
 
3.1 Supplement Notes on Floating Point Numbers 
 
Ordinary binary integers cover a relatively limited range of values about ±32,767 for 16-bit and ±2,147,483,647 for 32 bits. Many 
real-world problems cover a wider range of values than this, from very small values to very large values. These “scientific” values 
are represented in most computers by “real” or “floating point” numbers. Many calculations with only addition and subtraction 
can be done with integers. Multiplication quickly outgrows the integer range (overflow), while division almost always generates 
either a remainder or a number with a repeating fraction. Thus real values or floating point numbers arise quite easily in many 
problems.   
 
3.1.1 Scientific Notation 
 
The representation is similar to “scientific” or “exponent” notation for numbers, which also allows very large and very small 
numbers to be written easily. For example, the velocity of light is 299,792,458 ms –1 , or 2.99792458*10 8 ms –1 . For most 
practical purposes we can use the approximate values 300,000,000 ms –1 , or 3*10 8 ms –1 . The decimal point is normally to the 
right of the last digit (the 8). To convert to scientific, the point is first shifted so that it follows the first digit, a shift of 8 places. To 
correct for this shift, a multiplier of 10 8 is included. For very large and very small numbers the scientific notation is very efficient. 
Thus the charge on the electron is about 0.00000000000000000016021892 C or, even better, 1.6021892*10 –19 C. With the first 
form there is easily trouble counting zeros. Similarly, the number of atoms in one mole of gas is about 
602204500000000000000000 or 6.022045*10 23 . The scientific form makes things easier in several ways —   
 

1. The exponent tells very quickly how large the number is (+ve exponent) or how small (-ve exponent). It also reduces the 
problems in counting many following or preceding zeros (I hope the counting was correct in the two examples!).   

2. The number of digits tells how accurately the value is known. Thus a value of 98270 known to an accuracy of ±10 could 
be written 9.827*10 4 (the unit digit is not certain), whereas if the last digit is certain, it would be written as 9.8270*10 4 . 
Writing the speed of light as 3*10 8 ms –1 means that we worry about only that first digit, whereas writing it as 3.00*10 8 
ms –1 means that the first 3 digits are correct. (Writing to another digit must be 2.998*10 8 ms –1 when the last digit is 
rounded.)   

 
Computer real numbers are held in a similar way, except that all values are normally binary.  
 
A real value is held as two parts –   

1. The significand or mantissa is usually about 24 or 50 bits and usually gives a value 0.5 <= V <=1.0, with the binary point 
at or near the left-most bit.   

2. The exponent or characteristic is a smaller 8 or 12 bit value which gives a multiplier for the significand. For most 
numbers the value for a significand S and an exponent E, is S*2 E . The value could be written as a binary value with 
integral and fractional parts; the exponent tells by how many bits the binary point must be shifted.   

 
For example, 0.022045 * 10 23 

 
 
 
3.1.2 Normalisation  
 
The value 2.99792458*10 8 could be written as 0.299792458*10 9, perhaps 0.00299792458*10 11, or 29.9792458*10 7 — all are 
equivalent. By convention, scientific numbers are always written with one digit before the point, giving a “normalised” 
representation.  Binary floating point numbers are similarly normalised to the binary value 0.1…, or 1. xx… by balancing a left 
shift of the digits with a decrease in the exponent (or a right shift of the digits with an increase in the exponent).   
 
Examples: 

Decimal: 12.34 => 1.234 * 101 
Decimal: 0.034 => 0.34 * 10-1 

 
Since it is difficult to write exponents with superscipts in a text editor, programming languages need an alternative for writing 
numbers in scientific notation. Most programming languages use an e or E for Exponent to do this. So we would write 6.02 x 1023 
as 6.02e23 and 6.63 x 10-34 as 6.63e-34.  
 
3.1.3 Multiplication & Division 
 
If you like, you can think of the exponent as specifying the number of places the decimal point was moved. 6.02 x 1023 has its 
decimal point shifted left 23 places. A negative exponent just means that the decimal point was shifted to the other way, so 6.63 x 
10-34 had its exponent shifted to the right 34 places. Use positive exponents for big numbers, negative exponents for numbers very 
close to zero.  
 

exponent 
Mantissa 



Scientific notation has the nice property that it is easy to use in multiplication and division. When you multiply two numbers in 
scientific notation, multiply the mantissas and add the exponents.  
 
Example 37: 
6.02 x 1023 * 6.63 x 10-34  
=  (6.02 * 6.63) x 1023 + -34   
=  39.9126 x 10-11   
 
To divide, divide the mantissas and subtract the exponents.  
 
