine, function, procedure and method are words
that mean essentially the same thing). It remembers the address just after bsr instruction (in a
register called the return address register) so that it is possible to return to this address.

Essentially it corresponds to
intReg[ra] = programCounter;
programCounter = destination;

The jsr (jump to subroutine) instruction has the form
jsr (Sreg);

It is, used to invoke a function when the destination has to be computed at run time. It is often used
to implement the invocation of instance methods in object oriented languages.

Essentially it corresponds to
intReg[ra] = programCounter;
programCounter = intReg[reg];

There is a matching instruction to return from a function, namely the ret instruction. It has no

operands.
ret;

It restores the program counter to its previous value.

Essentially it corresponds to
programCounter = intReg[ra];

we will deal with function invocations later in more detail.

§4.5 Conditional branch instructions

Conditional branch instructions have the form
opcode S$regA, destination;

The instruction checks the value of the register, and branches to a destination only if the register

satisfies some condition.
if (relation holds for intReg[regA])
programCounter = destination;

Instruction Syntax

Alpha Computer Architecture 30 January 2007 Page 4-32
Opcodes can be “beq” (branch if equal to 0), “bne” (branch if not equal to zero), “pb1t” (branch if
less than 0), “b1e” (branch if less than or equal to 0), “bgt” (branch if greater than 0), “bge”
(branch if greater than or equal to 0), “b1bs” (branch if the low bit is set), and “b1bc” (branch if the
low bit is clear). The low bit means the units bit of an integer value. A bit is said to be set if it is 1,
and clear if it is 0. My personal programming style is to use blbs and blbc for testing Boolean
values, rather than bne and beq.

Exercise DATAREP3
Suppose memory Label contains the quad value 0x123456789%abcdef0.
What are the values in the individual bytes starting at the address Labe1?

What do the instructions

ldig $t0, 8;

ldiqg $t1, 0;

ldig $t2, Label;
loop:

beg $t0, end;
ldbu $t3, ($t2);

addg $t2, 1;
subg $t0, 1;
sll $tl1, 8;
or Stl, $t3;
br loop;

end:

achieve, for an arbitrary value stored at address Labe1?

§4.6 Compare instructions

A class of integer operate instruction we have not mentioned is the class of compare instructions.
These instructions are used to compare two arithmetic operands and create a boolean value. They
correspond to the relational operators ==, <, <=. The opcodes are “cmpeq” (compare equal), for
testing equality, “cmp1t” (compare signed less than), “cmple” (compare signed less than or equal),
“cmpult” (compare unsigned less than), “cmpule” (compare unsigned less than or equal). These
instructions compare the values of the first and second operands, and put the boolean result in the
destination register (1 for true, O for false). These instructions can be combined with either a
“blbs” or “blbc” instruction to branch to a destination if a condition holds between two arithmetic
values. Because the ordering of unsigned and signed values is different, we need different
instructions for performing unsigned and signed comparisons.

§4.7 Conditional move instructions

Another class of integer operate instruction we have not mentioned is the class of conditional move
instructions. They could be replaced by sequences of other instructions, but they provide a concise
and efficient implementation in some special situations. They are unusual in that they may or may
not modify the destination register. These instructions compare the value of intReg[rega] with
0, and either do nothing, if a relation does not hold, or copy the second operand into intrReg[regC
1.

An integer operate instruction of the form
opcode S$reghA, SregB, SregC;

means
if (relation holds for intReg[regA])
intReg[regC] = intReg[regB];

An operate instruction of the form
opcode S$regA, constant, S$regC;

Instruction Syntax

Alpha Computer Architecture 30 January 2007 Page 4-33

means
if (relation holds for intReg[regA])
intReg[regC] = constant;

Opcodes can be “cmoveq” (conditional move if equal to 0), “cmovne” (conditional move if not
equal to zero), “cmovit” (conditional move if less than 0), “cmovie” (conditional move if less than
or equal to 0), “cmovgt” (conditional move if greater than 0), “cmovge” (conditional move if greater
than or equal to 0), “cmovibs”™ (conditional move if the low bit is set), and “cmovibc” (conditional
move if the low bit is clear).

§4.8 Special instructions

Special instructions have the form
opcode constant;

The only special instruction we will use directly is the call pal instruction, with the operand
caLL_PAL cALLSYS. Essentially this instruction, with this operand causes the invocation of a
function in the operating system. Additional information is passed in registers a0, al, ... a5, to
specify the request (in a0) and parameters to the request. The operating system passes the result
back in register vo.

§4.9 Pseudoinstructions

It is also possible to write some things that look like real instructions, but are not. They are what
are called pseudoinstructions. The assembler translates them into different real instructions. They
are recognised by the assembler to make assembly language easier to write and more readable.

The 1diqg (load immediate quadword) pseudoinstruction has the form
ldig S$regh, constant;

This pseudoinstruction has the effect of loading the constant into the register. In fact it is translated

into a 1dq instruction of the form
1ldg Sregh, displacement ($gp) ;

The assembler creates a table, containing all the constants, and makes the gp (global pointer)
register point to this table. The constant can be accessed as a displacement from this register.

For small constants, there are other ways of loading the constant into a register. The clr, mov or
negq pseudoinstructions can be used to load zero, an 8 bit positive, or 8 bit negative constant into a
register. The 1da (load address) instruction can be used to load a 16 bit signed constant into a
register, by making the base register, register 31.

The c1r (clear) pseudoinstruction has the form
clr SregC;

and clears the specified register. It translates into
bis $zero, $zero, $regC;

The mov (move) pseudoinstruction has the form
mov S$regB, SregC;

or
mov constant, S$regC;

and moves the contents of register rege or an 8 bit unsigned constant into register regc. It

translates into
addg S$zero, S$regB, SregC;

or
addg $zero, constant, S$regC;

The negq (negate) pseudoinstruction has the form

Instruction Syntax

Alpha Computer Architecture 30 January 2007 Page 4-34
negq $regB, $regC;

or
negq constant, S$regC;

and negates the contents of register regB or an 8 bit unsigned constant and stores the result in

register regc. It translates into
subg S$zero, $regB, S$regC;

or
subg $zero, constant, $regC;

Instruction Syntax

Alpha Computer Architecture 30 January 2007 Page 5-35

5. Use of registers

To make life safer for all concerned, there are conventions that drivers of motor vehicles are meant
to satisfy: Drive on the left hand side of the road, don’t exceed the speed limit, give way to traffic
crossing from the right, stop at a red light, etc. There are similar conventions for the use of registers
on the Alpha. It is possible to write code that does not satisfy these conventions, but you are likely
to get into trouble if you do, especially if the program is the work of more than one programmer.

Most of the conventions related to registers are to do with how they are used with function calls,
and we will deal with these conventions more fully at that time. However, lets give a rough
description now.

$t0-$t11 Temporary registers, used to hold temporary values, when evaluating expressions, etc.
$s0-$s5 Saved registers, used to hold the values of local variables in functions.

$a0-$a5 Argument registers, used to pass parameters to functions.

$v0 Value register, used to return the result of a function.

$ra Return address register, used to hold the return address of a function.

$gp Global pointer register, used to point to the table of constants.

$sp Stack pointer register, used to point to the top of the stack used to allocate space for
functions.

$zero Zero register, that always contains the value zero. Attempting to write to this register

has no effect.

It is imortant to realise that on return from a function, the values of temporary registers,
argument registers, and the $v0 and $ra registers may have been altered. Thus you cannot
keep important data in these registers across function invocations. Only the saved registers,
stack pointer register and global pointer register can be guaranteed to have the same value on
return from a function that they had before the invocation.

Use of registers

Alpha Computer Architecture 30 January 2007 Page 6-36
6. Programs, sections and blocks

§6.1 Overall structure

An assembly language program starts with an optional entry point specification (default, start of the
code section), followed by a sequence of import statements, sections and blocks.

entry main.enter;

import "../IMPORT/callsys.h";
import "../IMPORT/proc.h";

import "../IMPORT/callsys.lib.s";
import "../IMPORT/string.lib.s";
import "../IMPORT/number.lib.s";
import "../IMPORT/io.lib.s";

// char buffer[BUFFERSIZE + 1];

// void main () {
// while (TRUE) {
// print ("Type some input: ");
// if (readline(buffer, BUFFERSIZE) == null)
// break;
// print ("The input was: ");
// print (buffer);
// newline () ;
// }
// print("Bye!"™);
// exit(0);
// }
block main uses proc {
abs {
BUFFERSIZE = 200;
} abs
const {
align;
messagel:
asciiz "Type some input: ";
align;
message?2:
asciiz "The input was: ";
align;
message3:
asciiz "Bye!\n";
} const
data {
align;
buffer:
byte [BUFFERSIZE + 1];
} data

Programs, sections and blocks

Alpha Computer Architecture 30 January 2007 Page 6-37
code {
public enter:

{

loop:
ldig $a0, messagel;
bsr IO.print.enter;
ldig $ao0, buffer;
1dig $al, BUFFERSIZE;
bsr IO0.readLine.enter;
beq $v0, end;
1ldig $a0, message?2;
bsr IO.print.enter;
ldig $a0, buffer;
bsr IO.print.enter;
bsr IO0O.newline.enter;
br loop;

end:

}
{
1ldig $a0, message3;

bsr IO.print.enter;
}
{
clr $a0;
bsr Sys.exit.enter;
}

} code

} block main
So in the above program, the entry point is the label enter, within the block main.

An absolute section contains declarations of symbolic names for constants. Using symbolic names
provides a way of making our programs easy to read. For example, we can declare symbolic names
for registers.

A code section is used to specify instructions to execute.
A constant section is used to specify the data for string constants, etc.
A data section is used to specify the space for global variables. It is often used for global arrays.

A local section is used to specify the offsets for local variables for functions, fields of a record
(class), etc. Basically it is used to specify the offsets of data in any kind of compound data
structure.

A block is a named compound object, composed of sections, sub-blocks, etc. A block is often used
to contain all the code for a function.

§6.2 Allocating space for global variables

So long as our program is small, we can use the saved registers to store the values of variables.
However, registers can only be used to contain simple values, such as integers, characters, boolean
values, etc. Arrays and strings are too big to be stored in a register, and have to be stored in
memory. Also, it is fairly easy to run out of registers to use for simple variables, because there are
only 6 saved registers. Space for string constants can be allocated in the constant section. Space
for variables and arrays can be allocated in the data section. To allocate space, we need an
alignment statement, a label to name the memory, then a memory allocation statement. We can

[T

initialise memory, by specifying a data type, followed by the initial value, then a ;”.

Programs, sections and blocks

Alpha Computer Architecture 30 January 2007 Page 6-38
const {
align;
messagel:
asciiz "Type some input: ";
align;
message?2:
asciiz "The input was: ";
} const

Data types can be keywords such as byte, ubyte, quad, ascii, asciiz, etc, to allocate space for a
signed byte, unsigned byte, signed quadword, unterminated ASCII string, null terminated ASCII
string, etc.

Apart from the data types corresponding to strings, memory allocation instructions allocate the
appropriate amount of memory in the relevant section (1 byte for byte and ubyte, 2 bytes for word
and uword, 4 bytes for 1ong and ulong, 8 bytes for quad and uquad, 4 bytes for f1oat, 8 bytes for
double). The difference between the signed and unsigned variants is to do with checking the value
is in range. For example byte requires a value that is between -0x80 and +0x7f, while ubyte
requires a value that is between 0 and +0xff. In fact there is no checking for quad and uquad.

For ascii the number of bytes allocated is equal to the length of the string, and the contents is the
data within the string. The asciiz directive is similar, except an extra zero byte is allocated and
added on the end.

If we miss out the initial value, we get data that is initially zero.

data {
c: quad;
d: quad;

} data

We can allocate blocks of memory, by declaring an array:
data {
align;
buffer:
byte [BUFFERSIZE + 1];
} data

Uninitialised memory statements usually only occur within a data or local section.

Alignment statements can be used to round the current address up to a multiple of the size of a
specified type. This is needed because data has to be aligned appropriately, for it to be accessed.
Generally, it is a good idea to align data labels to quadwords, no matter what the size of the data. If
labels are not at least aligned to longwords, then the memory display in the simulator will be
confused.

Exercise DATAREP4

Suppose we have the following alpha assembly language

data {
align;
message:
asciiz "0x12\n";
value:
quad 0x123456789%a;
} data

Programs, sections and blocks

Alpha Computer Architecture
Indicate the contents of each byte of memory in hexadecimal.

30 January 2007

Page 6-39

0x1000000 0x1000008
0x1000001 0x1000009
0x1000002 0x100000a
0x1000003 0x100000b
0x1000004 0x100000c
0x1000005 0x100000d
0x1000006 0x100000e
0x1000007 0x100000f
The label message, is at address 0x1000000
Exercise DATAREPS
Suppose we have the following alpha assembly language
data {
valuel:
quad -3; // Note this is negative!
value2:
quad 1046; // Note this is decimal!
} data
Indicate the contents of each byte of memory in hexadecimal.
0x1000000 0x1000008
0x1000001 0x1000009
0x1000002 0x100000a
0x1000003 0x100000b
0x1000004 0x100000c
0x1000005 0x100000d
0x1000006 0x100000e
0x1000007 0x100000f

Assume the label valuel, is
format.

Programs, sections and blocks

at address 0x1000000, and integers are represented in little-endian

Alpha Computer Architecture
Exercise TESTPROG_BIN

30 January 2007

Page 6-40

Show the values of memory and registers used by the following program, each time the program
reaches the labels showDatal and showData2.

entry main.enter;

import "../IMPORT/callsys.h";
import "../IMPORT/proc.h";
import "../IMPORT/callsys.lib.s";

block main uses proc {

abs {
c = s0;
value = sl;
textPtr = s2;
} abs
data {
align;
output:
bytel[8 1;
endOutput:
byte 0;
} data
code {
public enter:
1dig $value, 13; // Decimal 13.
ldig StextPtr, endOutput;
clr Sc;
{
do:
showDatal:
and Svalue, 1, Sc;
srl Svalue, 1;
addqg $c, '0';
subqg StextPtr, 1;
stb Sc, (StextPtr) ;
while:
bne Svalue, do;
end:
}
showData2:
{
while:
1dbu $ao0, (StextPtr) ;
beg $ao0, end;
do:
bsr Sys.putChar.enter;
addg StextPtr, 1;
br while;
end:
}
clr $a0;
bsr Sys.exit.enter;
} code

} block main

Programs, sections and blocks

Alpha Computer Architecture 30 January 2007 Page 6-41

pC

$c

$value

StextPtr

0x1000004

0x1000005

0x1000006

0x1000007

0x1000008

What is the output from the above program?

What does the above program achieve in general, with the number 13 replaced by an an arbitrary
number?

§6.3 Creating code for simple statements and expressions

(1Pt

Suppose we want to increment a simple variable “a”, stored in memory. We have to write
something like the following:

ldig $t0, a; // Get the address of a

ldg $tl1, ($t0); // Get the value of a

addq $t1, 1; // Increment the value

stg $tl, ($t0); // Store the result back in a

So you can see that even the most trivial of high level statements becomes rather involved in
assembly language. Of course if we used a register to store the value of the variable “a”, we could
have done it in one instruction.

The code to load a constant value into register tempReg is just
ldig StempReg, constantValue;

The code to load the address of a global variable “a” into register tempReg is just
1dig StempReg, a;

The code to load the value of a global variable “a” into register tempReg is just
1dig StempReg, a;
ldg StempReg, ($tempReq);

.9

To generate code for an assignment statement “lhs = rhs;”, we have to perform the following

algorithm
Generate code to evaluate the rhs into tO0;
Generate code to evaluate the address of the lhs into tl;
stg $t0, ($tl); // Store the value back in the lhs address

The above code can be improved if we can access the lhs address as a displacement from a register.

To generate code to evaluate an expression corresponding to a binary expression “leftOpd opr

rightOpd”, into register tempReg, we have perform the following recursive algorithm
Generate code to evaluate leftOpd into tempReg;
Generate code to evaluate rightOpd into tempReg + 1;
opcode StempReg, StempReg+l; // perform the operation

Programs, sections and blocks

Alpha Computer Architecture 30 January 2007 Page 6-42
For example, to evaluate a * b + ¢ * d, we would write

ldig $t0, a;

1dig $t1, b;

ldg s$tl, (Stl);

mulg $t0, $tl;

ldig S$tl, c;

ldg $tl, (Stl);

ldig $t2, d;

1dg $t2, (St2);

mulg $tl, $t2;

addg $t0, S$ti1;

So long as we don’t run out of registers, this recursive algorithm is straightforward. The algorithm
for unary operators is similar.

Data is often packed together within a single quadword or longword. For example, the opcode,
register numbers and displacement for a load or store instruction are packed together as fields
within a longword. How can we extract the data out? We can use a left shift instruction to shift the
data to the high end of a quadword (deleting the information to the left of the field), then a right
shift instruction to shift the data to the low end of the quadword (deleting the information to the
right of the field, and putting the data in the right place). We use a srl (shift right logical)
instruction if we want to interpret the data as an unsigned number, and a sra (shift right arithmetic)
instruction if we want to interpret the data as a signed number.

For example, to extract the opcode, regA, regB and displacement fields of a load/store instruction,

we could write:
data {
align;
instruction:
long;
align;
opcode:
quad;
align;
regh:
quad;
align;
regB:
quad;
align;
displacement:
quad;
} data
code {

1dig $t0, instruction;
1dl $t0, (S$t0);

sll $t0, 64-32, $tl;
srl $tl, 64-32+26, Stl;
ldig $t2, opcode;
stg $tl, ($t2);

sll $t0, 64-26, $tl;
srl $tl, 64-26+21, $tl;
ldig $t2, regh;
stg $tl, ($t2);

Programs, sections and blocks

Alpha Computer Architecture 30 January 2007 Page 6-43
sll st0, 64-21, $tl;
srl $tl, 64-21+16, $tl;
ldig $t2, regB;
stg $tl, ($t2);

s1l $t0, 64-16, $t1;
sra $tl, 64-16+0, S$Stl;
ldig $t2, displacement;
stg $tl, ($t2);
} code

§6.4 Creating control structures

It is possible to build if statements and loops out of branch statements.

To create an if statement corresponding to
if (condition)
statementl;

else
statement2;
we write
{
if:
Generate code to evaluate the condition,
and branch to the label “then” if the condition is true
or “else” if the condition is false;
then:
Generate code for statementl;
br end;
else:
Generate code for statement2;
end:

}

The label names are arbitrary, but using the names “if”, “then”, “else” and “end” gives the
appearance of a high level control structure.

Programs, sections and blocks

Alpha Computer Architecture 30 January 2007
For example, assuming all variables are stored in memory,

if (a !'=0)

count = count + 1;
else

count = count - 1;

translates into

{

if:
ldig $t0, a;
ldg $t0, (S$t0);
beg $t0, else;

then:
ldig $t0, count;
ldg $tl, (S$t0);
addg $tl, 1;
stg $tl, ($t0);

br end;
else:
ldig $t0, count;
subg $tl1, 1;
stg $tl, ($t0);
end:

}

To create an if statement corresponding to
if (condition)
statementl;

we write

{
if:

Generate code to evaluate the condition,
and branch to the label “then” if the condition is true

or “end” if the condition is false;
then:

Generate code for statementl;
end:

}

To create a while statement corresponding to
while (condition)
statementl;

we write

{

while:
Generate code to evaluate the condition,
and branch to the label “do” if the condition is
or “end” if the condition is false;

do:
Generate code for statementl;
br while;

end:

Programs, sections and blocks

Page 6-44

Alpha Computer Architecture 30 January 2007 Page 6-45
For example consider

result = 1;

i =0;

while (1 < n) {
result = result * a;
i++;

}

Suppose “result”, “i”, “n” and “a” are represented by registers $result, $i, $n and $a. Then we can
write

mov 1, Sresult;

clr $i;

{

while:
cmplt i, Sn, St0;
blbc $t0, end;

do:
mulg $result, Sa;
addqg $i, 1;
br while;

end:

}

To create a for statement corresponding to
for (initialisation; condition; increment)
statementl;

we write

{

for:
Generate code for initialisation;

while:
Generate code to evaluate the condition,
and branch to the label “do” if the condition is true
or “end” if the condition is false;

do:
Generate code for statementl;

continue:
Generate code for the increment;
br while;

end:

}

For example consider what is effectively the same code as the above while loop

result = 1;
for (1 = 0; i < n; 1i++)
result = result * a;

Then we generate much the same code, but with a couple of additional labels, to make it look more
like a for loop.

mov 1, Sresult;
{
for:
clr $i;
while:
cmplt $i, Sn, St0;
blbc $t0, end;
do:
mulg $result, Sa;
continue:
addqg $i, 1;
br while;
end:

}

Programs, sections and blocks

Alpha Computer Architecture 30 January 2007 Page 6-46
Break or continue statements inside the substatement should be translated into “br end;” and “br
continue;” respectively.

We can also translate switch statements into assembly language. If the cases are closely packed

within a limited range, we can use what is called a branch table.
switch (expr) {
case 0:
stmt0;
break;
case 1:
stmtl;
break;
case 2:
stmt2;
break;
default:
defaultStmt;
}

translates into
{

switch:

Generate code to evaluate expr into $tO0;

blt $t0, default;

cmple $t0, n, Stl;

blbc $tl, default;

1dig $tl, branchTable;

s8addg $t0, $t1, stil; // $tl = 8 * $t0 + $tl

ldg Stl, ($tl);

jmp ($tl); // Jump to the address contained in $tl
branchTable:

quad case0;
quad casel;
quad case2;

case0:
Generate code to evaluate stmtO;
br end;

casel:
Generate code to evaluate stmtl;
br end;

case2:
Generate code to evaluate stmt2;
br end;

default:
Generate code for defaultStmt;
end:

}

Programs, sections and blocks

Alpha Computer Architecture 30 January 2007 Page 6-47
If the cases are sparse, we can use compare and branch instructions.
{

switch:
Generate code to evaluate expr into $tO0;
cmpeq $t0, O, $tl;
blbs $tl, case0;
cmpeq $to, 1, $tl;
blbs $tl, casel;
cmpeq $to0, 2, $tl;
blbs $tl, case2;
br default;
case0:
Generate code to evaluate stmtO;
br end;
casel:
Generate code to evaluate stmtl;
br end;
case2:
Generate code to evaluate stmt2;
br end;
default:
Generate code for defaultStmt;
end:

}

What are the “{ ... }” braces for? they create a local “scope”. The labels inside “{ ... }”’ can only be
referred to inside “{ ... }”, so we can use the same identifiers for labels in different control
statements.

Programs, sections and blocks

Alpha Computer Architecture 30 January 2007 Page 7-48

7. Strings

Strings are represents as a sequence of bytes. In C, the end of a string is indicated by a zero byte. I
will use the same convention.

We can create string constants by using the asciiz directive. The z in asciiz means zero byte
terminated.
const {
align;
messagel:
asciiz "Type some input: ";
align;
message?2:
asciiz "The input was: ";
} const

If we want to create new strings, we need to allocate space, using the byte directive.
data {
buffer:
byte [BUFFERSIZE + 1];
} data

The string is limited to a maximum length of BUFFERSIZE, because the space we have allocated is
BUFFERSIZE + 1 bytes (the extra byte being for the zero byte terminator). It is not easy to manage
arbitrary length strings, because we then need memory management - dynamically allocating and
freeing memory to hold the string.

The address of an element of a string can be accessed as the base address plus the index. To get the
character at that address, we need an extra load. Note that the load instruction is ldbu, to load a

byte, not a quadword.
ldig $t0, buffer;
addgq $i, $t0, $tO; // Gives the address of the ith element.
ldbu $t0, ($t0); // Give the value of the ith element.

We can write code to read in a line of input, and store it in the buffer. Don’t worry about the code
for entry to or exit from the function. just look at the code for the body of the function. If the input
line is too long, the excess input is deleted. Normally, the address of the end of the text is returned.
However, if end of file (represented by typing ctrl-D) is reached, null is returned instead.

// char *readLine(char *s, int max) {
// register int i = 0;

// register int c;

// while (TRUE) {

// c = getchar();

// if (¢ <0 || ¢ == "\n")
// break;

// if (i < max)

// s[1] = c;

// it++;

// }

// if (1 > max)

// 1 = max;

// s[11 = "\0";

// if (¢ < 0)

// return NULL;

// else

// return s + i;

// }

//

Strings

Alpha Computer Architecture
public block readLine uses proc {

Strings

abs {
S = s0;
max = sl;
i = s2;
c = s3;
} abs
code {
public enter:
lda Ssp, —-savid ($sp);
stqg Sra, savRet ($sp);
stq $s0, sav0 (S$Ssp);
stq $sl, savl (S$Ssp);
stq $s2, sav2 (S$sp);
stq $s3, sav3(S$sp);
body:
mov $a0, S$s;
mov Sal, Smax;
clr $i;
{
while:
bsr Sys.getChar.enter;
mov $vo0, Sc;
blt Sc, end;
cmpeq Sc, "\n"',
blbs $t0, end;
do:
{
if:
cmplt $i, $Smax,
blbc $t0, end;
then:
addqg $s, $i,
stb Sc,
end:
}
addg $i, 1;
br while;
end:
}
{
if:
cmple $i, $Smax,
blbs $t0, end;
then:
mov Smax, Si;
end:
}
addg $s, $i, $t0;
stb Szero, ($t0) ;
{
if:
bge Sc, else;
then:
clr Sv0;
br end;
else:
mov $t0, $vO;
end:

30 January 2007

St0;

St0;

($t0) ;

//
//
//

//

//

//

//

//

//

Page 7-49

Pointer to character
Size of input buffer
Count of characters read

Get a char

Break if newline

If within buffer

Store the character

Increment count

If not within buffer

Append null char

Alpha Computer Architecture 30 January 2007 Page 7-50

return:
ldg $s3, sav3($sp);
ldg $s2, sav2($sp);
ldg $sl, savl(S$sp);
ldg $s0, sav0(S$sp);
1ldg Sra, savRet ($sp);
lda Ssp, +tsavéd (Ssp);
ret;
} code

} block readLine

The following function compares two strings. It returns a number that is < 0, ==0, >0, if s < t, s
==1t, s> t, in the normal sort order.
// int compare(char *s, char *t) {
// while (*s == *t && *s != 0) {
// S++;
// t++;
// }
// return *s - *t;
// }
public block compare uses proc {
abs {
S = al;
t = al;
} abs
code {
public enter:
body:
{
while:

ldbu $t0, ($s);
l1dbu $tl1, (S$t);

cmpeq $t0, Stl, S$t2;
blbc $t2, end;
beg $t0, end;
do:
addqg $s, 1;
addqg $t, 1;
continue:
br while;
end:

}
subg $t0, $tl, $vO;
return:
ret;
} code
} block compare

Strings

Alpha Computer Architecture

//
//
//
//
//
//
//
//

while (*s
len++;
s++;

}

return len;

}

30 January 2007

The following function returns the length of a null terminated string.
int length(char *s
int len = 0;

) |

0) |

public block length uses proc {

Strings

abs {
s =
len =
} abs

code {

public enter:

lda
stg
stg
body:
{
for:
clr
while:
1dbu
beqg
do:
addg
addg
continue:
br
end:
}
mov
return:
ldg
ldg
lda
ret;
} code

} block length

al;
s0;

Ssp, -savl (Ssp);

Sra, savRet ($sp);

$s0, sav0 ($sp);

Slen;

$tOI ($S),‘
$t0, end;

Slen, 1;
$s, 1;

while;

Slen, Sv0;

$s0, sav0 ($sp);

Sra, savRet ($sp);

Ssp, +tsavl (Ssp);

Page 7-51

Alpha Computer Architecture 30 January 2007 Page 7-52
The following function copies the null terminated string stored at address t to address s.

// char *copy(char *s, char *t) {
// while ((*s = *t) != 0) {
// s++;
// t++;
// }
// return s;
// }
public block copy uses proc {
abs {
S = al;
t = al;
} abs
code {
public enter:
body:
{
while:
ldbu $t0, (St);
stb $t0, ($s);
beg $t0, end;
do:
addqg $s, 1;
addg $t, 1;
continue:
br while;
end:
}
return:
mov $s, $vO0;
ret;
} code

} block copy

Strings

Alpha Computer Architecture

Exercise UPI

Suppose we have the following Alpha assembly language program:

block main uses proc {

data {

memoryl:

quad

memory2:

quad

} data

code {

public enter:

ldiqg
ldiqg
{

while:

do:

end:
}
showData:
ldiqg
bsr
bsr
ldiqg
bsr
bsr
clr
bsr

1ldbu
beqg

subg
addg
stb
addg
addg
br

} code
} block main

0x697075;

0;

$to, memoryl;
$tl, memory2;

$t2, ($t0);
$t2, end;

$t2, 'a';
$t2, '"A';
$t21 ($tl);
$to, 1;
$t1, 1;
while;

$ao, memoryl;
IO.print.enter;
IO0O.newline.enter;
$ao0, memory2;
IO.print.enter;
IO0O.newline.enter;
$a0;
Sys.exit.enter;

30 January 2007

Page 7-53

Indicate the values in hexadecimal of the computer memory when the program reaches the label
“showData”. Assume “memoryl” corresponds to address 0x1000288, and “memory2” corresponds
to address 0x1000290.

0x10003f0

0x10003f1

0x1000312

0x1000313

Indicate the output generated by the program. Note that the bytes printed are interpreted as

characters, not integers.

Strings

Alpha Computer Architecture
Exercise TESTPROG_REVERSE1

Suppose we have the following Alpha assembly language program

block main uses proc {
data { //

align;

buffer:
asciiz "tide";

} data

code {
public enter:
ldig $s0, buffer;

mov $s0, $sl;
mov $s0, $s2;

{ //

while:

ldbu $tO0,

beg $tO0,
do:
addg $s1,

30 January 2007

Address 0x1000000

loop 1

($s1);
end;

1;

br while;

end:

}

showDatal:

subqg $sl1, 1;
{ //
while:
cmpult
blbc $t2,
do:
1ldbu $tO,
ldbu $t1,
stb $tO0,
stb $t1,
showData2:
continue:
addg $s0,
subg $s1,

loop 2

$s0, S$s1,
end;

1;
1;

br while;

end:

}

showData3:

{ //

while:
1ldbu $ao0,

loop 3

($s2);

beg $a0, end;

do:

$t2;

bsr Sys.putChar.enter;

addg $s2,

1;

br while;

end:

}

mov '\n',

$a0;

bsr Sys.putChar.enter;

clr $a0;

bsr Sys.exit.enter;

} code

} block main

Page 7-54

Display the contents of registers and memory each time the program reaches, but has not executed

the code at the labels showDatal, showData2 and showData3.

Strings

Alpha Computer Architecture 30 January 2007 Page 7-55
Indicate the value of the program counter by writing the name of the label (showDatal,
showData2, showData3) it corresponds to.

Indicate the values of registers and memory either in hexadecimal, or as an ASCII character,
whichever is appropriate. The buffer starts at address 0x1000000.

pC

$t0

$t1

$2

$s0

$s1

$s2

0x1000000

0x1000001

0x1000002

0x1000003

0x1000004

Exercise TESTPROG_HEX

Indicate the values of registers and memory each time the program reaches the labels showData0,
showDatal and showData2.

entry main.enter;

import "../IMPORT/callsys.h";
import "../IMPORT/proc.h";
import "../IMPORT/callsys.lib.s";

block main uses proc {
abs {

numByte = 2;

numNibble =
i
c
valuePtr =
textPtr =
} abs

data {
align;

text:

byte [numNibble

align;
value:

word 0x7c3;

} data
code {
public enter:

1dig SvaluePtr,
1dig StextPtr,

showDataO:

Strings

2 * numByte;
s0;
sl;
s2;
s3;

value;
text;

Alpha Computer Architecture 30 January 2007
{
for:
mov 0, $i;
while:
cmplt $i, numByte, $tO0;
blbc StQ, end;
do:
addg SvaluePtr, i, Stl;
1dbu Sc, ($tl1);
and Sc, Oxf, $t2;
srl Sc, 4, $t3;
sll $i, 1, St4;
addg StextPtr, $t4, S$t5;
stb st2, 0($t5);
stb $t3, 1($t5);
showDatal:
continue:
addqg Si, 1;
br while;
end:
}
{
for:
mov numNibble-1, $i;
while:
blt $i, end;
do:
addg StextPtr, i, SSt6;
1dbu Sc, ($t6);
{
if:
cmplt Sc, 10, St7;
blbc st7, else;
then:
addg Sc, '0';
br end;
else:
addqg Sc, 'a';
subg Sc, Oxa;
end:
}
mov Sc, $a0;
bsr Sys.putChar.enter;
continue:
subg $i, 1;
br while;
end:
}
showData2:
bsr Sys.exit.enter;
} code

} block main

Strings

Page 7-56

Alpha Computer Architecture 30 January 2007 Page 7-57

pC

$t0

$t1

$2

$t3

$t4

$t5

$i

$c

$valuePtr

StextPtr

0x1000000

0x1000001

0x1000002

0x1000003

0x1000008

0x1000009

0x100000a

0x100000b

Indicate the output generated for this specific value of 0x7c3, and the overall purpose of the
program, for an arbitrary value.

Strings

Alpha Computer Architecture
Exercise TESTPROG_OCT

30 January 2007

Page 7-58

Indicate the values of registers and memory each time the program reaches the labels showData0

and showDatal.

entry main.enter;

import "../IMPORT/callsys.h";
import "../IMPORT/proc.h";

import "../IMPORT/callsys.lib.s";

block main uses proc {

abs {
c = s0;
value = sl;
textPtr = s2;
} abs
data {
valueMem:
quad 0x19c;
align;
text:
byte [8 17
} data
code {
public enter:
ldig StextPtr, text;
ldig $to, valueMem;
ldg Svalue, ($t0) ;
showDataO:
stb Szero, (StextPtr) ;
{
do:
and Svalue, 0x7,
addg $tl, o',
srl Svalue, 3;
addg StextPtr, 1;
stb Sc, (StextPtr) ;
showDatal:
while:
bne Svalue, do;
end:
}
{
while:
1dbu $ao0, (StextPtr) ;
beg $ao0, end;
do:
bsr Sys.putChar.enter;
continue:
subqg StextPtr, 1;
br while;
end:
}
bsr Sys.exit.enter;
} code

} block main

Strings

Stl;
Sc;

Alpha Computer Architecture 30 January 2007 Page 7-59

pC

$t0

$t1

$c

$value

StextPtr

0x1000000

0x1000001

0x1000002

0x1000003

0x1000008

0x1000009

0x100000a

0x100000b

Indicate the output generated for this specific value of 0x19c, and the overall purpose of the
program, for an arbitrary value.

Strings

Alpha Computer Architecture 30 January 2007 Page 8-60

8. Running the Alpha Simulator

Suppose you want to run an Alpha assembly language program. First, start up the Alpha simulator
application, for example by double clicking on simulator.jar. A window appears.
Y Y . . |
Window O Trace

File Edit Run Watch Display Window

Feady ...
L

You can create additional windows, by duplicating an existing window.

§8.1 Specifying the code files to execute

3N Edit Run Watch Display Window

Load File Specification ... FEN
Save File Specification ...

Specify PAL File ...
Specify Kernel File ...
Specify User File ...

Quit F£0
Alpha Simulator version 9.001 9th March 2005 »

You have to specify not only your program that you want to execute, but also two other programs -
the kernel code and PAL code.

The easy way of specifying the three programs is via a configuration file - basically a text file
containing three lines, with the names of the three files, relative to the directory of the configuration
file. The file names are in UNIX format, with path components separated by “/”, and the parent
directory specified by “..”. It is possible to specify the three files individually, using file dialogs,
but the usual way is just to specify the configuration file. The three assembly language files must
have the suffixes “.pal.s”, “.kernel.s” and “.user.s”, for the PAL, kernel, and user files. For

example, we could have a configuration file, alpha.config

Running the Alpha Simulator

Alpha Computer Architecture 30 January 2007 Page 8-61
../SYSTEM/palcode.pal.s
../SYSTEM/kernelcode.kernel.s
usercode.user.s

in the same directory as the user code.
Before running a new program, you must specify the configuration file by using the
Load File Specification ... 3N

menu item. You can type 3N (Macintosh) or ctrl-N (Windows), rather than using the menu. You
have to repeat this each time you want to run a different user program.

;;;;;;

Load File Configuration

o

TESTPROG_IO '

Mame & | Date Modified
__ alpha.config Monday, December 2, 2002 1:42 PM
=

A e

File Format: A *.config .

. Cancel - { Load)

You can quit the simulator by using the

Quit 3 Q

menu item.

Running the Alpha Simulator

Alpha Computer Architecture 30 January 2007

§8.2 Loading and Execution
m Wartch Display Window

Load Code
Reinitialise
Run/Rerun
Run/Rerun Update

Stop

Run/Continue
Run/Continue Update
Step

Reverse Run/Continue {t
Reverse Run/Continue Update
Reverse Step {r

Update

You can assemble and load the code into the simulator’s memory, by using the

Load Code 3L

FEL
3t

dEX
dtE

.

JER
U
35

JER
JeU
465

36 /

Page 8-62

menu item. You have to repeat this each time you modify the source code for the user program.

Otherwise you will continue to run the old program.

Running the Alpha Simulator

Alpha Computer Architecture 30 January 2007 Page 8-63
F - = = Ll
D00 Nindow 0 Trace

File Edit Run Watch Display Window

No Files Specified ...

Configuration file = "/Users/bhut0l3/ALPHASTM/ALPHRCODES.000/SIMFLE/TESTFROG I0/alpha.con
PAL code file = ", ./SYSTEM/palcode.pal.s"

Kernel code file = "../SYSTEM/kernelcode.kernel.s"

User code file = "usercode.user.s”

hessembling pal file "../SYSTEM/palcode.pal.s"

Parsing ...

Generating Declarations

Mapping Identifiers to Declarations
Generating Values of Declarations
Generating Code ...

Completed Generating Code ...

Storing pal file ../SYSTEM/palcode.pal.s ...
hesembling KERWEL file "../S¥STEM/kernelcode.kernel.s”
Parsing ...

Generating Declarations

Mapping Identifiers to Declarations
Generating Values of Declarations
Generating Code ...

Completed Generating Code ...

Storing kernel file ../SYSTEM/kernelcode.kernel.s
Assembling USER file "usercode.user.s”
Parsing ...

Generating Declarations

Mapping Identifiers to Declarations
Generating Values of Declarations
Generating Code ...

Completed Generating Code ...

Storing user file usercode.user.s

. loaded
.PALENtry.Vector Call PAL End:
.PALEntry.code }:
.Code Reset.code {:)
.Code FReset.enter: y
FE 0000000000000230 hw_mfpr Fap, kgp
Ready ...

[
%

You can place watchpoints on addresses in memory and even most registers. What this means is
that the simulator will stop executing if it tries to access the memory or register with a watchpoint.

You can reinitialise registers and memory by the

Reinitialise 361

menu item.

You can start executing your program from the beginning, by using the
Run/Rerun 3#X

Run/Rerun Update $ E

menu items. In fact the PAL initialisation code executes first, then kernel initialisation code, and
finally your user code. The update option updates the trace window as it executes, but executes
more slowly.

You can use Run/Rerun directly, if you have never used Load File Specification or Load Code.
You will be prompted for a configuration file, and the three files will be assembled and loaded.

Your program will stop executing if it attempts to access data with an associated watchpoint, or it
tries to read input and no input is available, or it reaches completion (by invoking the exit system
call), or something goes wrong (an exception occurs).

You can also stop execution by using the
Stop 8.
menu item.

Running the Alpha Simulator

Alpha Computer Architecture 30 January 2007 Page 8-64
If your program stops you can resume execution from the point at which it stopped by using the

Run/Continue 3R

Run/Continue Update 38U

menu items.

It is also possible to single step through your program by using the
Step #&S

menu item. Windows are updated after each instruction.

The

Reverse Run/Continue {t 3R

Reverse Run/Continue Update 1+ 38U

Reverse Step 1+ 38S

menu items can be used to run the simulator in reverse. You can only run in reverse for a few
thousand instructions. Because input/output takes thousands of instructions to execute, this is not as
useful as you might hope.

§8.3 Reading from the Simple Terminal

If you type input into the simple terminal window, it can be edited, by backspacing and retyping.

Characters cannot be read until you type return.

F i o i f = i 1
Window 0 Simple Terminal

File Edit Run Wartch Display Window

Type some input: hello

The input was: helle _J
Type some input: how are you? ;
The input was: how are wyou?

Type some input:

!

§8.4 Editing, Copying and Pasting
Run Watch Display

Copy 38C
Paste a6V
Paste Address 43V
Zero k7
Select All 3EA
Find ... 38 F

Text in windows can be selected by clicking, and shift clicking, or clicking and dragging. In
register and memory windows, the text can be edited, by typing hexadecimal characters in the hex
display, or textual characters in the text display. The cursor moves as you type.

Running the Alpha Simulator

Alpha Computer Architecture 30 January 2007
OO0 Nindow 0 User 0 Memory

File Edit Run Watch Display Window

Page 8-65
age 8-63

.main.data {:
.main.buffer:

Polooosdo 20776£68 how Hex Z0657Z6120776L68

010005d4 20657261 are

010005d8 3E£756L£73% you? Hex 3IL756£79
010005de 00000000 7777

01000520 00000000 7777 Hex 0
01000524 00000000 7777

01000528 00000000 FFFF Hex 0
010005%ec 00000000 73777

Q10005£0 Q0000000 73777 Hex O
010005£4 00000000 FIFT

01O005E8 00000000 7377 Hex O

[T AT T L T T ok T T

s e | -

Whole lines of register and memory windows can be copied and pasted. Within the simulator, this
copies the numerical value, not the text. If the copy size does not equal the paste size, the data is

truncated, or zero extended at the high memory end.