Example 38: 
6.02 x 1023 / 6.63 x 10-34  
=  (6.02 / 6.63) x 1023 - -34   
=  0.908 x 1057   

 
 

3.2 IEEE 754 Floating Point Representation  
 
Most computer manufacturers used to develop their own floating point representations for their own computers. Not only were 
they different, but also many had serious design errors. The IEEE 754 standard attempts to overcome these problems and has been 
adopted in most modern computers.   
 
IEEE floating point numbers come in two sizes, four-byte single precision and eight-byte double precision numbers. The layouts 
for the parts of a floating point number are: 
 
3.2.1 Single Precision (Bit Layout: sxxx xxxx xfff ffff ffff ffff ffff ffff) 
 
The IEEE 754 standard defines several number formats and precisions. The 32 bit format has a 1-bit sign, an 8-bit exponent with a 
bias of 127, and a 23-bit significand. The significand is always stored in “normalised” form with its most significant bit “1”. As 
this bit is always a 1, it is redundant and can be omitted from the stored number and automatically inserted in the arithmetic unit 
when calculations are to be done. The bits are used as — sxxx xxxx xfff ffff ffff ffff ffff ffff where s is the sign bit, x…x are the 
exponent bits and f…f the significand bits. The value of a number is then  
 

(–1)sign *(1.0+significand) *2 (exponent–127)   
 

Sign Bit: 
A sign bit of zero indicates a positive number and a sign bit of one indicates a negative number. The mantissa is always 
interpreted as a positive base-two number (unsigned). It is not a twos-complement number. If the sign bit is one, the floating-point 
value is negative, but the mantissa is still interpreted as a positive number that must be multiplied by -1. 
 
Exponent Bits: 
The exponent field is interpreted in one of three ways.  

• An exponent of all ones indicates the floating-point number has one of the special values of plus or minus infinity, or 
"not a number" (NaN). NaN is the result of certain operations, such as the division of zero by zero.  

• An exponent of all zeros indicates a denormalized floating-point number.  
• Any other exponent indicates a normalized floating-point number. 

 
Exponents that are neither all ones nor all zeros indicate the power of two by which to multiply the normalized mantissa. The 
power of two can be determined by interpreting the exponent bits as a positive number, and then subtracting a bias from the 
positive number. For a float, the bias is 127. 
 
Mantissa Bits: 
The mantissa contains one extra bit of precision beyond those that appear in the mantissa bits.  (1.0+mantissa) The mantissa of a 
float, which occupies only 23 bits, has 24 bits of precision. The mantissa of a double, which occupies 52 bits, has 53 bits of 
precision. The exponent of floating-point numbers indicates whether or not the number is normalized. If the exponent is all zeros, 
the floating-point number is denormalized and the most significant bit of the mantissa is known to be a zero. Otherwise, the 
floating-point number is normalized and the most significant bit of the mantissa is known to be one. 
 
Example 39: 
0 01111101 101 0000 0000 0000 0000 0000 

 Sign bit = 0  
 Exponent bit = 01111101 = 125  
 Mantissa bit = 1010…0 = 0.5 + 0.125 = 0.625 

(-1)0 * (1.0 + 0.625) * 2 (125-127) = (1.625) * 2 -2 = 0.40625 
 



An exponent field in a float of 01111101 yields a power of two by subtracting the bias (127) from the exponent field interpreted as 
a positive integer (125). The power of two, therefore, is 125 - 127, which is -2. Mantissa (Significand) values are 101 0000 0000 
0000 0000 0000. The answer is 0.625. Therefore the final answer is (1.0 + 0.625) multiply two to the power of (-2) and it is equal 
to 0.40625. 
 
Special Numbers: 
 
The IEEE 754 standard has quite complicated rules on the rounding of numbers. It also has ways of representing underflowed and 
overflowed numbers and special error values called “Not a Number” (NaN), from cases like 0/0. Normalisation is also rather more 
complicated than is described here, to handle a “gradual underflow”.   
 
NaN  
An exponent of all ones with any other mantissa is interpreted to mean "not a number". 
The JVM always produces the same mantissa for NaN, which is all zeros except for the most significant mantissa bit that appears 
in the number (1 11111111 10000000000000000000000) 
 
Infinity: 
An exponent of all ones with a mantissa whose bits are all zero indicates infinity. The sign of the infinity is indicated by the sign 
bit. 
 
Denormalized  
An exponent of all zeros indicates the mantissa is denormalized, which means the unstated leading bit is a zero instead of a one.  
 