It is possible to paste the address of the memory copied, rather than the contents.
Lines of text can be copied from the simulator, and pasted in text documents.

It is also possible to use

Save Selection ...

menu item in the Window menu to save a portion of a window in a text file.

§8.5 Searching

You can search for text in a window by using the
Find ... 38F

menu item.

r.-'_\. F i T i Y -1
Edit
Search Text:
main.enter: v!
E Case Sensitive .
— . [Close)
__ Regular Expression ~——
Z Text Search '." Up ..,'
: Address Search " AT——
| Value Search y

W

When pasting into the text field, you can paste either text, the value, or the address.

The match is usually case sensitive, but can be made insensitive. Regular expressions are

permitted. You can search for either text, an address or a value.

You can select a previous search, using the menu displayed by clicking to the right of the text field.

Running the Alpha Simulator

Alpha Computer Architecture 30 January 2007 Page 8-66
§8.6 Setting Watchpoints

Display Window

Set Watchpoints W
Assign Watchpoints

Clear Watchpoints 4 3W
Clear All Watchpoints

Watchpoint Setting Flags ... "ZBOI KRl

Watchpoint Enable Flags ... * Stop on Read
v 5top on Execute

v Update on Write
v Update on Read
v Update on Execute

You can select a range of memory or registers, and set and clear watchpoints, using the

Set Watchpoints 3 W
Clear Watchpoints 1+ 3 W

menu items.
You can also specify the watch flags that will be set, when you set a watchpoint, by specifying the
Watchpoint Setting Flags ...

The default is to stop on write or execute, but not on read.

Running the Alpha Simulator

Alpha Computer Architecture 30 January 2007 Page 8-67
§8.7 Formatting

B EVE Window
Binary
Ocral
Decimal
Hex
Char
Symbol
Address
TFloat
SFloat
LFloat
Instrn
PTE
Arith Summary
Interrupt Flags
Data Summary
10 Buffer
FPCR

longwords
quadwords

Font Size 4
Background Color »

You can select a range of memory or registers and specify how the data is disassembled. For
example, you can disassemble data as numbers in binary, octal, decimal or hexadecimal, as
instructions, as characters, as symbolic addresses, etc. You can also specify whether memory is
divided into longwords or quadwords, when disassembled.

You can also specify the font size of all text (for people with poor eyes), and the background color
of lines (to highlight the lines).

Running the Alpha Simulator

rAlpha Computer Architecture 30 January 2007 Page 8—6§

66 Window 0 Registers

File Edit Run Watch Display Window

General Registers

Program Counter
pc 0000000000000368 hFP?77777 .Code GetChar.enter

Integer Registers
wi 0000000000000000 22773777 .PALEntry.tableBase
o 00000000020000b8 7727727777 .5ysHandler.table+s
tl 0000000000000000 2727727777 .PALEntry.tableBase
t2 0000000000000000 2727727777 .PALEntry.tableBase
3 0000000000000000 2727727777 .PALEntry.tableBase
td 0000000000000000 2727727777 .PALEntry.tableBase
L5 0000000000000000 2727727777 .PALEntry.tableBase
L& 0000000000000000 2727727777 .PALEntry.tableBase
) 0000000000000000 77777777 .PALEntry.tableBase
s0 00000000010005d0 7727728777 .main.buffer
=1 00000000000000cE FPF77277 .PRLEntry.Vector Call PAL Kernel+3s
s2 0000000000000000 2727727777 .PALEntry.tableBase
s3 0000000000000000 2727727777 .PALEntry.tableBase
54 0000000000000000 2727727777 .PALEntry.tableBase
s5 0000000000000000 2727728777 .PALEntry.tableBase
fp 0000000000000000 22773777 .PALEntry.tableBase
al 0000000000000001 272728777 .PALEntry.tableBase+l
al 00000000000000cE FPP77277 .PRLEntry.Vector Call PAL Kernel+38
az 0000000000000000 2727727777 .PALEntry.tableBase
a3 0000000000000000 2727727777 .PALEntry.tableBase
ad 0000000000000000 2727727777 .PALEntry.tableBase
as 0000000000000000 ?7777777 .PALEntry.tableBase
LE 0000000000000000 2727727777 .PALEntry.tableBase
t3 0000000000000000 2727727777 .PALEntry.tableBase
£l 0000000000000000 2727727777 .PALEntry.tableBase
t11 0000000000000000 2727727777 .PALEntry.tableBase
ra Q000000002000080 777727777 .CallsysHandler.body+18
Bv 0000000002000008 72773777 .5ysGetChar.enter
at 0000000000000000 22773777 .PALEntry.tableBase
qp 00000000020000d48 72773777 .5ysHandler.const }
sp Q0000000037 EE£EbD 777727777 Hex 37fffbd

Float Registers
highiv] Q000000000000000 277727777 +0.0
fvl Q000000000000000 277727777 +0.0 e
f=0 0000000000000000 FFFFFFIT +0.0 i
f=1 0000000000000000 2727727777 +0.0 T
oy Fa N AT AR aTalatalalalalalalalalo sl Bt T T e o o) A

(P

Running the Alpha Simulator

Alpha Computer Architecture 30 January 2007 Page 8-69
§8.8 Managing Windows

Duplicate Window 3P
Close 38y
1 Delete i
| To Back 168
v Auto Scroll

Save Selection ...

v Auto Trace To Front

Clear Trace/Terminal K
. Trace 30
Simple Terminal 31
Registers 3 2
PAL Memory 363
Kernel 0 Memory 36 4
' User 0 Memory 35
' Page Table Memory 36
Window 0 Trace {+ 380
Window 1 Simple Terminal 381
Window 2 Registers {32

r_ Window 3 User 0 Memory {+383
; All To Front

The Window menu can be used to open, close, delete, and duplicate windows. You can bring
windows to the front, or move them to the back. To bring a window to the front, you can use {360,
T381, 11382, etc.

To specify which panel to display a panel in the current window, you can use 380, 381, 362, etc.
The most important panels are:

30 The trace panel

A panel that displays a trace of the recently executed instructions.

#1 The simple terminal panel

A panel to for performing input/output.

2 The register panel

A panel to display the contents of the registers.

Running the Alpha Simulator

Alpha Computer Architecture
#5 The user memory panel

30 January 2007 Page 8-70

A panel to display the contents of user memory - the user program, global data, and function stack.
There are also panels to display PAL memory, kernel memory, and the page tables.

These panels display the information needed to debug your program. Look at their contents, add
watchpoints, and single step through critical code, or it will take 20 times as long to debug your
program.

§8.9 What the Kernel and PAL code do

The kernel code represents a very simple operating system. The only services this simple operating
system provides are reading and writing characters, and terminating the user program.

PAL code can be thought of as implementing instructions that are too complex to be implemented
in hardware. We execute a call_pal instruction to execute a PAL code function. For example
“call_pal CALL_PAL_CALLSYS” implements the “callsys” instruction to switch from executing
user code to execute kernel (operating system) code. ‘“call_pal CALL_PAL_RETSYS” implements
the “retsys” instruction to switch from executing kernel code to execute user code.

For example, to read a single character, we might write two instructions in our user program
ldig $a0, CALLSYS GETCHAR;
call pal CALL PAL CALLSYS;

These might assemble into the following two instructions
1ldg $ao, +0000 (sgp)
call pal 0000083

(The constant CALLSYS_GETCHAR is stored in the global table, and the ldiq pseudoinstruction is

replaced by a 1dq instruction. The constant CALL_PAL_CALLSYS is replaced by its value.
U 0000000000800000 ldg $ao0, +0000 (Sgp)
U 0000000000800004 call pal 0000083

The first column indicates the modes the processor is executing in - PAL (P) or non-PAL (), user
(U) or kernel (K). the second column is the value of the program counter. On the right is a
disassembly of the instruction executed.

The PAL code switches over to the kernel.

CALL PAL USER 0x3 Exception
.Code_Callsys.code {:
.Code_Callsys.enter:

PU 0000000000000318 hw mtpr $tO, temp06

PU 000000000000031c addg $zero, 01, $t0
PU 0000000000000320 hw mtpr Szero, currMode
PK 0000000000000324 hw mtpr $sp, usp

PK 0000000000000328 hw mfpr $sp, ksp

PK 000000000000032c lda $sp, -0038 ($sp)
PK 0000000000000330 stq $to, +0000 ($sp)
PK 0000000000000334 hw mfpr $t0, intEnb

PK 0000000000000338 stq s$tl, +0008 ($sp)
PK 000000000000033c hw mfpr $t0, prevPC

PK 0000000000000340 stq $to, +0010 ($sp)
PK 0000000000000344 stq Sgp, +0018 ($sp)
PK 0000000000000348 hw_mfpr $gp, kgp

PK 000000000000034c addg $zero, 05, $t0
PK 0000000000000350 hw mfpr $t0, kentrylentInt] ($t0)
PK 0000000000000354 hw mtpr $tO0, prevPC

PK 0000000000000358 hw mfpr $tO0, temp06

PK 000000000000035¢c hw rei

The kernel code invokes a function to read a character.
.CallSysHandler.code {:

Running the Alpha Simulator

Alpha Computer Architecture 30 January 2007 Page 8-71

.CallSysHandler.enter:

K 0000000002000020 lda $sp, -0018 (S$sp)

K 0000000002000024 stqg Sra, +0000 (Ssp)
.CallSysHandler.body:

K 0000000002000028 cmpult $ao0, 03, $to

K 000000000200002c blbc $to, .CallSysHandler.error

K 0000000002000030 ldg $to, +0000 (Sgp)

K 0000000002000034 s8addg $a0, $to0, $to

K 0000000002000038 ldg Spv, +0000 (St0)

K 000000000200003c jsr Sra, ($pv), 0040

The function to read a character itself invokes PAL code to actually get the character.

K

PK 0000000000000368 call xfc XFC_GETCHAR
PK 000000000000036c hw rei
It then returns to the kernel.
K 000000000200000c ret Szero, (Sra), 0000
K 0000000002000040 br Szero, .CallSysHandler.return
.CallSysHandler.return:
K 0000000002000048 1ldg Sra, +0000 ($sp)
K 000000000200004c¢ lda $sp, +0018 ($Ssp)

.SysGetChar.code {:
.SysGetChar.enter:
call pal 0000001
CALL PAL KERNEL 0x1 Exception
.Code_GetChar.code {:
.Code_GetChar.enter:

0000000002000008

Finally, it returns to the user program via PAL code.
call pal 000003d

CALL_PAL KERNEL 0x3d Exception
.Code_Retsys.code {:
.Code_Retsys.enter:

K

0000000002000050

PK 00000000000002a0 ldg $gp, +0018 (Ssp)
PK 00000000000002a4 ldg $to, +0010 (Ssp)
PK 00000000000002a8 hw mtpr $tO0, prevPC

PK 00000000000002ac hw mtpr Szero, intEnb

PK 00000000000002b0 addqg Szero, 01, $to
PK 00000000000002b4 hw mtpr $t0, currMode
PU 00000000000002b8 lda $sp, +0038 (Ssp)
PU 00000000000002bc hw mtpr S$sp, ksp

PU 00000000000002c0 hw mfpr S$sp, usp

PU 00000000000002c4 hw rei

And after this point it will execute the user code immediately after instruction
call pal CALL PAL CALLSYS;

So when we run the simulator, we find that as soon as we attempt to perform input or output, we
end up executing large amounts of PAL code and kernel code. With a real operating system, the
kernel code is far more complex. All this code appears in the trace window. We can more or less
just ignore it.

Running the Alpha Simulator

Alpha Computer Architecture 30 January 2007 Page 9-72

9. Integer arrays

Integer arrays can be created by declaring an array of quadwords.
// int array[DATASIZE];
array:
quad[DATASIZE];

The above allocates space for DATASIZE quadwords, namely 8 * DATASIZE bytes.

The address of an element of an integer array can be accessed as the base address plus 8 times the
index. To get the integer at that address, we need an extra load. Note that the load instruction is

1dq, to load a quadword.
ldig $t0, array;
mulg $i, 8, Stl;
addg $tl1, $t0, $t0; // Gives the address of the ith element.
ldg $t0, ($t0); // Give the value of the ith element.

In fact, there is special support for array indexing. The s8addq instruction is an instruction
especially designed for indexing arrays of quadwords. It multiplies the first operand (the array
index) by 8 (the size of a quadword), adds it to the second operand (the address of the array) and
stores the result (the address of the appropriate element) in the third operand. Thus it can be used to
compute the address of an array element, given the index and base address. To get the value, we
then need a load instruction.

ldig $t0, array;
s8addqg i, St0, $tO0; // Gives the address of the ith element.
ldg $t0, (St0); // Give the value of the ith element.

There is a similar instruction, s4addq, used to index arrays of longwords. Of course, the addq
instruction can be used to index simple arrays of bytes. For arrays with elements of size other than
1, 4, or 8, we need an explicit multiplication of the index by the size of the elements. If the size of
the elements is a power of 2, the multiplication can be done by a shift.

The following function prints out the elements of an array of quadwords.

// void printArray(int[] array, int max) {
// int 1i;
// for (i = 0; i < max; 1i++)
// printf("%8d", array[i 1);
// newline () ;
// }
block printArray uses proc {
abs {
array = s0;
max = sl;
i = s2;
} abs
const |
align;
format:
asciiz "%8d";
} const
code {
public enter:
lda $sp, -sav3(S$Ssp);
stqg Sra, savRet ($sp);
stq $s0, sav0 (S$Ssp);
stq $sl, savl (S$Ssp);
stq $s2, sav2(S$sp);

Integer arrays

Alpha Computer Architecture 30 January 2007

body:
mov $a0, Sarray;
mov Sal, $max;
{
for: // for (i = 0; i < max;
clr Si;
while:
cmplt $i, Smax, $t0;
blbc $t0, end;
do:
1ldig $a0, format;
s8addqg $i, Sarray, St0;// printf ("%8d", array]|
ldq $all ($to);
bsr IO.printf.enter;
continue:
addg $1i, 1;
br while;
end:
}
bsr I0.newline.enter; // newline () ;
return:
ldg $s2, sav2($sp);
ldg $sl, savl ($sp);
ldg $s0, sav0 ($sp);
1ldg Sra, savRet ($sp);
lda Ssp, +sav3($sp):;
ret;
} code

} block printArray

Page 9-73

)

il

The following main program reads in a sequence of decimal integers, converts them into internal
form, and puts them in the array data. It then sorts them into order, using a bubble sort, and prints

out the array each time the bubble sort performs a swap.
// int BUFFERSIZE = 20;

// int DATASIZE = 10;

// char buffer[BUFFERSIZE + 1];

// int array[DATASIZE];

// void main () {

// int maxArray;

// for (maxArray = 0; maxArray < DATASIZE; maxArray++) {
// print ("Enter a number (or return to finish): ");
// readLine (buffer, BUFFERSIZE);

// if (buffer[0] ==)

// break;

// array[maxArray] = Number.fromString(buffer, 10);
// }

// print ("Sorting by bubble sort:\n");

// printArray(array, maxArray);

// for (int i = maxArray - 1; 1 > 0; --1) {

// for (int j = 0; j < 1i; J++) {

// int templ = arrayl[j 1;

// int temp2 = arrayl[J + 1];

// if (templ > temp2) {

// array[j] = temp2;

// array[j + 1] = templ;

// printArray(array, maxArray);

// }

// }

// newline () ;

// }

// exit(0);

// }

Integer arrays

Alpha Computer Architecture 30 January 2007 Page 9-74
block main uses proc {
abs {
BUFFERSIZE = 20;
DATASIZE = 10;
maxArray = s0;
i = sl;
J = s2;
} abs
const {
messagel:
asciiz "Enter a number (or return to finish): ";
message?2:
asciiz "Sorting by bubble sort:\n";
} const
data {
align;
buffer:
byte [BUFFERSIZE + 1];
array:
quad [DATASIZE 1];
} data
code {
public enter:
// for (maxArray = 0; maxArray < DATASIZE; maxArray++) {
{
for:
clr SmaxArray;
while:
cmplt SmaxArray, DATASIZE, $tO;
blbc $t0, end;
do:
// print ("Enter a number (or return to finish): ");
ldig $a0, messagel;
bsr IO.print.enter;
// readlLine(buffer, BUFFERSIZE);
1ldig $a0, buffer;
1dig $al, BUFFERSIZE;
bsr IO0.readlLine.enter;
1dig $t0, buffer; // if (buffer[0] ==)
ldbu $t0, ($t0);
beqg $t0, end; // break;
1diqg $a0, buffer; // array[maxArray] =
// Number.fromString(buffer, 10);
ldig $al, 10;
bsr Number.fromString.enter;
ldig $t0, array;
s8addqg SmaxArray, $t0, $t0;
stqg $v0, ($t0);
continue:
addg $maxArray, 1;
br while; // }
end:
}
1digq $a0, message2; // print ("Sorting by bubble sort:\n");
bsr I0.print.enter; // printArray(array, maxArray);
ldig $a0, array;
mov SmaxArray, Sal;
bsr printArray.enter;
// for (int i = maxArray - 1; 1 > 0; --1) {
{
for:
subg SmaxArray, 1, Si;
while:

Integer arrays

Alpha Computer Architecture 30 January 2007 Page 9-75

beq $i, end;
do:
// for (int j = 0; j < 1i; J++) {
{
for:
clr $3;
while:
cmplt $3, $i, $t0;
blbc $t0, end;
do:
ldig $t0, array;
s8addqg $3, $t0, Stl;
addg $7, 1, St2;
s8addqg s$t2, $t0, $t2;
1dg St3, ($tl); // int templ = array[j 1;
1dg Std, ($t2); // int temp2 = array[j + 1 1;
{
if: // if (templ > temp2) {
cmple St3, $t4, $t5;
blbs $t5, end;
then:
stqg $t3, ($t2);// array[j] = temp2;
stqg St4, (stl);// array[j + 1] = templ;
ldiqg $a0, array; // printArray(array, maxArray);
mov SmaxArray, Sal;
bsr printArray.enter;
end: // }
}
continue:
addg $3, 1;
br while; // }
end:
}
bsr IO0.newline.enter; // newline () ;
continue:
subg $1i, 1;
br while; // }
end:
}
clr $al; // exit(0);
bsr Sys.exit.enter;
} code

} block main
Exercise TESTPROG_MINMAX

Indicate the values of registers and memory each time the program reaches the label showData.

The label array is at address 0x1000000.
entry main.enter;

import "../IMPORT/callsys.h";
import "../IMPORT/proc.h";
import "../IMPORT/callsys.lib.s";

block main uses proc {

abs {

ARRAYSIZE = 5;
i = s0;
arrayPtr = sl;
a = s2;
b = s3;
X = s4;
} abs

Integer arrays

Alpha Computer Architecture 30 January 2007
data {
array:
quad 0x3;
quad 0x7;
quad 0x6;
quad 0x1;
quad 0x9;
} data
code {
public enter:
{
for:
mov 1, $i;
ldiqg SarrayPtr, array;
1ldg Sa, ($SarrayPtr) ;
1ldg Sb, ($SarrayPtr) ;
while:
cmplt $i, ARRAYSIZE, $t0;
blbc $t0, end;
do:
s8addqg $i, SarrayPtr, Stl;
{
if:
cmple Sa, Sx, St2;
blbs st2, end;
then:
mov $x, Sa;
end:
}
{
if:
cmplt Sb, $x, $t3;
blbc $t3, end;
then:
mov $x, Sb;
end:
}
showData:
continue:
addqg Si, 1;
br while;
end:
}
clr $a0;
bsr Sys.exit.enter;
} code

} block main

Integer arrays

Page 9-76

Alpha Computer Architecture 30 January 2007 Page 9-77

$t0

$t1

$2

$t3

$i

$arrayPtr

$a

$b

$x

0x1000000

0x1000008

0x1000010

0x1000018

0x1000020

Indicate the overall purpose of the program, for arbitrary data in the array.
Exercise TESTPROG_COMPACT

Suppose we have the following Alpha assembly language program
entry main.enter;

import "../IMPORT/callsys.h";
import "../IMPORT/proc.h";
import "../IMPORT/callsys.lib.s";
data {
arrayStart: // Address 0x1000000
quad 0x0;
quad 0x2;
quad 0x7;
quad 0x0;
quad 0x6;
arrayFinish:
} data

block doIt uses proc {

abs {
start = al;
finish = al;
cond = t0;
value = tl;
P = t2;
q = t£3;
} abs

code {
public enter:

{

for:
mov S$Sstart, Sp;
mov S$Sstart, Sqa;
while:
cmplt Sp, $finish, $cond;
showData:
blbc $cond, end;
do:

{
if:
ldg Svalue, (Sp) s

Integer arrays

Alpha Computer Architecture 30 January 2007 Page 9-78
beq $value, end;

then:
stq S$zero, (Sp) s
stg S$value, ($qa);
addg $qgq, 8;
end:
}
continue:

addg $p, 8;
br while;
end:
}
ret;
} code
} block dolIt

// int main () {
// doIt(arrayStart, arrayFinish);
// exit(0);
// }
block main uses proc {
code {

public enter:
ldig $a0, arrayStart;
ldig $al, arrayFinish;
bsr doIt.enter;

clr $a0;
bsr Sys.exit.enter;
} code

} block main

Display the contents of registers and memory each time the program reaches, but has not
executed the code at the label showData.