Denormalized float values 
Value Float bits (sign exponent mantissa) 
Smallest positive (non-zero) float 0 00000000 00000000000000000000001 
Smallest negative (non-zero) float 1 00000000 00000000000000000000001 
Largest denormalized float 0 00000000 11111111111111111111111 
Positive zero 0 00000000 00000000000000000000000 
Negative zero 1 00000000 00000000000000000000000 
 
Table: Single Precision (Reference only): 

Range Name S  
1  

E  
8  

M 
23  

Hexadecimal  
Range Range Decimal Range § 

Quiet 
-NaN 1 11..11 

11..11 
: 

10..01 

FFFFFFFF 
: 

FFC00001 
    

Indeterminate 1 11..11 10..00 FFC00000     

Signaling 
-NaN 1 11..11 

01..11 
: 

00..01 

FFBFFFFF 
: 

FF800001 
    

-Infinity 
(Negative Overflow) 1 11..11 00..00 FF800000 <  

-(2-2-23) × 2127 < -3.4028235677973365E+38 

Negative Normalized 
-1.m × 2(e-127) 1 

11..10 
: 

00..01 

11..11 
: 

00..00 

FF7FFFFF 
: 

80800000 

-(2-2-23) × 2127 
: 

-2-126 

-3.4028234663852886E+38 
: 

-1.1754943508222875E-38 

Negative Denormalized 
-0.m × 2(-126) 1 00..00 

11..11 
: 

00..01 

807FFFFF 
: 

80000001 

-(1-2-23) × 2-126 
: 

-2-149 
(-(1+2-52) × 2-150) * 

-1.1754942106924411E-38 
: 

-1.4012984643248170E-45 
(-7.0064923216240862E-46) * 

Negative Underflow 1 00..00 00..00 80000000 
-2-150 

: 
< -0 

-7.0064923216240861E-46 
: 

< -0 

-0 1 00..00 00..00 80000000 -0 -0 



+0 0 00..00 00..00 00000000 0 0 

Positive Underflow 0 00..00 00..00 00000000 
> 0 

: 
2-150 

> 0 
: 

7.0064923216240861E-46 

Positive Denormalized 
0.m × 2(-126) 0 00..00 

00..01 
: 

11..11 

00000001 
: 

007FFFFF 

((1+2-52) × 2-150) * 
2-149 

: 
(1-2-23) × 2-126 

(7.0064923216240862E-46) * 
1.4012984643248170E-45 

: 
1.1754942106924411E-38 

Positive Normalized 
1.m × 2(e-127) 0 

00..01 
: 

11..10 

00..00 
: 

11..11 

00800000 
: 

7F7FFFFF 

2-126 
: 

(2-2-23) × 2127 

1.1754943508222875E-38 
: 

3.4028234663852886E+38 

+Infinity 
(Positive Overflow) 0 11..11 00..00 7F800000 > (2-2-23) × 2127 > 3.4028235677973365E+38 

Signaling 
+NaN 0 11..11 

00..01 
: 

01..11 

7F800001 
: 

7FBFFFFF 
    

Quiet 
+NaN 0 11..11 

10..00 
: 

11..11 

7FC00000 
: 

7FFFFFFF 
    

 

Exercise: 

What is the decimal value represented by the following numbers? 
a) 1 00000000 00000000000000000000000 
b) 1 11111111 11111111111111111111111 
c) 0 11111111 00000000000000000000000 
 
 
 
 

 

3.2.2 Double precision numbers (Bit Layout: sxxx xxxx xxxx ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff) 
 
As described earlier, the 32-bit representation is barely adequate for serious computation; the precision is limited and “rounding” 
errors accumulate very quickly. Some computations lasting only a second or two can become quite meaningless. Also, the number 
range of 10 ±38 is too small to handle some physical quantities, or formula involving them. The 754 standard therefore includes a 
64- bit representation to overcome these problems.   
In Java 32-bit quantities are of type float, while 64-bit are double. Floating point results are normally produced with type double 
and a cast is necessary to store into a float variable. IEEE 754 double precision uses a 52-bit significand (giving about 16 decimal 
digits of precision) and an 11-bit exponent with a bias of 1023 (a range of about 10 ±300 ). The underlying principles are as for the 
32-bit representation.   
 