Indicate the values of registers and memory in hexadecimal.

The label arrayStart corresponds to address 0x1000000.

$start

$finish

$cond

$value

$p

$q

0x1000000

0x1000008

0x1000010

0x1000018

0x1000020

Indicate what the whole program achieves, in general, for arbitrary data in the array.

Integer arrays

Alpha Computer Architecture 30 January 2007 Page 10-79

10. Writing and Debugging Assembly language Programs

How can we go about writing and debugging assembly language programs? Well, unless you are
writing things that can only be written in assembly language (because even high level languages
such as C don’t have the expressive power to represent your algorithm), then the most efficient way
of developing your program is to first write it in a high level language, debug the algorithm, and
then translate your high level program into assembly language. Most students don’t believe me, but
this really does save enormous amounts of time. It is very difficult debugging assembly language,
because it is so unstructured, and there are no validity checks. Get the algorithm correct first, and
the translation into assembly language is easy.

What language should you use to prototype your assembly language program? The best choice is
definitely C, because it is very close to assembly language in its expressive power. You can do
almost anything in C, while most high level languages have checks that stop you treating addresses
as integers, storing arbitrary data at an address, etc. C is a wonderful language for doing very low
level things. For example, the only languages I know that are suitable for writing a memory
manager, with garbage collection, are C and assembly language, and it is 100 times easier to write it
in C than assembly language.

However, if you don’t know C, then use another language, such as Java, but try and use only the
very low level features of the language. For example, store your strings as arrays of bytes, do your
own conversion between strings and numbers, etc.

Document your assembly language for a function with the code written in a high level language.

Split your assembly language program up into functions, and invoke and declare the functions using
the standard function invocation conventions. Save and restore the sO, s1, s2, ... registers properly.
Do not store values in temporary registers, invoke a function, then expect the values to still be there
on return from the function. Always pass the parameters in a0, al, a2, ... and return the result in
v0. Make very sure that the amount of space allocated on entry to a function is identical to the
amount of space deallocated on exit, and that there is sufficient space allocated. If you don’t get
this right, you will get some very obscure bugs, that will be very difficult to find.

Indent your assembly language, and use appropriate labels to make the control structures absolutely
clear.

When you attempt to run your program, make sure that you save the assembly language text file
before loading the file into the simulator. Make sure that if you change the assembly language, you
reload it into the simulator. Make sure that there are no errors when you reload the program. If
there are syntax errors in your program, the parser usually gives a line number. If it manages to
parse everything, and then fails at the end, this tends to be a result of having unmatched braces {...}.

A general rule for debugging any program is to put lots of print statements in, so that you know
what is happening. It is not so easy in assembly language, because even printing a string constant is
nontrivial, printing numbers is difficult, and printing data structures is a major undertaking.
However, I do supply functions to print strings, convert numbers to strings, and even implement a
simple printf. If at all possible, use these. However, if you are writing assembly language that is
doing tricky things, such as manipulating the stack to return from multiple levels of function
invocation, you might find it difficult to use print statements.

To make life easy, the simulator provides you with a trace of the instructions executed.

Writing and Debugging Assembly language Programs

Alpha Computer Architecture 30 January 2007 Page 10-80
[— = = h
sBale Nindow O Trace

File Edit Run Watch Display Window

=
.main..do:

.main..showDatal:
U 00000000008000584 and 5s1, 01, 550
Ready ...
main..{:
.main..do:
.main..showDatal:
U 00000000008000584 and 5s1, 01, 550
U 0000000000800088 srl $s1, 01, $s1
U 000000000080008 addg 5s0, 30, 550
T 00000000008000%0 subqg 582, 01, 582
U7 00000000008000%4 sth 580, +0000(552)
main..while:
U 0000000000800098 bne ss1, .Mmain..do
main..q{:
main..do:
.main..showDatal:
U 0000000000800084 and 581, 01, 580
Ready ...
main..q{:
main..do:
.main..showDatal:
U 00000000008000584 and 581, 01, 580
U 0000000000800088 srl 581, 01, 581
U 000000000080008C addg 580, 30, 580
T 00000000008000%0 subqg 582, 01, 582
U 00000000008000%4 sth 580, +0000(552)
main..while:
T 0000000000800098 bne ss1, .Mmain..do
.main..end:
main..}:
.main.showbData?Z:
main..{: J
main..while: 3
T 00000000008000%c ldbu a0, +0000(5s52)
Ready ...

\

If your program stops at some point, due to an exception occurring, look at the last instruction it
tried to execute. If it was a load or store instruction, and it generated a DTB_MISS_NATIVE or
D_FAULT exception, then maybe the value of the base register used to compute the memory
address is wrong. See what value it has. See what code modified its value, and whether it makes
sense.

When your program stops at some point, you have to map the last instruction in the trace window
back to a line in your assembly language. Sometimes it is obvious, because the labels are also
shown in the trace window. Sometimes it is not so clear. The trace window shows the value of the
program counter. Look for this address in the user memory window, and you will see the
disassembly of your program, including the relevant labels. It is much easier to see how this relates
to your original assembly language. However, you will still find that pseudoinstructions have been
replaced by different real instructions. For example, “ldiq $reg, XXX will appear as “ldq $reg,
YYY(3gp);”.

The simulator permits you to view and change the contents of registers and memory. For each
register, the register window contains the name of the register, its value in hexadecimal and as
characters, and a disassembly in whatever format you choose.

Writing and Debugging Assembly language Programs

'élpha Computer Architecture 30 January 2007 Page 10—8_1||
OO0 Window 0 Registers
File Edit Run Watch Display Window
General Registers
Frogram Counter
BC 0Q0000000080009¢c 77777777 .Mmain..end
Integer Registers
Wi Q000000000000000 77777777 Hex 0O
o Q000000000000001 77777777 Hex 1
tl Q000000000000000 77777777 Hex 0
tZ Q000000000000000 77777777 Hex 0
t3 Q000000000000000 77777777 Hex 0
td Q000000000000000 77777777 Hex 0
t5 Q000000000000000 777377777 Hex 0
th Q000000000000000 777377777 Hex 0
tT Q000000000000000 777377777 Hex 0
s0 Q000000000000031 13777877 Hex 31
sl Q000000000000000 737377777 Hex 0
g2 0000000001000004 737377777 Mmain.ocutput+d
g3 Q000000000000000 737377777 Hex 0
g4 Q000000000000000 737377777 Hex 0
85 Q000000000000000 73777777 Hex 0
fp Q000000000000000 37777777 Hex 0O
al 000000000Z000088 27727777 .SysHandler.const }
al 0000000000000005 737377777 Hex 5
az Q000000000000000 777377777 Hex 0
a3 Q000000000000000 777377777 Hex 0
ad 0000000000000000 777377777 Hex 0
as 0000000000000000 777377777 Hex 0
tE Q000000000000000 777377777 Hex 0
t9 Q000000000000000 777377777 Hex 0
t10 Q000000000000000 777377777 Hex 0
t1l1 Q000000000000000 777377777 Hex 0
ra Q000000000000000 773777 Hex 0O
B QO00000000000000 7737777 Hex 0O
at QO00000000000000 7737777 Hex 0O
qp Q0000000008000bBE 73777777 .main.code } -
2p 000000000Z2000000 FFFFITFT .SYSEXit.enter i
Float Registers -
Frr AAAAAAMAAAAAAAANR 33333533 P
{) 4 »> A

For memory, it contains the address, contents of memory in hexadecimal and as characters, and a
disassembly in whatever format you choose (the default is as instructions for code, and hex for

data).

Writing and Debugging Assembly language Programs

Alpha Computer Architecture 30 January 2007 Page 10-82
The user memory window contains the user program code.
r B
o666 Window 0 User 0 Memory
File Edit Run Watch Display Window
main.code {: -~
.main.enter:
00800078 as55dools 7717 ldg 5351, +00L1E(5gp) []
0080007c as7doozo 77 ldg 552, +00Z0(5gp)
Q0800080 47££0409 777G bis SZero, SZero, ss0
main..{:
.main..do:
.main..showDatal:
WrE 00800084 45403009 F02E and 5351, 01, 530
O0B000BE 4940368a 768I srl 551, 01, 551
00B000BCc 41261409 77&A addg 530, 30, 5s0
00800090 4160352b +5°A subqg 582, 01, 582
00800094 392b0000 7749 sth 550, +0000(552)
.main..while:
Q0800098 £55ffffa 77 7 bne 581, .main..do
.main..end:
main..}:
.main.showDataZ:
main..q{:
.main..while:
WrENOOB0009c 2a0b0000 77F* ldbu 5a0, +0000(3552)
008000a0 e6000003 7777 beq %a0, .main..end
.main..do:
00800084 d3sfffde ¥7 7 bsr sra, .5ys.putChar.enter
008000a% 4160340k 74°R addeg 582, 01, 582
008000ac c3fffffh *777 br Szero, .Mmain..end
.main..end:
main..}:
Q0B000B0 4T7££0410 777G bis Szero, szero, sal
Q08000b4 d3Sfffed 77 7 bsr $ra, .5ys.exit.enter
main.code }:
.code }:
.globalTable {:
.8ys.globalTable {: -
.5ys.getChar.globalTable {: &
JoOB000LE 00000001 FPFT Hex 1 -
AASAAARa AAAAGANH 3355
IE I+ & A
Further down are the constants, the global table, and the global variables.
-

oo oy O

Window 0 User 0 Memory

File Edit Run Watch Display Window

Q08000cE
Q08000ce

Q0800040
Q0800044
Q0800048
Q08000de

00000000
00000000

aooooood
00000000
01000008
00000000

el
FI I O

el
FI I O

el
FI I O
el
FI I O
el
FI I O

el
FI I O

s O ¥ o e pPFULCLIAL .gJ.uua.J.J.m.u.E P
Sys.exit.globalTable {:
Hex 0O

Sys.exit.globalTable }:
.5¥s.globalTable }:
JMain.globalTable {:

Bin 1101

Jain.endoutput

Main.globalTable }:
.globalTable }:

Fhysical Address 14000 virtual Address 1000000

01000000
folooooo04

01000008
0100000c

00000000
31303131

00000000
00000000

T
1101

el
FI I O

el
FI I O

data {:
Jmain.data {:
Main.output:

Hex 3130313100000000

Jain.endiutput:
Hex O

main.data }:
data }:

Fhysical Address 18000 virtual Address 1f£fe000
01f£2000 00000000 2777
01££2004 00000000 7777

Hex O

Writing and Debugging Assembly language Programs

i
L
14 @ _.-"‘_?f

Alpha Computer Architecture 30 January 2007 Page 10-83
At the bottom of the user memory window is the stack. If you are invoking functions, especially
recursive ones, you might want to look at the stack.

It is possible to associate “watchpoints” with memory addresses and most registers, by selecting the
data and using the Watchpoints menu. Every time your program attempts to access the data (read,
write or execute, as specified) at the address, it stops, so that you can view the data, and even alter
it. To alter the data, click on either the hexadecimal or character disassembly, and type appropriate
characters.

If you want to check that your program is computing a value correctly, place a write watchpoint on
that data, and run your program. Check the value each time it stops, then continue its execution, by
selecting Run/Continue. Similarly, you can place watchpoints on instructions, so that an attempt to
execute the instruction causes the program to stop.

Once a program has stopped, you can continue execution by selecting Run/Continue, or you can
single step through your program by selecting Step. For small programs or portions of programs
that do not attempt input/output, this works very well. However, you do not want to single step
through code performing input/output and making system calls, because it is too time consuming.

Unfortunately, if you modify your program, and reload the code, all watchpoints disappear. Setting
them up again can be a little time consuming. To get around this, it is possible to put watchpoints

into your program in assembly language. The call_pal instruction
call pal CALL_PAL BPT;

causes your program to stop execution. A higher level way of doing this is to invoke the

Sys.breakpoint function.
bsr Sys.breakpoint.enter;

You can then restart it by selecting Run/Continue or Step.

The latest version of the simulator permits you to run the simulator backwards, so that you can see
the values of registers and memory a bit earlier than the point at which you rpogram stopped. this is
useful so long as the recent code does not perform input/output. The trouble is that input/output
executes large numbers of instructions, and the simulator only permits you to reverse a few
thousand instructions.

Another feature that can be useful is the ability to search for text in the simulator windows. For
example, you can search using regular expressions in the latest version of the simulator.

Writing and Debugging Assembly language Programs

Alpha Computer Architecture 30 January 2007 Page 11-84

11. Function invocations and declarations

§11.1 Overview

How do we generate assembly language for function invocations and declarations? While it is not
the full story, it roughly amounts to the following.

For the invocation of a function:

. Generate code to evaluate the parameters and store them in a standard place. On the Alpha,
the first six parameters are stored in the argument registers a0, al, ... aS.

. Generate a function invocation instruction that saves the program counter in a standard place
and sets the program counter to the address of the start of the function. On the Alpha, the bsr
(branch to subroutine) instruction is used to invoke a function. The bsr instruction usually
saves the old program counter in the ra (return address) register.

. Generate code to use the result of the function, assuming the result of the function is stored in
a standard place. On the Alpha, functions return their result in the vO register.

For example, to execute “x = f(5, 8, 2);”, we might write:

mov 5, $a0;
mov 8, Sal;
mov 2, Sa2;
bsr f.enter;
ldig $t0, x;

stg $v0, (St0);

Control is passed to the function by the execution of the bsr instruction. On completion of the
execution of the code for the function, control will be passed back to just after the bsr instruction.

For the declaration of a function:

. Generate code for the body of the function. This code accesses the parameters, modifies local
and global variables, and stores the return value in a standard place. On the Alpha, the
“saved” registers sO, sl, ... s5 are usually used for local variables, and the return value is
stored in register vO.

. Generate an instruction to restore the saved program counter, and return to just after the bsr
instruction used to jump to the start of the function. On the Alpha, the ret (return) instruction
is used to return to just after the invocation of the function.

For example, if the function f returns the sum of its three parameters, we might write:
// int £(int a, int b, int c) {
// return a + b + c;
// }
block f uses proc {
code {
public enter:
addqg $a0, $al, $vO;
addqg $v0, $az;
ret;
} code
} block £

Because a function may be invoked from more than one place, we need to remember where to
return to. Thus we need to use the bsr and ret instructions to enter and return from the function,
rather than simple branch instructions. Because a function may be invoked with different

Function invocations and declarations

Alpha Computer Architecture 30 January 2007 Page 11-85

parameters, we need to evaluate the parameters and store them in the argument registers, rather than
accessing them directly.

X=f(5! 8/ 2);
mov 5, $al;
mov 8, $al;
mov 2, $a2;
bsr f.enter;

ldig $t0, x;
stq $v0, (St

// long f(long a, long b, long c) {
// return a + b + c;

// }

block f uses proc {

code {

public enter:

addqg $a0, $al, $vO;

x = £03, 4, 57 addq $v0, Sa2;
mov 3, $al; ret;
mov 4, Sal; !
5 a2 } code
mov ' aci } block £
bsr f.enter;

ldig $t0, x;
stq $v0, (St0);

Example
The function
// int square(int x) {
// return x * x;
// }
block square uses proc {
code {
public enter:
mulg $a0, $a0, $vO;
ret;
} code

} block square
computes the square of its argument.

It can be invoked as

// y = square(5);
ldig $a0, 5;
bsr square.enter;
ldiqg $t0, y;
stg $v0, (St0);

§11.2 The special instructions involved in function invocations
The Branch to Subroutine (bsr) instruction
bsr destAddress;

The program counter is saved in the ra (return address) register, then the program counter is set to
destAddress.

There is also a jsr (jump to subroutine) instruction, that can be used when the address of the
function has to be computed at run time. We will not use this instruction.

The Return (ret) instruction

ret;

The program counter is set to the contents of the ra (return address) register.

Function invocations and declarations

Alpha Computer Architecture 30 January 2007 Page 11-86

§11.3 Function Invocation and Declaration Conventions

When driving, we follow various conventions. For example, in New Zealand, we drive on the left
hand side of the road, we obey the traffic lights, when turning we give way to traffic going straight
ahead, etc. It would be essentially impossible to drive on the roads, if nobody bothered about which
side of the road they drove on. Similarly, it is necessary to follow publicly agreed upon
conventions when writing code that has to interface with code generated by compilers or written by
other people.

Every computer architecture has standard conventions for invoking and declaring functions. To
avoid confusion, the code generated by all compilers must obey these conventions, as must the code
generated by assembly language programmers. So long as these conventions are obeyed, the writer
of one function does not have to know about the details of the implementation of other functions. It
is sufficient to know what they achieve, their public interface, and that they obey the conventions.
Most of your program can be written in a high level language, but some functions can be written in
assembly language, for efficiency reasons, or because the high level language lacks the expressive
power necessary to represent the algorithm. So long as your assembly language obeys the standard
conventions, there will be no problem in combining the high level language and assembly language
code together.

Conventions related to use of the stack

Sometimes functions need local memory in which to store the values of local variables. Arrays
need to be stored in memory, because they are too big to fit in a register. Variables passed as
reference parameters also need to be stored in memory, because they need to have an address.
Local memory is also used for saving the values of registers, that the function wants to use for other
purposes.

Most modern computer languages support recursive functions. We can have many instances of the
same function that have been invoked but not returned from. Each invocation needs its own local
space. This space, called the activation record, call frame, or stack frame for the function, is
allocated when the function is invoked, and deallocated when it completes.

Functions are entered and returned from in a stack-like fashion. In other words, if function f
invokes function g which invokes function h, then we must return from function h, before we return
from function g, and then return from function g, before we return from function f. We can use a
stack to allocate the local memory for functions that have been invoked but not returned from.
function f£(...) {

g ...)
}
function g(...) {

h(...);
}

Function invocations and declarations

Alpha Computer Architecture 30 January 2007 Page 11-87

Low Memory Stack of activation records

Space for h

Space for g Space for g Space for g

Space for f Space for f Space for f Space for f Space for f

High Memory Time

Deallocate space for h

Invoke I
Allocate space for b
Execute body of
Fetumn from I

Deallocate space for g,

Invoke 2
Allocate space for g
Fetum from g

Deallocate space for £

Allocate space for £
Fetun from £

Involke £

On the Alpha, the sp (stack pointer) register is used to point to the “top” of the stack (memory space
allocated for local space for functions). The stack in fact grows towards low memory. We can
allocate space on the stack by subtracting a constant from the stack pointer register, and deallocate
space by adding this constant back onto the stack pointer register. The space for local variables can
be accessed by using a non-negative displacement from the stack pointer register. Because it is
normal to think of the stack growing “up”, it is appropriate, when drawing diagrams, to display low
addresses at the top of the page, and high addresses at the bottom.

In the Alpha simulator, you can view the stack by scrolling to the bottom (high address end) of the
user memory window.

Conventions for the use of registers on the Alpha

Some of the most important conventions related to function invocations involve the specification of
how registers should be used, and whether the invoking or the invoked function has responsibility
for saving and restoring them.

Function invocations and declarations

Alpha Computer Architecture 30 January 2007 Page 11-88

On the Alpha, the main registers are as follows.

. The program counter.
This register points to the address of the next instruction to execute. It is always longword
aligned.

. 32 integer registers.
0 $v0 This register is used to hold the return value of an integer function. This

register may be altered by the invoked function, even if it doesn't return a
result (for example, because the invoked function may invoke another
function that returns a result).

1-8 $t0-$t7 These are temporary registers used for expression evaluation within a
simple statement. They are not normally used to store data between
statements. These registers may be altered by the invoked function, so
important data can not be left in these registers while another function is
invoked.

9-14 $s0-$s5 These are the “saved” registers, usually used to hold the values of local
variables (in particular, local variables declared as “register variables” in C).
If the invoked function wishes to use these registers, the invoked function
must save the registers in its activation record on entry, and restore them on
exit. As a consequence, the invoker can behave as if the invoked function
never altered the registers.

15 $tp This register is used to hold the frame pointer (address of the base of the
activation record/stack frame/call frame) if needed. In most situations, the
address of the activation record is the same as the top of stack, so the sp
register can be used as the base address of the activation record, rather than
the fp register, and the fp register is never set up. If a function needs to
dynamically allocate local space in addition to its activation record (for
example, for a dynamically sized local array), it can set the fp register to the
base of the activation record, then allocate further space by further
decrementing the sp register. The invoked function is responsible for saving
and restoring this register.

16-21 $a0-$a5 These registers are used to pass the first six integer type actual parameters.
The action of setting up these registers for the invoked function overwrites
the values of the parameters for the invoker. Hence a function that invokes
another function must save the values of these registers on entry, either in its
activation record, or in saved registers.

22-25 $t8-$t11 These are additional temporary registers used for expression evaluations.

26 ra This register is used to hold the return address of a function. The program
counter is saved in this register by the bsr instruction and restored from this
register by the ret instruction. Hence a function that invokes another
function must save the value of this register in its activation record on entry,
and restore it before exit.

27 $pv This register is used by the jsr pseudoinstruction to hold the entry point of
the current function. The jsr pseudoinstruction effectively loads the
destination address into this register, then does an indirect jump via this
register. We will not make use of this register.

Function invocations and declarations

Alpha Computer Architecture 30 January 2007 Page 11-89

28

29

30

31

$at

$gp

$sp

$zero

This register is wused by the UNIX assembler to implement
pseudoinstructions, such as instructions for which the literal operands are
outside the range permitted by the real instruction. It should not be used
directly by assembly language programmers. My assembler does not
actually make use of this register.

This register is used to hold the global pointer. The global pointer points to
a table containing the values of constants, such as the addresses of functions
and global variables. This table is needed because the number of bits used
to represent a constant in an instruction are too few to represent a 64 bit
value. The 1diq pseudoinstruction is converted into a ldq instruction. The
constant is stored in the global table, and accessed as an offset from the
global pointer.

The global pointer register is set up by the operating system when the
program is loaded, and stays constant throughout the execution of the
program.

This register is used to hold the stack pointer (the address of the “top” of
stack). The invoked function allocates space for itself on the stack by
subtracting the size of the activation record from the stack pointer. On
return, the invoked function deallocates the stack space by adding the size
of the activation record to the stack pointer.

Always has the value 0.

. 32 floating point registers.

There are similar conventions for the use of floating point registers. Registers are divided up
into registers for arguments, temporary registers, saved registers, and two registers (to allow
for complex numbers) to store the return value.

Conventions for invoking functions on the Alpha

o Evaluate the parameters. The first six parameters are stored in registers $a0, $al, $a2, ... $a5.
(Any additional parameters are stored at the low address end of the activation record of the
invoker. However, we will never deal with functions with more than six parameters.)

. A bsr instruction is used to invoke the function. The program counter is saved in the $ra
(return address) register, and the program counter is set to the address of the start of the
function.

o The invoker can assume that, after the invocation

L]

mov
mov
mov
bsr
mov

., Sa0
., Sal
., Sa2

f.enter;
$vo,

’
’

’

.7

The result of the function will be in register $vO0.
The “saved” registers will contain the same values they had before the invocation.

The stack pointer register will be the same as it was before the invocation.

// Set up $al

// Set up $Sal

// Set up $a2

// ce

// Invoke f

// Assign return value

Function invocations and declarations

Alpha Computer Architecture 30 January 2007 Page 11-90

Conventions for declaring functions on the Alpha

If the function needs any local memory, allocate space for the activation record on the stack
by subtracting the number of bytes needed from the stack pointer. This is usually done by the
instruction “Ida $sp, -frameSize($sp);”.

If the function invokes another function, save the return address register in the activation
record of the function. (This is because invoking another function will overwrite the return
address register.)

If the function allocates space for local arrays, save the frame pointer register in the activation
record of the function.

If the function wants to make use of the “saved” registers for its own local variables, or saving
the arguments, save these registers in the activation record of the function.

If the function invokes another function, save the argument registers in “saved” registers.
(This is better than saving them directly in the activation record, because heavy use is
normally made of the arguments, and it is faster to access them via registers than from
memory.)

Temporary registers can be used, without needing to save and restore them.

Evaluate the body of the function. Use the saved registers for simple local variables that can
fit into registers, and are not referred to by “reference”. Use memory on the stack for local
arrays, etc.

Store the return value in register $vO.
Restore any registers that were saved on entry to the function.

If the function allocated any local memory for an activation record, deallocate this space by
adding the size of the space to the stack pointer. This is usually done by the instruction “lda
$sp, +frameSize($sp)”.

A ret (return) instruction is used to return to just after the bsr instruction used to invoke the
function.

For convenience, we define a block, proc, with a local section with symbolic names for the offsets
for the saved values of the $ra, $fp, $s0, $s1, $s2, $s3, $s4, and $s5 registers. Because a register
contains 8 bytes, the offsets saveRet, savFP, sav0, savl, sav2, ... are 0, 8, 16, 24, 32, ...

block proc {
local {
protected savRet: quad;
protected savFP: quad;
protected sav0: quad;
protected savl: quad;
protected sav2: quad;
protected sav3: quad;
protected savié: quad;
protected sav5: quad;
protected savb6: quad;
} local
} block proc

block f uses proc {

code {
public enter:

Function invocations and declarations

Alpha Computer Architecture 30 January 2007 Page 11-91

[m e
// Entry Code
[m e
lda $sp, -frameSize ($sp); // Allocate space on stack
stq $ra, savRet (Ssp); // Save Sra on stack
stq $s0, sav0(Ssp); // Save $s0 on stack
stq $sl, savl(Ssp); // Save $sl on stack
//
[m e
// Initialisation of variables
[m e
init
mov $a0, $s0; // Save $a0 in $s0
mov Sal, S$sl; // Save $al in $s1
// (only needed if invokes
// another function)
[m e
// Body of function
[m e
body
mov , SvO0; // Store result in $vO0
[m e
// Exit Code
[m e
return:
1dg $s1, savl(Ssp); // Restore $sl
1dg $s0, sav0(S$Ssp); // Restore $s0
ldg $ra, savRet ($sp); // Restore Sra
lda $sp, +frameSize(Ssp); // Deallocate space on stack
ret;
} code
} block f

The Layout for a activation record

Low memory

Stack Pointer — — -
or Frame Saved ra if this function invokes another function
Pointer Saved fp if this function declares local arrays

Saved s0, s1, ... if used by this function

local variables if can't fit in sO, s1, s2, ...

High memory

Some portions of the activation record may be omitted, and in fact for simple functions only the
portion used to save registers is likely to exist. Even this may be omitted for “leaf” functions that
do not invoke other functions, and do not use the saved registers.

The activation record must be padded to a multiple of 8 bytes, so that all data is quadword aligned.

§11.4 Reference parameters and Pointers

In C, we can pass the address of a simple variable, array, or record to a function. These are often
called reference parameters. We can also have reference variables, that point to an address of

Function invocations and declarations

Alpha Computer Architecture 30 January 2007 Page 11-92

another variable. In Java we have something equivalent. Variables of type corresponding to an
array or class are really pointers to objects in memory.

By accessing the variable indirectly through the reference, we can modify its value.

For example, suppose we want to write a function that takes the address of two integer variables as
parameters, and swaps their values. We could write:

void swap(int *a, int *b) {
register int temp;
temp = *a;
*a = *b;
*b = temp;

}

Note: *a means (the contents of) the address pointed to by a. The parameters a and b are not
altered, only the data at the addresses pointed to by them.

In assembly language, this is:
block swap uses proc {

abs {
a = al;
b = al;
} abs

code {

public enter:
ldq $tol ($a);
1ldg $tl, (Sb);
stqg s$tl, (Sa);
stqg $to, (Sb) ;
ret
} code

} block swap

We can invoke the function swap(), with the addresses of variables as parameters. In C:
int x = 3, y = 4;
void main () {

swap (&x, &y);

}

Note: &x means the address of x.

In assembly language, this is:
block main uses proc {
data {
X quad 3;
y: quad 4;

} data
code {
public enter:
1dig $ao0, X; // a0 = &x;
1dig $al, Vi // al = &y;
bsr swap.enter; // swap (&x, &y);
clr $al; // exit(0);
bsr exit.enter;
} code

} block main

Suppose we want to make x and y local to a function, then invoke swap. In C:
void £() {

int x = 3, y = 4;

swap (&x, &y)i

}

Function invocations and declarations

Alpha Computer Architecture

30 January 2007

We cannot store x and y in registers, because only memory can have an address

store them in the activation record. In assembly language, this is:
block f extends proc.sav0 uses proc {

local {
X: quad;
y: quad;
size:
} local
code {
public enter:
lda $sp,
stqg Sra,
init:
mov 3,
stqg $to,
mov 4,
stqg $to,
body:
lda $ao,
lda Sal,
bsr swap
return:
ldg $ra,
lda $sp,
ret
} code
}block f

-size ($sp);

savRet

$t0;
x (Ssp)
$t0;
y (Ssp)

x ($sp)
y ($sp)

.enter;

savRet

($Ssp) ;
size (Ssp);

//

($sp): //

//

’

//

’

; //

’

//
//

Allocate space
Save ra

int x = 3;
int v = 4;
swap (&x, &y);

Restore ra
Deallocate space

Page 11-93

. Hence we have to

A local section is used to define identifiers corresponding to offsets within an activation record. It
does not actually allocate static memory. The extends option specifies the initial offset for labels in
the local section of the block. Space within the activation record can be allocated by memory
allocation statements, such as quad.

We could write a function that sums the elements of an array, whose address is passed as a

parameter.
// int sum(int[] array, int max
// int total = 0;
// int 1i;
// for (i = 0; i < max; i++
// total += array[1 1;
// return total;
// }
block sum uses proc {
abs {
array s0;
max = sl;
i = s2;
total = s3;
} abs
code {

public enter:

init:

lda
stqg
stqg
stqg
stqg
stqg

mov
mov

$sp,
Sra,
$s0,
$s1,
$s2,
$s3,

$a0,
Sal,

-sav4 ($Ssp) ;
savRet ($sp)
sav0 (Ssp) ;
savl ($sp);
sav2 (Ssp);
sav3 ($sp)

’

Sarray;
Smax;

Function invocations and declarations

) A

’

Alpha Computer Architecture 30 January 2007 Page 11-94

body:
clr Stotal; // total = 0;
{
for: // for (1 =0; 1 < max; 1i++)
clr $i;
while:
cmplt $i, Smax, $t0;
blbc $t0, end;
do:
s8addg $i, Sarray, $t0;// total += arrayl[1 1;
1dg $t0, ($t0);
addg $total, $t0;
continue:
addg $i, 1;
br while;
end:
}
mov Stotal, Sv0;
return:
ldg $s3, sav3($sp);
ldg $s2, sav2($sp);
ldg $sl, savl ($sp);
ldg $s0, sav0($sp);
1ldg Sra, savRet ($sp);
lda $Ssp, +sav4d ($sp);
ret;
} code

} block sum

We can invoke the function sum(), with the address of an array, and the size of the array as

parameters.

// int BUFFERSIZE = 20;

// int DATASIZE = 10;

// char buffer[BUFFERSIZE + 1];
// int array[DATASIZE];

// void main () {
// int maxArray;
// int result;
// for (maxArray = 0; maxArray < DATASIZE; maxArray++) {
// print ("Enter a number (or return to finish): ");
// readLine (buffer, BUFFERSIZE);
// if (buffer[0] ==)
// break;
// array[maxArray] = Number.fromString(buffer, 10);
// }
// print ("Sum of elements of the array:\n");
// printArray(array, maxArray);
// result = sum(array, maxArray);
// printf(" is %d\n", result);
// newline () ;
// exit(0);
// }
block main uses proc {
abs {
BUFFERSIZE = 20;
DATASIZE = 10;
maxArray = s0;
result = sl;
i = s2;
J = s3;
} abs

Function invocations and declarations

Alpha Computer Architecture 30 January 2007 Page 11-95

const {
align;
messagel:
asciiz
align;
message?2:
asciiz
align;
format:
asciiz
} const
data {
align;
buffer:
byte [
array:
quad [
} data
code {
public enter:

{

"Enter a number (or return to finish): ";

"Sum of elements of the array:\n";

1]

is %d\n";

BUFFERSIZE + 1];

DATASIZE];

for: // for (maxArray = 0;
// maxArray < DATASIZE; maxArray++) |
clr SmaxArray;
while:
cmplt SmaxArray, DATASIZE, $tO;
blbc $t0, end;
do:
1diq $a0, messagel; // print (
// "Enter a number (or return to finish):
")
bsr IO.print.enter;
1dig $a0, buffer; // readLine (buffer, BUFFERSIZE);
1dig $al, BUFFERSIZE;
bsr IO0.readLine.enter;
1dig $t0, buffer; // if (buffer[0] ==)
ldbu $t0, ($t0);
beq St0, end; // break;
1dig $a0, buffer; // array[maxArray] = fromString(
buffer, 10);
ldig $al, 10;
bsr Number.fromString.enter;
ldig $t0, array;
s8addqg SmaxArray, $t0, $t0;
stq $v0, ($t0);
continue:
addg $maxArray, 1;
br while; // }
end:
}
1digq $a0, message2; // print ("Sum of elements of the array:\n");
bsr IO0.print.enter;// printArray(array, maxArray);
ldig $a0, array;
mov SmaxArray, Sal;
bsr printArray.enter;
1diq $a0, array; // result = sum(array, maxArray);
mov $maxArray, Sal;
bsr sum.enter;
mov $v0, Sresult;
ldig $a0, format;
mov Sresult, Sal; // printf(" is %d\n", result);

Function invocations and declarations

Alpha Computer Architecture 30 January 2007 Page 11-96

bsr IO.printf.enter;

clr $a0; // exit(0);
bsr Sys.exit.enter;

} code

} block main
Exercise PRINTARRAY_ERROR

The following program is meant to print out the index and value of the elements of the array,

and should generate the output:
3
14
15
92

w NP O

However, it has at least 10 errors in it. Indicate and correct at least 10 errors.
entry main.enter;

import "../IMPORT/callsys.h";
import "../IMPORT/proc.h";
import "../IMPORT/callsys.lib.s";
import "../IMPORT/string.lib.s";
import "../IMPORT/number.lib.s";
import "../IMPORT/io.lib.s";
data {
array:
quad 3;
quad 14;
quad 15;
quad 92;
} data

// void printArray(int[] array, int max) {

// int 1i;
// for (i = 0; i < max; 1i++)
// printf ("%4d%8d\n", i, array[1]);
// }
block printArray uses proc {
abs {
array = s0;
max = sl;
i = s2;
} abs
const |
align;
format:
asciiz "%4d%8d\n";
} const
code {

public enter:
lda S$sp, -sav3(S$sp);
stg S$ra, savRet ($sp);
stqg $s0, sav0(Ssp);
stqg $sl, savl(Ssp);
stq $s2, sav2(S$Ssp);
init:
mov $al, $Sarray;
body:

{

Function invocations and declarations

Alpha Computer Architecture 30 January 2007 Page 11-97

for:
clr $1i;
while:
cmplt $i, max, $t0;
blbc end;
do:
ldg $a0, format;
ldiqg $al, 1i;
addg i, Sarray, $t0;
ldg $a3, $t0;
bsr IO.printf.enter;
continue:
addg $1i, 1;
br end;
end:
}
return:

ldg $s2, sav2(S$sp);
ldg $sl, savl(Ssp);
ldg $s0, sav0(Ssp);
ldg $Sra, savRet ($sp);
lda $sp, +tsav2($sp);

} code
} block printArray
// int main () {
// printArray(array, 4);
// }
block main uses proc {
code {

public enter:
ldig $a0, array;
ldg $Sal, 4;
bsr printArray;

} code
} block main

§11.5 Some programming exercises to try

Strings

Write a function void toLower(char *s) that

. Converts the characters in a string s to lower case.

Write a function void substring(char *dest, char *source, int start, int finish) that

. Copies the substring of source, from index start, to just before index finish, and stores in dest.
Write a function int countChars(char *source, char low, char high) that

. Counts the characters c in source that satisfy low <= ¢ <= high.

Write a function void extractChars(char *dest, char *source, char low, char high) that

. Copies the characters c in source that satisfy low <= ¢ <= high into the memory starting at the
address dest.

Write a function int comparelgnoreCase(char *s, char *t) that
. Compares two strings s and t, as if they had been converted to lower case, and returns an

integer indicating whether s <t, s ==ts>t.

Function invocations and declarations

Alpha Computer Architecture 30 January 2007 Page 11-98

. Does not modify the strings themselves.

. Makes use of functions in string.lib.s.

Write a function int findCharIndex(char c, char *s) that

. Find the index of the first occurrence of char c in string s.
o Returns the index, or -1, if the char is not found.

Write a function int findLastCharIndex(char c, char *s) that

. Find the index of the last occurrence of char c in string s.
o Returns the index, or -1, if the char is not found.

Write a function int startsWith(char *prefix, char *s) that

. Returns true if the string s starts with the string prefix.
Write a function int indexOf(char *s, char *t) that

. Returns the index of the first occurrence of the string t as a substring in the string s, or -1 if it
does not occur.

Write a function void printTrim(char *s, char padChar, int size) that
. Prints the first size characters of s, padding with padChar if s has less than size characters.

Write a function void copyTrim(char *dest, char *source, char padChar, int size) that

. Copies the string starting at the address source to the memory starting at the address dest.
. Copies at most size bytes.

. Does not copy beyond the null byte terminator.

. Pads dest with the specified padChar, if source has less than size chars.

Write a function int compareTrim(char *s, char *t, int size) that

. Compares two strings s and t, and returns an integer indicating whether s <t,s ==ts>t.
. Only compares the first size characters.

Write a function void shiftUp(char c, char *s) that

. Shifts the text in s up (right) by one byte, deleting the last character, and inserting character ¢
at the start.

Write a function void shiftDown(char c, char *s) that

. Shifts the text in s down (left) by one byte, deleting the first character, and inserting character
c at the end.

Write a function void shift(char ¢, char *s, int count) that

. Shifts the text in s down (left) by -count bytes or up (right) by +count bytes, deleting any
characters that do not fit inside the original string, and filling the space with the character c.

Write a function char *findCharPosition(char c, char *s) that

. Assumes the characters in string s are sorted in order.
. Returns the position of the first char in string s that is >=c.
. Returns the address just beyond the end of the string, if all chars are < c.

Function invocations and declarations

Alpha Computer Architecture 30 January 2007 Page 11-99

Write a function void insertChar(char c, char *s) that

. Assumes the characters in string s are sorted in order.
. If the char ¢ does not already exist in s, inserts it in the appropriate place, to keep the text
sorted.

Write a function void deleteChar(char c, char *s) that

o If the char c exists in s, deletes the first occurrence.

Write a function void deleteAllChar(char c, char *s) that

. Deletes all occurrences of ¢ in s.

Write a function void replace AlIChar(char *s, char from, char to) that

. Replaces all occurrences of char from in s by char to.

Write a function void translate(char *s, char *from, char *to) that

. Replaces all occurrences of chars in from in s by the char in the corresponding position in to.
Write a function void copyOnly(char *dest, char *source, char *onlyChars) that

. Copies the chars in source to dest, that exist in onlyChars.

Write a function void copyExcept(char *dest, char *source, char *exceptChars) that
. Copies the chars in source to dest, that do not exist in exceptChars.

Write a function void copyMerge(char *dest, char *sourcel, char *source2) that

. Assumes the characters in sourcel and source? are sorted.
. Copies the characters in sourcel and source2 into dest.

J Maintains the order.

. Deletes duplicates.

Memory

Write a function void fillMem(char *addr, char fillChar, int size) that
. Sets size bytes of memory starting at address addr to the specified fillChar.
Write a function void copyMem(char *dest, char *source, int size) that

. Copies the contents of size bytes of memory starting at the address source to the memory
starting at the address dest.

. Takes into account that the memory may overlap.
Write a function void copyMem(char *dest, char *source, int size) that

. Copies the contents of size bytes of memory starting at the address source to the memory
starting at the address dest.

o Assumes the memory is at an address divisible by 8, and that size is divisible by 8, and uses
1dq and stq, rather than Idbu and stb.

Function invocations and declarations

Alpha Computer Architecture 30 January 2007 Page 11-100

Integer Arrays
Write a function int sum(int array[], int size) that
. Returns the sum of the elements of the array, which contains size elements.

Write a function int max(int array[], int size) that

. Returns the maximum of the elements of the array, which contains size elements.
. Takes into account that the elements may be negative.
J Takes into account that the size may be 0.

Write a function void add(int dest[], int src1[], int src2[], int size) that

. Computes the sum of the arrays srcl and src2 and puts the result in the array dest (performing
vector addition). All arrays have the specified size elements.

Write a function int dotProduct(int src1[], int src2[], int size) that
. Returns the dot product of the arrays srcl and src2.

Design a representation for one and two dimensional arrays that includes the size of the array as
part of the data structure.

. Rewrite the above functions to use this information, rather than passing the size as a
parameter.
. Write functions to perform matrix arithmetic.

Sorting and Searching

Write a function int insert(char *array[], char *s) that

. Assumes the array contains a sorted list of pointers to strings, and that the end of the list is
indicated by a null address.

. Searches for the position of the string s in the array.

. If it does not find it, inserts it in the array, and shuffles the following elements up to make
space.

. Makes sure that the array is still terminated by a null address.