(-1)sign * (1.0 + significand) * 2 (exponent-1023) 

 

Example 40: 
0 01111111101 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000  

 Sign bit = 0  
 Exponent bit = 01111111101 = 1021 
 Mantissa bit = 1010…0 = 0.5 + 0.125 = 0.625 

(-1)0 * (1.0 + 0.625) * 2 (1021-1023) = (1.625) * 2 -2 = 0.40625 
 
An exponent field in a float of 01111111101 yields a power of two by subtracting the bias (1023) from the exponent field 
interpreted as a positive integer (1021). The power of two, therefore, is 1021 - 1023, which is -2. Mantissa (Significand) values are 
1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000. The answer is 0.625. Therefore the final answer is (1.0 + 
0.625) multiply two to the power of (-2) and it is equal to 0.40625. 



 
Table: Double Precision (for reference only): 

Range Name S 
1 

E  
11 

M 
52  

Hexadecimal  
Range Range Decimal Range § 

Quiet 
-NaN 1 11..11 

11..11 
: 

10..01 

FFFFFFFFFFFFFFFF 
: 

FFF8000000000001 
    

Indeterminate 1 11..11 10..00 FFF8000000000000     

Signaling 
-NaN 1 11..11 

01..11 
: 

00..01 

FFF7FFFFFFFFFFFF 
: 

FFF0000000000001 
    

-Infinity 
(Negative Overflow) 1 11..11 00..00 FFF0000000000000 < -(2-2-52) × 21023 � -1.7976931348623158E+308 

Negative Normalized 
-1.m × 2(e-1023) 1 

11..10 
: 

00..01 

11..11 
: 

00..00 

FFEFFFFFFFFFFFFF 
: 

8010000000000000 

-(2-2-52) × 21023 
: 

-2-1022 

-1.7976931348623157E+308 
: 

-2.2250738585072014E-308 

Negative Denormalized 
-0.m × 2(-1022) 1 00..00 

11..11 
: 

00..01 

800FFFFFFFFFFFFF 
: 

8000000000000001 

-(1-2-52) × 2-1022 
: 

-2-1074 
(-(1+2-52) × 2-1075) * 

-2.2250738585072010E-308 
: 

-4.9406564584124654E-324 
(-2.4703282292062328E-324) * 

Negative Underflow 1 00..00 00..00 8000000000000000 
-2-1075 

: 
< -0 

-2.4703282292062327E-324 
: 

< -0 

-0 1 00..00 00..00 8000000000000000 -0 -0 

+0 0 00..00 00..00 0000000000000000 0 0 

Positive Underflow 0 00..00 00..00 0000000000000000 
> 0 

: 
2-1075 

> 0 
: 

2.4703282292062327E-324 

Positive Denormalized 
0.m × 2(-1022) 0 00..00 

00..01 
: 

11..11 

0000000000000001 
: 

000FFFFFFFFFFFFF 

((1+2-52) × 2-1075) * 
2-1074 

: 
(1-2-52) × 2-1022 

(2.4703282292062328E-324) * 
4.9406564584124654E-324 

: 
2.2250738585072010E-308 

Positive Normalized 
1.m × 2(e-1023) 0 

00..01 
: 

11..10 

00..00 
: 

11..11 

0010000000000000 
: 

7FEFFFFFFFFFFFFF 

2-1022 
: 

(2-2-52) × 21023 

2.2250738585072014E-308 
: 

1.7976931348623157E+308 

+Infinity 
(Positive Overflow) 0 11..11 00..00 7FF0000000000000 > (2-2-52) × 21023 � 1.7976931348623158E+308 

Signaling 
+NaN 0 11..11 

00..01 
: 

01..11 

7FF0000000000001 
: 

7FF7FFFFFFFFFFFF 
    

Quiet 
+NaN 0 11..11 

10..00 
: 

11..11 

7FF8000000000000 
: 

7FFFFFFFFFFFFFFF 
    

§ Your least significant digits may differ. 
 
3.2.3 Converting from IEEE 754 Floating Point Representation to Decimal  
 
Example 41: 
4090000016 = 0100 0000 1001 0000 … 0000 

 Sign bit = 0  
 Exponent bit = 100 0000 1 = 129 



 Mantissa bit  = 001 0000 … 0000 = 0.125  
Answer = (-1)0 * (1.0 + 0.125) * 2 (129-127) = (1.125) * 2 2  = 4.5 
Exercise: 
Convert C210000016 from IEEE 754 Floating Point (Single Precision) to decimal 
 
 
 
 
 
 
 
 

 
3.2.4 Convert from Decimal to IEEE 754 Floating Point Rrepresentation 
 
Example 42: 
(1) -1.2510, white the number in binary format: -1.012 

 1.012 is already in normalized format, so don’t need to do any shifting 
 IEEE Sign bit = negative = 1  
 IEEE Significand bit => 0.01… = 0.01...0 
 Exponent = 127 = 011111112 