. Returns the index of the string in the array.

Write a function void sort(char *array[]) that

. Assumes the array contains a list of pointers to strings, and that the end of the list is indicated
by a null address.

. Sorts the elements into order, using a variety of different sorting algorithms.

Write a function int binarySearch(int array[], int value, int low, int high) that

. Assumes that array is a sorted array of integers.

. Performs a binary search for the value in array, from indexes low to high.
o Returns the index of the element, or -1, if it is not found.

. Uses recursion.

Input/Output, and conversion of text to a number

Write a function int toNumber(char *s) that

Function invocations and declarations

Alpha Computer Architecture 30 January 2007 Page 11-101

. Processes text in s starting with an optional '+' or '-', followed by decimal digits, and converts
the decimal number into internal form.

. Returns the number as its result.

Write a function int toNumber(char **sVar) that

o Does the same as the above, but takes the address of a string variable, rather than the address
of a string.
. Updates the variable to point to the text just after the decimal number.

Write a function int readNum() that

. Reads characters until it reads in a decimal digit or '+' or '-'.

. Reads characters until it gets a non-digit.

. Processes the optional sign and digits to convert a decimal number into internal form.
. Returns the number as its result.

§11.6 Recursion

When writing recursive functions, we have to be particularly careful about saving and restoring
registers. There will always be conflicts between the registers used by the invoking and the invoked
function (they are after all the same function). Consider the following C program, that generates

Pascal’s triangle rather inefficiently.
#define MAX 3

int comb(int n, int r) {
if (r == |l r == n)
return 1;
else
return comb(n - 1, r - 1) + comb(n - 1, r);
}
int main(int argc, char *argv([], char *arge[]) {

register int n, r;
for ((n = 0; n <= MAX; n++) {
for ((r = n; r < MAX; r++)

printf(" ")
for (r = 0; r <= n; r++)
printf("%8d", comb(n, r));

printf ("\n");
}
}

This generates output
1
1 1
1 2 1
1 3 3 1

and invokes the functions as shown below.
Enter comb(0, 0)
Exit comb(0, 0)

Enter comb(1, 0)
Exit comb(1, 0)
Enter comb(1, 1)
Exit comb(1, 1)

Enter comb(2, 0)

Function invocations and declarations

Alpha Computer Architecture 30 January 2007
Exit comb(2, 0)
Enter comb(2, 1)
Enter comb(1, 0)
Exit comb(1, 0)
Enter comb(1, 1)
Exit comb(1, 1)
Exit comb(2, 1)
Enter comb(2, 2)
Exit comb(2, 2)
Enter comb(3, 0)
Exit comb(3, 0)
Enter comb(3, 1)
Enter comb(2, 0)
Exit comb(2, 0)
Enter comb(2, 1)
Enter comb(1, 0)
Exit comb(1, 0)
Enter comb(1, 1)
Exit comb(1, 1)
Exit comb(2, 1)
Exit comb(3, 1)
Enter comb(3, 2)
Enter comb(2, 1)
Enter comb(1, 0)
Exit comb(1, 0)
Enter comb(1, 1)
Exit comb(1, 1)
Exit comb(2, 1)
Enter comb(2, 2)
Exit comb(2, 2)
Exit comb(3, 2)
Enter comb(3, 3)
Exit comb(3, 3)
We can write comb in assembly language
// int comb(int n, int r) {
// if (r == [l £ == n)
// return 1;
// else
// return comb(n - 1, r - 1) + comb(n - 1,
// }
block comb uses proc {
abs {
n = s0;
r = sl;
temp = s2;
} abs
code {
public enter:
lda Ssp, —-sav3($sp):;
stqg Sra, savRet ($sp);
stq $s0, sav0 (S$sp);
stq $sl, savl(S$sp);
stq $s2, sav2($sp);
init:
mov $a0, S$n;
mov Sal, Sr;
body:

Function invocations and declarations

Page 11-102

Alpha Computer Architecture

beqg
cmpeq
blbc
then:
mov
br
else:
subg
subg
bsr
mov
subg
mov
bsr
addg
end:
}

return:

ldg $s2,
ldg $si,
1ldg $s0,
ldg $ra,
lda $sp,

ret;
} code
} block comb

Sr,
Sr,
$to,

end;

s$n,
ST,
comb.
$vo,
s$n,
ST,
comb.
$vo,

30 January 2007

then;
$n, $t0;
else;

$v0;

ll $ao;
ll $al;
enter;
Stemp;

ll $ao;
s$al;
enter;
Stemp;

sav2 (Ssp);
savl (Ssp);
sav0 (Ssp) ;
savRet ($sp) ;
+sav3 ($sp) ;

Page 11-103

The activation record for comb is made up of the saved values of ra, s0O, s1, s2. Note that I had to
move the result of the invocation of “comb(n-1,r-1)” to a saved register, so that it would not get
overwritten by the invocation of “comb(n - 1, r)”. The saved register ends up being saved on the
stack by the entry code for the recursive invocation of the function.

§11.7

Local Arrays

We can write functions that declare local arrays. We need to allocate space for the local array on
the stack. Because the stack pointer no longer points to the base of the activation record, we need
another register, the fp (frame pointer) register to point to the activation record. The template for
the assembly language for such functions something like the following:

block f uses proc {

abs {
arrayPtr =
} abs

code {

public enter:

// Entry Code

lda $sp,
stqg Sra,
stqg $fp,
stqg $s0,
stqg $s1

mov $sp,

init:

//

A saved register

-frameSize ($sp) ;

savRet ($sp) ;
savFP ($sp) ;
sav0 (Ssp) ;
savl (Ssp);

$fp //

Function invocations and declarations

Set frame pointer

Alpha Computer Architecture 30 January 2007 Page 11-104

[m e
// Allocate space for the array
[m e
// Allocate array
lda $sp, -elementSize*arraySize ($sp) ;
mov $sp, SarrayPtr;
[m e
// Body of function
[m e
body
[m e
// Exit Code
[m e
return:
// Deallocate array
mov S$fp, $sp;
ldg $si, savl ($sp) ;
1dg $s0, sav0 ($sp) ;
1dg Sfp, savFP ($sp) ;
1ldg Sra, savRet ($sp) ;
lda $sp, +frameSize ($sp) ;
ret;
} code
} block f

If the array has a fixed size, it is possible to allocate space for the array within the activation record.
However, the above system allows us to allocate arrays with a size that depends on the parameters
passed to the function. If we have local variables in the activation record, they can be accessed by
offsets from the frame pointer.

$sp

Space for local arrays, 1f have any

$fp

Saved $ra, if this function invokes another function
Saved $fp if this function declares local arrays
Saved $s0 if this function uses $s0

Saved $s1 if this function uses $s1

Saved $s2 if this function uses $s2

Local variable O 1f used as var param, or not enough saved registers
Local variable 1 if used as var param, or not enough saved registers
Local variable 2 if used as var param, or not enough saved registers

Function invocations and declarations

Alpha Computer Architecture 30 January 2007 Page 11-105

For example, the following C program generates Pascal’s triangle a row at a time, storing the result

in an array.
int MAX = 3;

void printRow (int datal]l, int n) {
for (int 1 = n; i < MAX; i++)
print(" ")
for (int 1 = 0; 1 <= n; i++)
printf (“%8d”, datal i1]);

newline () ;

}

void genRow(int row[], int n) {
int prevRow[n];
int r;
row[0] = row[n] = 1;
if (n > 0) {
genRow (prevRow, n - 1);
for ((r =1; r < n; r++)
row[r] = prevRow[r - 1] + prevRow[r];

}
printRow(row, n);

}

int main(int argc, char *argv([], char *argel[]) {
int row[MAX + 1];
genRow (row, MAX);
exit(0);
}

Translating the above into Alpha assembly language, we get the following.
// int MAX = 3;

abs {
MAX = 3;
} abs
// void printRow(int arrayl[], int n) {
// int 1i;
// for (1 = n; 1 < MAX; 1i++)
// print (" ")
// for (i = 0; i <= n; i++)
// printf("%$8d", array[i 1);
// newline () ;
// }

Function invocations and declarations

Alpha Computer Architecture 30 January 2007
block printRow uses proc {
abs {
array s0;
n = sl;
i = s2;
} abs
const {
spaced:
asciiz " ";
format:
asciiz "%8d";
} const
code {
public enter:
lda Ssp, —-sav3($sp):;
stqg Sra, savRet ($sp);
stq $s0, sav0 (S$sp);
stq $sl, savl($sp);
stq $s2, sav2($sp);
init:
mov $a0, Sarray;
mov $al, Sn;
body:
{
for: // for (i = n;
mov Sn, Si;
while:
cmplt $i, MAX, $tO0;
blbc $t0, end;
do:
1digq $a0, spaced; // print (
bsr IO.print.enter;
continue:
addg $1i, 1;
br while;
end:
}
{
for: // for (i = 0;
clr Si;
while:
cmple $i, $n, $t0;
blbc $t0, end;
do:
ldig $a0, format; // printf (
s8addqg $i, Sarray, $t0;
ldq $all ($to);
bsr IO.printf.enter;
continue:
addg $1i, 1;
br while;
end:
}
bsr I0.newline.enter; // newline () ;
return:

Function invocations and declarations

1]

Page 11-106
i < MAX; i++)
")
i < n; 1i++)
"%8d", array[i]);

Alpha Computer Architecture 30 January 2007 Page 11-107

ldg $s2, sav2($sp);
ldg $sl, savl ($sp);
ldg $s0, sav0 ($sp);
1ldg Sra, savRet ($sp);
lda Ssp, +sav3($sp):;
ret;

} code

} block printRow

// void genRow(int row[], int n) {
// int prevRow[n 1;
// // Actually not legal to have dynamic size allocation in C
// int r;
// row[0] = row[n] = 1;
// if (n >0) {
// genRow (prevRow, n - 1);
// for (r = 1; r < n; r++)
// row[r] = prevRow[r - 1] + prevRow[r];
// }
// printRow (row, n);
// }
//
block genRow uses proc {
abs {
row = s0;
n = sl;
prevRow = s2;
r = s3;
} abs
code {
public enter:
lda Ssp, —-sav4d ($sp);
stqg Sra, savRet ($sp);
stqg Sfp, savFP($sp);
stq $s0, sav0 (S$sp);
stq $sl, savl(S$sp);
stqg $s2, sav2($sp);
stq $s3, sav3(S$sp);
mov S$sp, Sfp;
init:
mov $al0, $row;
mov Sal, $Sn;
s1ll Sn, 3, St0; // int prevRow[n];
subg $sp, $t0;
mov Ssp, SprevRow;

Function invocations and declarations

Alpha Computer Architecture 30 January 2007
body:
mov 1, St0; // row[0] = row[n] = 1;
stq $t0, (Srow);
s8addqg $n, Srow, Stl;
stq $t0 ;o Stl) ;
{
if: // if (n > 0) {
ble Sn, end;
then: // genRow (prevRow, n -
mov SprevRow, $a0;
subg $n, 1, Sal;
bsr genRow.enter;
{
for: // for (r = 1; r < n;
mov 1, Sr;
while:
cmplt $r, Sn, St0;
blbc $t0, end;
do: // row[r] =
// prevRow[r
// + prevRow|
s8addqg Sr, Srow, $t0;
subg $r, 1, Stl;
s8addqg Stl, SprevRow, $tl;
1dg Stl, (Stl);
s8addg Sr, SprevRow, $t2;
1dg St2, (St2);
addg $tl1, $t2;
stqg Stl, ($t0);
continue:
addg $r, 1;
br while;
end:
}
end: // }
}
mov Srow, $a0; // printRow(row, n);
mov Sn, Sal;
bsr printRow.enter;
return: // }
mov Sfp, S$sp;
ldg $s3, sav3($sp);
ldg $s2, sav2($sp);
ldg $sl, savl ($sp);
ldg $s0, sav0($sp);
1dg Sfp, savFP($sp);
1ldg Sra, savRet ($sp);
lda $Ssp, +sav4d ($sp);
ret;
} code

} block genRow

Function invocations and declarations

Page 11-108

1)

r++)

- 1]
r 1;

Alpha Computer Architecture 30 January 2007 Page 11-109

// int main(int argc, char *argv[], char *argel[]) {
// int row[MAX + 1 1;
// genRow (row, MAX);
// exit(0);
// }
//
block main uses proc {
code {
public enter:
subqg $sp, 8* (MAX+1); // int row[MAX + 1 1;
mov $sp, $al; // genRow (row, MAX);
mov MAX, S$al;
bsr genRow.enter;
clr $al; // exit(0);
bsr Sys.exit.enter;
} code

} block main

Note that it is not possible to return a local array as the result of a function, because the space will
be deallocated on return from the function, and overwritten by the next function invocation.

What does the stack look like, when at the maximum level of recursion? All the arrays for each
row of Pascal’s triangle have been set up, and the 1’s at each end have been assigned, but the
middle values have not been filled in.

General Registers

Program Counter
pc .genRow.end At .genRow.end in genRow(row, 0)

Integer Registers

s0 1f£f££20 row in genRow(row, 0)
sl 0 n in genRow(row, 0)
s2 1fffef0 prevRow in genRow(row, 0) (array of size 0)
s3 0 r in genRow(row, 0)
fp 1fffef0 frame pointer for genRow(row, 0)
sp 1fffef0 top of stack
Stack Memory

prevRow in genRow(row, 0) (size 0)

activation record for genRow(row, 0)

01fffefO .genRow. .. for saved ra to genRow(row, 1)
0lfffefs8 1£f£f££28 saved fp for genRow(row, 1)
01f£££00 1£f£f££58 saved sO0 row in genRow(row, 1)
01f££f£f08 1 saved sl n in genRow(row, 1)
01ffff10 1££££20 saved s2 prevRow in genRow(row, 1)
01ffff1s8 0 saved s3 r in genRow(row, 1)
prevRow in genRow(row, 1)

01f£££20 1 prevRow|[0]

activation record for genRow(row, 1)

01ffff28 .genRow. .. for saved ra to genRow(row, 2)
01f£££30 1ffff68 saved fp for genRow(row, 2)
01fff£38 1££££98 saved sO0 row in genRow(row, 2)
01ff££40 2 saved sl n in genRow(row, 2)
01ffff4s8 1£f£f££58 saved s2 prevRow in genRow(row, 2)
01f£££50 0 saved s3 r in genRow(row, 2)

prevRow in genRow(row, 2)
0Lfff£f58 1 prevRow|[0]

Function invocations and declarations

Alpha Computer Architecture 30 January 2007 Page 11-110

01ffffoe0 1 prevRow[1]

activation record for genRow(row, 2)

01lfff£f68 .genRow...for saved ra to genRow(row, 3)
0Lff£f£70 1f£f£f£fb0 saved fp for genRow(row, 3)
01ffff78 1ffffe0 saved sO0 row in genRow(row, 3)
01f£££80 3 saved sl n in genRow(row, 3)
0Lfff£88 1£f£f£f£98 saved s2 prevRow in genRow(row, 3)
01f£££90 0 saved s3 r in genRow(row, 3)
prevRow in genRow(row, 3)

0Lffffo8 1 prevRow|[0]

01ffffal 0 prevRow[1]

01ffffas 1 prevRow|[2]

activation record for genRow(row, 3)

0lffffb0 .main.enter+10 saved ra to main

0Lffffb8 0 saved fp

0LffffcO 0 saved sO0

0lffffcs8 0 saved sl

0Lf£f£f£d0 0 saved s2

01Lffffds 0 saved s3

row in main

01ffffel 1 row[0]

0lffffe8 0 row[1]

O1fffffo0 0 row[2]

O1fffff8 1 row[3]

02000000 Bottom of stack

Function invocations and declarations

Alpha Computer Architecture 30 January 2007 Page 12-111
12. Assembling and Disassembling

§12.1 Overview

We write a program in assembly language (or even in a high level language). This program is
converted into (binary) machine code.

What is involved in this translation?

Because it is possible to refer to labels before they are declared, assemblers are usually multi-pass.
My assembler is composed of the following passes:

. Lexical analysis and parsing. The input is analysed into tokens and constructs, and a tree is
built, representing the structure of the program.

. Collection of declarations. A treewalk is performed, to determine the names and nesting of
blocks, and the identifiers declared within each block. The mapping of block names to
blocks, for the list of blocks used by a block also occurs in this pass. A consequence of this is
that blocks must be declared before they are used.

. Mapping of identifiers to declarations. A treewalk is performed to map all identifier
applications to identifier declarations. Essentially this pass looks up the tables generated by
the previous pass.

. Address generation. A treewalk is performed to determine the offset of every statement from
the base of its section, and the values of all identifiers (possibly as offsets from the base of a
section). For local sections, this requires the calculation of the initial offset for the section.
As a consequence, it must be defined in terms of constants and offsets of labels in previous
local sections. Similarly, expressions are computed when they are needed to indicate the size
of data (the expression in a space allocation statement, or an array declaration).

o Determination of the address of each section. The code and data start at addresses that
depend on whether the code is PAL, kernel, or user code. The constant and global table
follows immediately after the code.

. Code generation. A treewalk is performed to generate code. At this stage, all identifiers must
be defined, in terms of absolute addresses.

Each pass generates errors, with the offending construct indicated, and a line number. The line
number is often one line after the real error.

For example, a program generated the following error messages. A ““;” was missing on line 233,
which generated a syntax error, but was reported as an error on line 234. The fact that 1diq was
mistyped as 1di was not picked up until address generation time, because it was only in this pass that

an attempt was made to determine the opcode corresponding to its name.
Assembling USER file "/Home Machine/Data/ALPHACODE2.05/SIMPLE/TESTPROG ERROR/user
code.user.s"

Parsing ...
usercode.user.s : 40 : Syntax Error
gel; ||| lbsr]||print.enter; ||| |1digl$a0, |buffer |1dig|$al, |BUFFERSIZE;

1] [
[[[| | [| 1]
Generating Declarations
Looking Up Declarations
Generating Addresses
usercode.user.s : 47 : Invalid opcode "1di"
ter; | 1111digl$a0, |[buffer; ||| |bsr||print.enter;
[| | [[

|1di||$a0, INEWLINE; |

| | | |/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\| |

Assembling and Disassembling

Alpha Computer Architecture
Generating Code

Completed Generating Code
User Error: Error in compilation of /Home Machine/Data/ALPHACODE2.05/SIMPLE/TESTP
ROG ERROR/usercode.user.s

LoadError: User Error while loading file

30 January 2007 Page 12-112

The “|”’s represent control characters such as line breaks and tabs.
indication of the construct in which the error occurred.

The “~~~~~" represent an

Each pass is capable of generating errors. Sometimes an error in a previous pass might cause
spurious errors in subsequent passes. Equally well, an error in a previous pass might cause real
errors in subsequent passes to not be detected.

Another point worth noting is that an attempt is made to load a program, even if it contains errors.
The user can then attempt to run this program. You do need to look in the trace window to check
whether there were any error messages.

It is not difficult to assemble and disassemble instructions.
Alpha opcodes and function codes for some common instructions

We have to know the opcode and function codes of each instruction. For example, the format,
opcode and function code is indicated below for some of the common instructions.

Name Format Opcode Function code
addq Operate 0x10 0x20
subq Operate 0x10 0x29
mulq Operate 0x13 0x20
sra Operate 0x12 0x3c
lda Memory 0x8

ldq Memory 0x29

ldbu Memory Oxa

stq Memory 0x2d

beq Branch 0x39

bne Branch 0x3d

Alpha Registers

0 v0 26 ra

1-8 t0-t7 27 pv

9-14 s0-s5 28 at

15 fp 29 gp

16-21 | a0-a5 30 sp

22-25 | t8-tll 31 Zero

(Note: The register numbers are in decimal).

Assembling and Disassembling

Alpha Computer Architecture

§12.2

30 January 2007

Integer operate instructions

Integer operate instructions have the following format:

31 26 25 2120 1615 131211 54 0
Opcode regA regB 0 (0 Function regC

Integer operate instruction with second operand a register

31 26 25 2120 131211 54 0
Opcode regA Unsigned literal |] Function regC

Integer operate instruction with second operand a literal

Page 12-113

Suppose we have the instruction “addq $a0, $t0, $t2;”. The identifiers a0, t0, t2 are symbolic names
for registers 16, 1 and 3 (decimal), so we could write the instruction as “addq $16, $1, $3;”.
Moreover, the literal flag must be 0, so the fields for the instruction are:

Field opcode regA regB padding | literal flag | function regC
Hex 0x10 0x10 Ox1 0x0 0x0 0x20 0x3
Binary 010000 10000 00001 000 0| 0100000 00011

Grouping the bits in lots of 4 we get
0100 0010 0000 0001 0000 0100 0000 0011

and writing it in hexadecimal, we can see that the instruction is encoded as the number

0x42010403.

Consider the instruction “subq $t5, 1;”. Expanding this out to three operands, and replacing the
symbolic name, we get “subq $6, 1, $6;”. We have an integer operate format, with a literal for the
second operand, so the fields for the instruction are:

Field opcode regA literal | literal flag | function regC
value

Hex 0x10 0x6 Ox1 Ox1 0x29 0x6

Binary 010000 00110 | 00000001 1| 0101001 00110

Grouping the bits in lots of 4 we get
0100 0000 1100 0000 0011 0101 0010 0110

and writing it in hexadecimal, we can see that the instruction is encoded as the number 0x40c03526.

The computer must perform the translation in reverse order. Given the instruction in internal form,
it must be able to determine the opcode and operands, so that it can execute the instruction. For
example, suppose we have an instruction 0x4cf5540e.

Writing this in binary, we get

0100 1100 1111 0101 0101 0100 0000 1110.

Assembling and Disassembling

Alpha Computer Architecture
Now the 6 bit opcode is 010011, namely Ox13, which represents an integer operate instruction.
Moreover bit 12 is 1, so the instruction has a literal for the second operand. Splitting it up into its

fields, we get

30 January 2007

Page 12-114

Field opcode regA literal | literal flag | function regC
value

Binary 010011 00111 | 10101010 1| 0100000 01110

Hex 0x13 0x7 Oxaa Ox1 0x20 Oxe

Decimal 7 170 14

Now opcode 0x13, and function code 0x20 represents the mulq instruction. So we must have the
instruction “mulq $7, 170, $14;”, or using symbolic names for registers, “mulq $t6, 170, $s5;”.

§12.3 Memory access instructions

Memory access instructions have the following format

31 26 25 2120 16 15 0

Opcode regA regB Signed displacement

Memory access instruction
The displacement is a signed two’s complement number.

Suppose we have the instruction “lda $sp, +10($sp);”.

We get

Field opcode regA regB displacement
Hex 0x8 Oxle Oxle Oxa
Binary 001000 11110 11110 | 0000000000001010

(Remember that decimal 10 is hexadecimal Oxa and binary 1010.)

Grouping the bits in lots of 4 we get

00100011 1101 1110 0000 0000 0000 1010

and writing it in hexadecimal, we can see that the instruction is encoded as the number 0x23de000a.

Suppose we have the instruction “lda $sp, -10($sp);”.

We get

Field opcode regA regB displacement
Hex 0x8 Oxle Oxle O0xfff6
Binary 001000 11110 11110 | 1111111111110110

(We can represent decimal -10 as a two’s complement number by writing decimal 10 in binary as
0000000000001010, taking the one’s complement 1111111111110101, then adding 1 to get
1111111111110110. We have to take into account the number of bits used to store the value.)

Grouping the bits in lots of 4 we get
00100011 1101 1110 1111 1111 11110110

and writing it in hexadecimal, we can see that the instruction is encoded as the number 0x23defff6.

Assembling and Disassembling

Alpha Computer Architecture 30 January 2007 Page 12-115
Suppose we have the instruction 0x23deffe0. In binary this is:

00100011 1101 1110 1111 1111 1110 0000

The opcode is 0x8, so we again have a Ida instruction. Splitting it up into fields, we get

Field opcode regA regB displacement
Hex 0x8 Oxle Oxle OxffeO
Binary 001000 11110 11110 | 1111111111100000

In other words, “Ida $sp, -0x20($sp);”. (We can determine the negative number the displacement
corresponds to by taking the two’s complement, to get a positive number. Alternatively, we can
subtract OxffeO from 0x10000.)

§12.4 Branch instructions

Branch instructions are a little more complex, because the displacement stored in the instruction is
relative to the program counter, at the time at which the instruction is executed (after the program
counter has been incremented to point to just after the instruction), and the displacement is counted
in longwords (in other words, the low two bits of the byte displacement are discarded), because all
instructions must be longword aligned.

31 26 25 2120 0

Opcode regA Signed displacement / 4

Branch instruction

Suppose we have an instruction “bne $s1, labell;”, at address 0x80023c, and labell correponds to
address 0x80027c.

The program counter will be 0x800240 at the time the instruction is executed. So the address to
branch to is 0x80027c¢ - 0x800240 = +0x3c bytes away. Dividing this by 4 (the size of a longword)
gives us a displacement of +0xf. The opcode for bne is 0x3d, and register sl is register 10
(decimal), so we get:

Field opcode regA displacement
Hex 0x3d Oxa 0xf
Binary 111101 01010 000000000000000001111

Grouping the bits in lots of 4 we get
1111 0101 0100 0000 0000 0000 0000 1111
and writing it in hexadecimal, we can see that the instruction is encoded as the number 0xf540000f.

Suppose we have an instruction “beq $v0, label2;” at address 0x80025¢, and label2 correponds to
address 0x80022c.

The program counter will be 0x800260 at the time the instruction is executed. So the address to
branch to is 0x80022c - 0x800260 = -0x34 bytes away (Ox7fffcc, when written as a 23 bit unsigned
number). Dividing this by 4 (the size of a longword) gives us a displacement of -Oxd (0x1ffff3,
when written as a 21 bit unsigned number). The opcode for beq is 0x39, and register vO is register
0, so we get:

Field opcode regA displacement

Hex 0x39 0x0 -0xd (Ox1ffff3)

Assembling and Disassembling

Alpha Computer Architecture 30 January 2007 Page 12-116

I111111111111111110011

Binary 111001 00000

(There are various ways of performing the arithmetic. One way is to do everything in binary.
Another way is to do it in hexadecimal. Negative numbers come out as numbers with an infinite
number of ..fffff on the left. When we pack the data in the displacement field, we discard the extra
bits.)

Grouping the bits in lots of 4 we get

111001000001 1111 1111 1111 11110011

and writing it in hexadecimal, we can see that the instruction is encoded as the number Oxe4 1{fff3.
Suppose we have the instruction 0xe6000003, at address 0x800200. In binary this is

1110 0110 0000 0000 0000 0000 0000 0011.

The opcode 1s 0x39, so it is a beq instruction.

Splitting it up into fields, we get:

Field opcode regA displacement
Hex 0x39 0x10 0x3
Binary 111001 10000 000000000000000000011

So the destination adress is 4 * 0x3 + 0x800204 = 0x800210, giving the instruction “beq $a0,
0x800210;”. Of course, if the address 0x800210 has a label, we can replace it by the symbolic
label.

Assembling and Disassembling

Alpha Computer Architecture 30 January 2007 Page 12-117
Exercise ASSEMBLE

Assemble the following program. Assume the code is at address 0x800000, and the data is at
address 0x1000000.

entry main.enter;

block main {

data {
aaa:
quad 123;
bbb:
asciiz "\"hi\"\n";
} data
code {
public enter:
beqg $t0, yyy:
XXX 3
1dg $s0, ($t0);
subg $s0, 1;
bne $s0, xxXx;
YYY:
addg S$zero, 123, $t0;
br XXX}
} code

} block main

Instruction | Format | Opcode | Function code

beq Branch | 0x39
bne Branch | 0x3d
br Branch | 0x30
ldq Memory | 0x29
addq Operate | 0x10 0x20
subq Operate | 0x10 0x29

Assembling and Disassembling

Alpha Computer Architecture 30 January 2007 Page 12-118

Appendices

Alpha Computer Architecture

30 January 2007

13. Commonly used Alpha instructions

Integer operate instructions
Opcode $regA, $regB, SregC
intReg|[regC] = intReg[regA] op intReg[regB]

Opcode S$regA, constantB, S$regC
The constant is an 8 bit unsigned constant.
intReg|[regC] = intReg[regA] op constantB

Arithmetic integer operate instructions

addq add +
subq subtract -
mulq multiply *
umulh top half of 128 bit multiply *
divg/divqu divide, signed/unsigned /
modg/modqu modulo, signed/unsigned %
s8addq scaled 8 add 8*operandA+operandB
S4addq scaled 4 add 4*operand A+operandB
Shift integer operate instructions
sl shift left logical <<
srl shift right logical >>>
sra shift right arithmetic >>
Compare integer operate instructions
cmpeq compare equal ==
cmplt/cmpult compare less than | <
signed/unsigned
cmple/cmpule compare less than or equal | <=
signed/unsigned
Logical integer operate instructions
and and &
bic bit clear & ~
bis/or bit set/or I
eqv/xornot equivalent/exclusive or not A~
ornot or not | ~
Xor exclusive or A

Conditional move instructions

Opcode S$reghA, SregB, $regC

if (relation holds for intReg[regA])
intReg|[regC] = intReg|[regB]

Opcode S$regA, constantB, S$regC
if (relation holds for intReg[regA])
intReg[regC] = constantB

Commonly used Alpha instructions

Page 13-119

Alpha Computer Architecture 30 January 2007 Page 13-120

cmoveq conditional move equal

cmovne conditional move not equal

cmovlt conditional move less than

cmovle conditional move less than or equal
cmovgt conditional move greater than

cmovge conditional move greater than or equal
cmovlbs conditional move low bit set

cmovlbc conditional move low bit clear

Memory instructions

Opcode S$regA, displacement (SregB)

Opcode $reghA, (SregB)

Opcode S$regA, constant

The displacement or constant is a 16 bit signed constant.

Load address instruction
intReg| regA] = displacement + intReg| regB]
‘ lda ‘ load address ‘

Load memory instructions

intReg|[regA] = Memory|[displacement + intReg|[regB]]

ldq load quadword

1d1 load longword
ldwu load word unsigned
ldbu load byte unsigned

Store memory instructions

Memory[displacement + intReg[regB]] = intReg[regA]

stq store quadword
stl store longword
stw store word

stb store byte

Branch instructions

Conditional branch instructions
Opcode $regA, destination

if (relation holds for intReg[regA])
programCounter = destination

beq branch equal

bne branch not equal

blt branch less than

ble branch less than or equal
bgt branch greater than

bge branch greater than or equal
blbs branch low bit set

blbc branch low bit clear

Commonly used Alpha instructions

Alpha Computer Architecture 30 January 2007

Unconditional branch instructions
Opcode destination;

programCounter = destination /I br
intReg[ra | = programCounter /I bsr
programCounter = destination
br branch
bsr branch to subroutime
Jump instruction
Opcode ($regh);
programCounter = intReg[regA] /[jmp
intReg[ra | = programCounter Il jsr
programCounter = intReg[regA]
jmp jump
jsr jump to subroutine
Return instruction
programCounter = intReg| ra]
‘ ret ‘ return ‘
Callpal instruction
call pal constant;
The constant is a 26 bit constant.
‘ call_pal ‘ call PALcode ‘
Pseudoinstructions
Load immediate
ldig SregA, constant
The constant is a 64 bit constant.
intReg| regA] = constant
1diq load immediate quadword
Clear
clr $regA

intReg[regA] =0

clr clear

Unary pseudoinstructions
Opcode $regB, S$regC
intReg|[regC] = op intReg| regB]

Opcode constantB, S$regC
The constant is an 8 bit unsigned constant.
intReg| regC] = op constantB

mov move

negq negate

Commonly used Alpha instructions

Page 13-121

Alpha Computer Architecture 30 January 2007 Page 14-122

14. System calls and library functions in the simulator

User Call PAL instructions in the simulator
o call_pal CALL_PAL_CALLSYS. System call instruction. Enter a system call.

. call_pal CALL_PAL_BPT. Breakpoint instruction. Stop, so that the program can be
resumed.

To implement a system call, pass the system call number in $a0, and the arguments in $al, $a2,
$a3, ..., and return the result in $v0.

Library functions in block Sys

. int getChar(). Reads a character from the simple terminal.

. int putChar(char ¢). Writes a character to the simple terminal.

. void exit(int status). Causes the process to exit. You need this at the end of your main
program.

. void breakpoint(). Causes the process to stop, so that it can be resumed.

Library functions in block 10

. void newline(). Prints a newline.

. void print(char *s). Prints a string.

. void error(char *s). Prints a string then exits.

. char * readLine(char *s, int max). Reads a line of input into a buffer, and terminates the text

with a null byte. Discards text that will not fit into the buffer. Return the address of the null
byte just beyond the end of the text. Returns null on end of file.

. void printf(char *s, int param0, int param], int param?2, int param3, int param4). Prints the
parameters according to the format string s. Indicate format directive by %. Specify
alignment by - (left) or + (right). Specify O pad character by O (omit for space). specify field
width in decimal. %b, (binary) %o, (octal) %d (decimal), %x, (hexadecimal) %c (character),
%s (string), %% (to escape %). E.g., printf(“value = %+024x\n”, value).

Library functions in block Number

. int fromString(char *buffer, int base). Converts the text in the buffer from the specified base
into internal form. If base is 0, determines the base from the start of the text.

. char *toUnsigned(unsigned int value, int base). Converts the unsigned number into a base.

. char *toSigned(int value, int base). Converts the signed number into a base.

System calls and library functions in the simulator

Alpha Computer Architecture 30 January 2007 Page 14-123
Library functions in block String

char *fromChar(char ¢). Creates a string containing the character c.

int compare(char *s, char *t). Compares two strings and indicates their order by a value <,
==, >0 depending on whether s < t, s ==t, s > t.

int length(char *s). Returns the length of the string s.

void copy(char *s, char *t). Copies the string pointed to by t into the buffer pointed to by s.
Does not cope with overlapping strings.

char *padLeft(char *s, char padChar, int fieldWidth). Pads s on the left with the pad
character, to create a string of length fieldWidth. Trims s on the right if more than fieldWidth
characters long.

char *padRight(char *s, char padChar, int fieldWidth). Pads s on the right with the pad
character, to create a string of length fieldWidth. Trims s on the left if more than fieldWidth
characters long.

Functions that return a string (char *) use static space. The space will be overwritten by a later
invocation.

System calls and library functions in the simulator

Alpha Computer Architecture 30 January 2007 Page 15-124

15. Function invocation conventions

The arguments are passed in $a0, $al, $a2, ..., and the result is returned in $vO.

Space can be allocated on the stack by subtracting the amount of space needed from the stack
pointer on entry to the function. This space should be deallocated by adding the amount of space
needed to the stack pointer on exit from the function. The values of registers can then be saved on
the stack on function entry and restored on function exit. The invoked function may make use of
the registers, during the invocation, but this use will not be visible to the invoker.

Functions that alter the stack pointer register $sp must restore it on return. In other words, the
amount subtracted from the stack pointer on function entry and the amount added to the stack
pointer on function exit must agree.

Functions must save and restore any “saved” registers $s0, $s1, $s2, ..., that they make use of.
Hence a function invocation will not appear to alter any of the saved registers.

The bsr instruction saves the program counter in the return address register $ra. Hence the return
address register will be altered by a function invocation. If a function invokes another function, the
invoker must save and restore the $ra register.

Functions can modify the “temporary” registers $t0, $t1, $t2, ..., wiithout saving and restoring them.
Similarly functions can modify the argument registers, and $v0. Hence the invoker cannot assume
data in these registers will remain on return from the function.

Function invocation conventions

Alpha Computer Architecture 30 January 2007 Page 16-125

16. Handling of Exceptions and Interrupts in the Simulator

When an exception or interrupt occurs, PAL mode is entered at an address specified by the PAL
exception/interrupt vector table.

The cause of the exception or interrupt can be

* RESET Machine reset. This effectively occurs when the machine is turned on.
The machine starts executing the RESET handler.

* MCHK Machine check. This should represent a hardware failure, and should
never happen.

* ARITH An arithmetic exception (integer overflow, floating point overflow,
floating point underflow, inexact floating point result, divide by zero,
invalid operand).

e INTERRUPT Any interrupt (clock, disk, keyboard, screen, or software interrupt).

e D_FAULT A data access fault (fault on read/write, access control (protection)
violation (e.g., trying to write to read-only memory), non-existent
physical memory for a load or store). For naive users of the simulator
this usually means the virtual address being accessed by a load or store
instruction has the wrong protection or does not exist.

* [TB_MISS An instruction translation buffer miss (page table entry not in the
instruction translation buffer). For naive users of the simulator this
usually means the virtual address being accessed by the program counter
does not exist or does not correspond to code.

* [TB_ACV An instruction fetch fault (access control (protection) violation (e.g.,
trying to execute non-executable memory), non-existent physical
memory for an instruction fetch).

* DTB_MISS_NATIVE A data translation buffer miss (page table entry not in the data translation
buffer), when not in PAL mode. For naive users of the simulator this
usually means the virtual page being accessed by a load or store
instruction does not exist.

* DTB_MISS_PAL A data translation buffer miss (page table entry not in the data translation
buffer), when in PAL mode. This is generated if the page table entry for
the kernel stack is not in the data translation buffer when attempting to
modify the kernel stack on entry to or exit from an exception.

* UNALIGN Unaligned access fault (a load or store instruction is trying to access
memory at an address not divisible by the size of the date being loaded or
stored).

* OPCDEC An attempt to execute an unimplemented or illegal instruction. For naive

users of the simulator this usually means an attempt to execute data as
code. For example, they might have flowed into the constant section or
global table, because they missed out an instruction to invoke Sys.exit.

* FEN An attempt to execute a floating point instruction when the floating point
instruction flag is not enabled.

Handling of Exceptions and Interrupts in the Simulator

Alpha Computer Architecture 30 January 2007 Page 16-126

e CALL_PAL_KERNEL Execution of a call_pal instruction from kernel mode. This is often
caused by the execution of the retsys instruction, and does not represent
an error.

* CALL_PAL_USER Execution of a call_pal instruction from user mode, including system
calls. This is often caused by the execution of the callsys instruction, and
does not represent an error.

Handling of Exceptions and Interrupts in the Simulator

Alpha Computer Architecture 30 January 2007 Page 17-127
17. The Alpha Assembler Lexical and Syntactic Structure

§17.1 Lexical Structure
Layout

In this assembler, programs are essentially free format, in the sense that blanks, tabs, carriage
returns, and line feeds are largely irrelevant. Unlike most assemblers, statements can be split over
multiple lines. It does not matter whether line breaks are represented by CR, LF, or CR/LF pairs, so

@,

it does not matter what kind of machine you are using. “;”s take the place of line breaks, in that
they are used to terminate simple statements.

Comments

There are two kinds of comments. Single line comments are of the form
// Text until end of line

Multi-line comments are of the form
*

gossibly multi line text

*/

/* */ style comments can be nested.

Literals

The assembler allows decimal, octal, and hexadecimal integer literals, floating point literals, string
and character literals. All have much the same format as in C and Java.

Zero is represented by 0.

Octal integers are of the form 0[0-77*.

Decimal integers are of the form [1-97[0-9]*.

Hexadecimal integers are of the form 0[xx] [0-9A-Fa-f]+.

Thus unless an integer starts with a 0 or 0x, it is interpreted as decimal.

Floating point numbers are of the form {head}{tail} | {head}{exp} | {head}{tail}{exp},
where head represents [0-91+, tail represents [.]{digit}+, sign represents [\+\-17?, and exp
represents [eE] {sign} [0-9]+.

Character literals are of the form \' {chr}\', and string literals are of the form \" {chr}*\", where
chr represents [~\"\r\n\\]|\\{escape}, escape represents {octalesc} | {hexesc}
{charesc}, octalesc represents [0-7] | [0-7]1[0-7] | [0-3]1[0-7]1[0-7], hexesc represents
[xX] {hexdigit} | [xX]{hexdigit}{hexdigit}, charesc represents [ntbrf\\\"\'] (linefeed,
tab, backspace, carriage return, form feed, backslash, double quote).

Identifiers

Identifiers are of the form [A-Za-z_][A-Za-z0-9_]*, in other words a letter, followed by zero or
more letters or digits. An underscore is considered to be a letter.

Keywords
The assembler has the following keywords:

entry, extends, uses, abs, code, const, data, local, block, public, private, protected,
align, ascii, asciiz, byte, ubyte, word, uword, long, ulong, quad, uquad, float, double,
space, enclosing.

The Alpha Assembler Lexical and Syntactic Structure

Alpha Computer Architecture 30 January 2007 Page 17-128
Special symbols

The assembler has the following special symbols:

e 9% e 9 e “s” (13 (” [IR I IS A TR L N T b T I L N T & A TS & A 1 2 46y 9 ¢ 9 46 9 <6 R N A T
. . — o
9

9 <6
14 9 M 9 4 9 9) 9 [9] 9 { 9 } 9 + 9 9 * 9 / 9 ° << 9 >> 9 >>> 2 2 2

€6 9% 66 9y 46 e

& 9 9 9

§17.2 Syntactic Structure
Program

Program ::=
EntryOpt
InitStmtSeqg

EntryOpt ::=
/* Empty */
|

A4

“entry” Expr “;

’

Sections
SectionSeq ::=
/* Empty */
|

SectionSeqg Section

Section ::=
“code”
wr
LabelledInitStmtSeqg

\\}/I

“code”

“const”

ANY { ”
LabelledInitStmtSeqg
ANY } ”

“const”

“data”
\\{/I
LabelledInitStmtSeqg

\\}/I

“data”

“local”

\\{/I

LabelledUninitStmtSeqg

\\}/I

“local”

\\abs/l

\\{/I

AbsStmtSeq

ANY } ”

\\absll

“block” IDENT ExtendsOpt UsesOpt
\\{/I

SectionSeq

The Alpha Assembler Lexical and Syntactic Structure

Alpha Computer Architecture 30 January 2007 Page 17-129

\\}/I

“block” IDENT

Access “block” IDENT ExtendsOpt UsesOpt

ANY { ”
SectionSeq
ANY } ”

“block” IDENT

“import” STRINGCONST “;”

ExtendsOpt ::=
/* Empty */
|

“extends” Expr

UsesOpt ::=
/* Empty */
|
“uses” NameSeq

’

Statement Sequences
LabelledInitStmtSeqg ::=
InitStmtSeqg

|
InitStmtSeqg
EndLabelStmt

LabelledUninitStmtSeq ::=
UninitStmtSeq
|
UninitStmtSeq
EndLabelStmt

InitStmtSeq ::=
/* Empty */
|
InitStmtSeq InitStmt

UninitStmtSeq ::=
/* Empty */
|
UninitStmtSeq UninitStmt
AbsStmtSeq ::=
/* Empty */
|
AbsStmtSeqg AbsStmt

’

End Label Statements
EndLabelStmt ::=
IDENT “:”

Access IDENT “:”

IDENT “:” EndLabelStmt
|

The Alpha Assembler Lexical and Syntactic Structure

Alpha Computer Architecture

30 January 2007

Access IDENT “:” EndLabelStmt

’

Initialised Statements
InitStmt ::=

IDENT OperandSeqOpt “;”

A4

Type Expr %;

Type SizeSeq Expr

A\ W4
’

IDENT “:” InitStmt

Access IDENT “:”

A\ W4
’

“align"

A4

“align” Type “;

A4

Type “;

A4

Type SizeSeqg “;

A4

“space” Expr “;

InitStmt

A4

“space” Expr SizeSeqg “;

Access IDENT

\\{/I

LabelledInitStmtSeqg

\\}/I

IDENT

IDENT

\\{/I

LabelledInitStmtSeqg

\\}/I

IDENT

\\{/I

LabelledInitStmtSeqg

\\}/I

A\ W4

Section

The Alpha Assembler Lexical and Syntactic Structure

Page 17-130

Alpha Computer Architecture 30 January 2007 Page 17-131

Uninitialised Statements
UninitStmt ::=
IDENT “:” UninitStmt

Access IDENT “:” UninitStmt

A\ W4
’

“align"

A4

“align” Type “;

A4

Type ;

A4

Type SizeSeqg “;

A4

“space” Expr “;

A4

“space” Expr SizeSeqg “;
Access IDENT
\\{/I

LabelledUninitStmtSeqg

“}”

IDENT

IDENT

“{”

LabelledUninitStmtSeqg

“}”

IDENT

“{”

LabelledUninitStmtSeqg

\\}/I

W, 77

Section
;

Absolute Statements
AbsStmt ::=
IDENT “=" Expr “;”

Access IDENT w_w EXpr “;”

A\ W4
’

Section

Access Modifiers
Access ::=
“public”

“private”

“protected”

The Alpha Assembler Lexical and Syntactic Structure

Alpha Computer Architecture 30 January 2007 Page 17-132

Types

Type ::=
“ascii”
“asciiz”
“byte”
“ubyte”
“word”
“uword”
“long”
“ulong”
“quad”
“uquad”

“float”

“double”

’

Array Size Sequence

SizeSeq::=
/* Empty */
|
SizeSeq “[” Expr “1”
Operands
OperandSegOpt ::=
/* Empty */
|
OperandSeq
OperandSeq ::=
Operand
|
OperandSeqg “,” Operand
Operand ::=
ANY $ ” E Xp r
|
Expr

\\(/I \\$/I EXpr \\)/I

EXpr \\(/I \\$/I EXpr \\)/I

The Alpha Assembler Lexical and Syntactic Structure

Alpha Computer Architecture

30 January 2007

Expressions

Expr

Term

Factor

’

Names
NameSeq

Expr “+” Term

n_

Expr Term

Term

Term “*” Factor
Term “/” Factor
Term “%” Factor
Term “<<” Factor
Term “>>" Factor
Term “>>>" Factor

WA

Term Factor
Term “|” Factor
Term “&” Factor
Factor

“+” Factor

n_

Factor
W~ Factor

“ (7 Expr M7
“(” Type “)” Factor
OCTINTCONST
DECINTCONST
HEXINTCONST
CHARCONST
FLOATCONST

STRINGCONST

Name

Name

AN}

NameSeqg “,” Name

The Alpha Assembler Lexical and Syntactic Structure

Page 17-133

Alpha Computer Architecture 30 January 2007 Page 17-134

Name =
“enclosing”
|
IDENT
|
Name “.” IDENT

§17.3 Programes, sections and blocks

An assembly language program starts with an optional entry point specification (default, start of the
code section), followed by a sequence of statements, which are usually sections, import directives
and blocks.

entry main.enter;
import "../IMPORT/callsys.h";

// void main () {

// while (TRUE) {
// char c;
// c = getChar();
// putchar(c);
// }
// }
block main uses CALLSYS {
code {
public enter:
loop:
1dig $al, CALLSYS_GETCHAR;
call pal CALL PAL CALLSYS;
mov $vo, Sal;
1dig $a0, CALLSYS_PUTCHAR;
call pal CALL PAL CALLSYS;
br loop;
end:
} code

} block main

So in the above program, the entry point is the label enter, within the block main. The code in the
file “../IMPORT/callsys.h” is imported. The syntax for an imported code file is the same as for
the main program, except that an entry point should not be specified. Files must not be imported
more than once. File path names should be given in UNIX format.

An absolute section contains declarations of symbolic names for constants. Using symbolic names
provides a way of making our programs easy to read. For example, we can declare symbolic names
for registers.

A code section is normally composed of instructions to execute. The block corresponding to a
function will contain a code section.

A const section is composed of the data for string constants, etc., that will not be altered.

A data section is composed of the data for global variables, that might be altered.

The Alpha Assembler Lexical and Syntactic Structure

Alpha Computer Architecture 30 January 2007

// char buffer[BUFFERSIZE + 1];

// void main () {
// while (TRUE) {
// print ("Type some input: ");
// readline (buffer, BUFFERSIZE
// print ("The input was: ");
// print (buffer);
// newline () ;
// }
// }
block main uses proc {
abs {
NEWLINE = "\n';
BUFFERSIZE = 200;
} abs
const {
messagel:
asciiz "Type some input: ";
message?2:
asciiz "The input was: ";
} const
data {
buffer:
byte [BUFFERSIZE + 1];
} data
code {

public enter:

{

loop:
ldig $a0, messagel;
bsr IO.print.enter;
1dig $a0, buffer;
1dig $al, BUFFERSIZE;
bsr IO0.readLine.enter;
ldig $a0, message?2;
bsr IO.print.enter;
ldig $a0, buffer;
bsr IO.print.enter;
bsr IO0O.newline.enter;
br loop;

end:
}

} code

} block main

Page 17-135

A local section is used to define the offsets for fields of records, activation records of functions, etc.
It does not allocate static space. It is primarily used to generate the values of symbols representing
the offsets of fields from the base of the record, and the offsets of saved registers and local variables

from the base of the activation record.
block proc {

local {

protected savRet: quad;
protected savFP: quad;
protected sav0: quad;
protected savl: quad;
protected sav2: quad;
protected sav3: quad;
protected savié: quad;
protected sav5: quad;
protected savb6: quad;
} local

} block proc

The Alpha Assembler Lexical and Syntactic Structure

Alpha Computer Architecture 30 January 2007 Page 17-136
A block is a named compound object, composed of sections, sub-blocks, etc. A block is often used
to contain all the code for a function. A class declaration might be represented by a block
containing sub-blocks for functions declared within the class. We can also use a block just to group
related constants together.

If a block specifies it extends a value, it means that the offsets for its local section start from that
value. It is often used to specify the structure of an activation record, that allocates additional space
for local variables, or additional saved registers, beyond those normally saved.

// void print(char *s) {
// while (*s !'= 0) {
// putChar (*s);
// s++;
// }
// }
//
public block print uses proc {
abs {
S = s0;
} abs
code {
public enter:
lda $sp, -savl ($Ssp);
stqg Sra, savRet ($sp);
stq $s0, sav0($sp);
body:
mov $a0, $s; // Pointer to char in string
{
while:
1dbu $al0, ($s); // Get character
beqg $a0, end; // Break if at end of string
do:
bsr Sys.putChar.enter; // Print char
addqg $s, 1; // Increment pointer
br while;
end:
}
return:
ldg $s0, sav0 ($Ssp);
1ldg Sra, savRet ($sp);
lda $sp, +savl($sp);
ret;
} code

} block print

Sections within a block may be interleaved. We may specify an absolute section, a data section, a
code section, then another absolute section, data section and code section. The assembler reshuffles
the sections, so that the memory image created contains the complete code section, complete
constant section, complete global table section, then complete data section, in that order. It is even
possible to specify a constant section inside a code section. This kind of thing is useful if you want
the definition of a string constant to be close to its application.

Similarly, blocks may be interleaved, and the assembler reshuffles the partial blocks, to put them
together. Sometimes this feature is useful when generating assembly language using a compiler.

§17.4 Statements

There are a number of different kinds of statement.

. Instruction statements. These are used to write the instructions that make up our assembly
language program.

The Alpha Assembler Lexical and Syntactic Structure

Alpha Computer Architecture 30 January 2007 Page 17-137

Most statements, apart from compound statements are terminated by a

Label declaration statements. These are used to name memory or local offsets, so that we can
refer to them. A label declaration statement contains another statement as a substatement.

Identifier definition statements. These are used to name constant values. The constant values
are computed at the time of assembly, not at run time.

Memory allocation statements. These are used to allocate and possibly initialise memory for
global and local variables.

Compound statements. These are used to group statements together, and provide a local
scope for labels. They are particularly useful when building up control statements such as
loops and if statements, in that each compound statement can have its own labels with
standard names, such as while, do, end for while loops, if, then, else, end, for if
statements.

e

Null statements. These are used to allow a “;” to be placed after a label. They are not really
necessary.

@,
. o

Instructions

An instruction statement is composed of an identifier representing the opcode, followed by a

comma separated sequence of operands, then a “;”. For example:
bsr getChar.enter; // Get a char
cmpeq $v0, NEWLINE, S$t0; // Break if newline
blbs $t0, end;

Instructions statements usually only occur within a code section.

Operands can be of the form

$ Expr, to represent a register operand.
Expr, to represent a literal operand, or destination in a branch instruction.
($ Expr) torepresent a memory access, with zero displacement from a register.

Expr ($ Expr) torepresenta memory access, with displacement from a register.

For example in

cmpeq $v0, NEWLINE, $tO;

$v0 and $t0 represent registers, and NEWLINE represents a literal.

In

bsr getChar.enter;

getChar.enter represents the destination of a branch instruction.

In

stb $v0, ($t0);

(st0) represents displacement addressing, with a zero displacement.

In

lda $sp, -sav3(S$sp);
stqg $ra, savRet ($sp);

-sav3 ($sp) and savRet ($sp) represent displacement addressing.

The assembler is more restrictive than most conventional assemblers. It checks that operands are
within range. For example, the literal for an operate instruction must be in the range 0x0 ... 0xff
(an 8 bit unsigned literal).

The Alpha Assembler Lexical and Syntactic Structure

Alpha Computer Architecture 30 January 2007 Page 17-138
There are some instructions supported by the assembler and simulator that do not exist on the real
machine:

The divl, divlu, divg, divqu, modl, modlu, modqg, and modqu instructions. These
instructions perform integer division and modulo arithmetic. ~They have the operate
instruction format.

The call xfc (extended function call) instruction. This instruction is used to implement
special features of the simulator, such as simple input/output, window management, etc. This
instruction has the same format as a call pal instruction.

There are some instructions that are special, and can only be executed in PAL mode.

The hw 1d, and hw_st instructions. These instructions can only be used in PAL mode, and
are used to load from and store to physical addresses. They have the memory instruction
format.

The hw_mfpr, and hw_mtpr instructions. These instructions can only be used in PAL mode,
and are used to load from and store to special registers. They have the memory instruction
format.

The hw_rei instruction. This instruction can only be used in PAL mode, and is used to
return from PAL mode. It has no operands.

There is very little support for pseudoinstructions (things that look like real instructions, but are
translated into one or more different instructions). Maybe some additional pseudoinstructions will
need to be added in later, but at the moment they are:

The 1dig (load immediate quadword) and 1dit (load immediate tfloat) pseudoinstructions.
These pseudoinstructions load a constant into a register. The literal is actually stored in a
table, called the global table, pointed to by a register called the gp (global pointer) register.
The pseudoinstruction is actually replaced by a Idq or 1dt instruction, that loads the literal
value from this table, using an offset from the gp register. The 1diq instruction is essentially
the only way you can load the address of a variable into a register.

The mov (move), negg (negate quadword), and not pseudoinstructions (and similar
instructions for moving or negating long or floating point values). These pseudoinstructions
move, negate, or complement the value of a register, or 8 bit unsigned literal, and store it in
another register. They are actually implemented by the addg, subqg, and ornot instructions,
with a zero first operand. Mov and negg can be used to load 8 bit positive and negative
integers into a register. The 1da instruction can be used to load 16 bit signed integers into a
register. Large values are best loaded by the 1diq instruction.

The c1r (clear) pseudoinstruction, and a similar instruction for clearing a floating point
register. This pseudoinstruction clears (zeroes) a register. It is actually implemented by a bis
instruction, with the first two operands zero.

There are some real instructions for which some operands may be omitted.

The operate instructions. The destination register may be omitted, and defaults to the first
source register. Some operate instructions ignore some operands (for example, sign extension
instructions). These operands should be omitted in the assembly language.

The floating operate instructions. The destination register may be omitted, and defaults to the
first source register. Some floating operate instructions ignore some operands (for example,
conversion instructions). These operands should be omitted in the assembly language.

The Alpha Assembler Lexical and Syntactic Structure

Alpha Computer Architecture 30 January 2007 Page 17-139
. The jsr (jump subroutine) and jsr_coroutine (jump coroutine) instructions. The saved pc
register may be omitted, and defaults to the sra register. The register indicating the address
to jump to may be omitted for the jsr coroutine instruction, and defaults to the $ra register.

. The ret (return) instruction. Both registers may be omitted. The saved pc register defaults
to $zero, and the register indicating the address to jump to default to $ra register.

. The br and bsr instructions. The destination register may be omitted, and defaults to $zero
and sra, respectively.

The assembler does not support rounding or trapping flags, apart from integer overflow flags in
integer instructions.

Label declaration statements

A label identifier can be declared by writing the identifier, then a colon, followed by a
substatement.

For example, in

if:
cmplt Scnt, S$Ssize, $t0; // If within buffer
blbc $to, end;

then:
addqg Sptr, $Scnt, $t0; // Store the character
stb $vo, (St0) ;

end:

we declare three labels, if, then and end. In fact the labels if and then are only there for cosmetic
reasons, to give the appearance of an if statement. They are never used.

Note that labels represent addresses (for code, constant , and data sections) or offsets (for local
sections).

A label is aligned to the address of the start of the substatement. Thus, if you write

label:
quad 4;

there is no need to precede the label by an alignment statement. If any padding needs to be
allocated to align the substatement, it will occur before the label. This is a change from the way the
assembler worked in the year 2001.

In the unlikely event that you actually want the padding to occur after the label, and before the

substatement, append a ““;” after the “:”.
label:

quad 4;
Identifier definition statements
It is also possible to declare an identifier by an identifier definition statement.

For example

ptr = s0;
size = sl;
cnt = s2;
NEWLINE = '"\n';

The expression on the right is evaluated by the assembler, and assigned to the identifier. So for
example, ptr above has the value 9, because so0 represents register 9 (specified in the block called
register). It is important to realise that this is not a run-time action. It is not copying the contents of
register $s0.

The Alpha Assembler Lexical and Syntactic Structure

Alpha Computer Architecture 30 January 2007 Page 17-140
Identifier definition statements are used to give symbolic names to expressions, and make your code
more readable.

Scope of identifiers

Identifiers can be declared as having public, protected, or private access. The default access is
private.

An identifier declared within a section of a block can be referred to by its simple name anywhere
within the block, including sub-blocks and compound statements.

An identifier declared within a block or named compound statement as public can be accessed
outside the block or compound statement, by prefacing it by the name of the block or compound
statement. Private and protected identifiers cannot be referred to in this manner.

An identifier declared within another block as public or protected, can be referred to in a block that
uses it, by its simple name. Private identifiers cannot be referred to in this manner.

Unlike Java, at the moment it is not possible to refer to an identifier, declared as protected in
another block, that is used by this block, by a qualified name. This may change, to become
compatible with Java.

Local declarations take precedence over declarations in enclosing blocks, enclosing compound
statements, and used blocks. However, if there is an ambiguity with regard to the meaning of an
identifier, that is not declared locally, then an error is generated.

Memory allocation statements

e

We can initialise memory, by specifying a data type, followed by the initial value, then a ;.

const {
messagel:

asciiz "Type some input: ";
message?2:

asciiz "The input was: ";

} const

Data types can be keywords such as byte, ubyte, quad, ascii, asciiz, etc, to allocate space for a
signed byte, unsigned byte, signed quadword, unterminated ASCII string, null terminated ASCII
string, etc.

Apart from the data types corresponding to strings, memory allocation instructions allocate the
appropriate amount of memory in the relevant section (1 byte for byte and ubyte, 2 bytes for word
and uword, 4 bytes for 1ong and ulong, 8 bytes for quad and uquad, 4 bytes for f1oat, 8 bytes for
double). The difference between the signed and unsigned variants is to do with checking the value
is in range. For example byte requires a value that is between -0x80 and +0x7f, while ubyte
requires a value that is between 0 and +0x£f. In fact there is no checking for quad and uquad.

For ascii the number of bytes allocated is equal to the length of the string, and the contents is the
data within the string. The asciiz directive is similar, except an extra zero byte is allocated and
added on the end.

Initialised memory statements usually only occur within a constant or data section.
If we miss out the value, we get uninitialised (zero) data.

We can allocate blocks of memory, by declaring an array:
data {
buffer:
byte [BUFFERSIZE + 1];
} data

Uninitialised memory statements usually only occur within a data section, or local section.

The Alpha Assembler Lexical and Syntactic Structure

Alpha Computer Architecture 30 January 2007 Page 17-141
It is also possible to allocate blocks of memory with a specified initial value for the elements.

Space of an arbitrary size can be allocated by the space statement. This statement can be used to
allocate space for record variables.

Alignment statements can be used to round the current address or offset up to a multiple of the size
of a specified type. This may be needed because data has to be aligned appropriately, for it to be
accessed. Generally, it is a good idea to align data labels to quadwords, no matter what the size of
the data. If labels are not at least aligned to longwords, then the memory display in the simulator
will be confused.

Compound statements

It is possible to create compound statements, by enclosing them in { ... }. The purpose of
compound statements is to create a local scope for labels. In particular, compound statements are
used when implementing control statements such as loops and if statements. We can use standard
identifiers such as while, do, end, Or if, then, else, end to label the code. We can also make our
code more readable by indenting the body of the compound statement.

Compound statements can also be named, by writing 1pENT { ... } IDENT. This is useful if we
wish to refer to public labels within the compound statement. The identifiers of the opening and
closing braces must match. This fact is very useful in large program, for which it can be rather
difficult checking that braces are matched.

Null statements

e

There is also a null statement, composed of nothing but a ““; ”, for people who like to put a *“;” after
a label at the end of a section.

§17.5 Expressions

It is possible to use expressions within statements. These expressions involve literals, simple and
qualified names, operators, and parentheses. Two things must be borne in mind: names evaluate to
addresses, not the contents of the address, and all expressions are evaluated at assembly time, and
not run time.

Literals include integer, floating point, character and string values. String literals can only be used
as the initial value in ascii and asciiz memory allocation statements.

Simple identifiers can correspond to labels, in which case they represent an address or offset. They
can also correspond to identifiers declared in identifier definition statements, and the names of
blocks or compound statements.

We can refer to public identifiers within a block or compound statement from anywhere in which
the block or compound statement can be accessed, by writing the block or compound statement

6

name, a ““.”, then the identifier.

2 2 2 2
e 6‘_” 6‘* 6‘/ 6‘9 ‘c
9

We can build up expressions using operators corresponding to binary “+7, “-7, , 997, <<

K557 sV AT e unary ¢+, “=7, “~”. These are primarily used with arithmetic

e

expressions, although binary “+” and “-” can involve addresses.

9

It is also possible to use casts, to trim a value down to a more restrictive type. For example, we can
write (byte) (~ x), to take the complement of x, and restrict it to 8 bits.

e

Binary “+” and “-” have the lowest precedence, then all other binary operators, then unary
operators. Parentheses can be used to override precedences.

The Alpha Assembler Lexical and Syntactic Structure