Answer: 1 01111111 0100…0 = BFA0000016 
(2) 0.1562510, write the number in binary format: 0.001012 

 Normalize => Shift point to the right for three places= 1.012 x 2
-3 

 IEEE Sign bit = positive = 0  
 IEEE Significand bit => 0.01 = 0.010...0 
 Exponent = 127 + three places right shift = 127 + (-3) = 124 = 011111002 

Answer: 0 01111100 0100000…0 = 3E20000016 
(3) 19.510, white the number in binary format: 10011.100… 

 Normalise => Shift point to the left for four places = 1.0011100… x 24 
 IEEE Sign bit = positive = 0  
 IEEE Significand bit => 0.00111000 = 0.00111...0 
 Exponent = 127 + four places left shift = 127 + 4 = 131 = 100000112 

Answer: 0 10000011 0011100000…0 
 
Then, what is the value of 4.87510?  

 19.510 = 0 10000011 0011100000…0 from the above calculation 
 And 4.87510 = 19.5 / 4 = 19.5 * 2

-2 
 Sign Bit: unchanged = 0 
 Significand bit: unchanged = 001110000…0 
 Exponent bit = exponent of part (a) + -2 = 100000012 - 210 = 100000012 

Answer is 0 10000001 00111000…0 = 409C000016 
6.510, white the number in binary format: 110.100… 

 Normalise => Shift point to the left for two places = 1.10100… x 22 
 IEEE Sign bit = positive = 0  
 IEEE Significand bit => 0.101000… = 0.1010...0 
 Exponent = 127 + two places left shift = 127 + 2 = 129 = 100000012 

Answer: 0 10000001 10100000…0 
 
Then, what is the value of 5210?  

 6.510 = 0 10000001 10100000…0 from the above calculation 
 And 5210 = 6.5 * 8 = 6.5 * 2

3 
 Sign Bit: unchanged = 0 
 Significand bit: unchanged = 10100000…0 
 Exponent bit = exponent of part (a) + 3 = 100000012 + 310 = 100001002 

Answer is 0 10000100 10100000…0 = 4250000016 
 
Then, what is the value of 3.2510? 

 And 3.2510 = 6.5 / 2 = 6.5 * 2
-1 

 Sign Bit: unchanged = 0 
 Significand bit: unchanged = 10100000…0 
 Exponent bit = exponent of part (a) + (-1) = 100000012 - 110 = 100000002 

Answer is 0 10000000 10100000…0 =4050000016 
 
Exercises: 
Convert from Decimal to IEEE 754 Floating Point (Single Precision) 
(1) 2.25 
 
 
 
 



 
 
(2) 4.5 
 
 
 
 
 
 
 
 
3.2.5 Applet  
 

 
 
3.2.6 IEEE 754 Floating Point in JAVA 
 
Java provides both single (32-bit) and double (64-bit) floating point types, with the default being double. 
 
Example 43: 
public class IEEETestFloat { 
  public static void main (String args[]) { 
    float f = 4.5F; 
    System.out.println(Integer.toHexString(Float.floatToIntBits (f)));  
 
    f = Float.intBitsToFloat(0xbfa00000);  
    System.out.println(f);  
  } 
} 
Output: 
> java IEEETestFloat 
40900000 
-1.25 
 
Methods: 
public static int floatToIntBits(float 
value) 

Returns a representation of the specified floating-point value according to the IEEE 
754 floating-point "single format" bit layout. 

public static int 
floatToRawIntBits(float value) 

Returns a representation of the specified floating-point value according to the IEEE 
754 floating-point "single format" bit layout, preserving Not-a-Number (NaN) values. 

 
Example 44: 
public class IEEETestDouble { 
  public static void main (String args[]) { 
    double d = 4.5; 

System.out.println(Long.toHexString(Double.doubleToLongBits (d)));  
 

    d = Double.longBitsToDouble(0x4012000000000000L); 
    System.out.println(d); 
  } 
} 
Output: 
> java IEEETestDouble 
4012000000000000 
4.5 
 
Methods: 
public static long 
doubleToLongBits(double value) 

Returns the actual bit pattern of the IEEE 754 representation of the value. (It is useful 
for analysing or “dismantling” a floating point number.)  

public static double 
longBitsToDouble(long bits) 

takes the bit pattern in bits and returns it as a double value. (It is useful for building a 
floating point number.)  



 
3.2.7 Extra Note: 
 
Internally, most computers use a base of 2 (i.e. the fraction is multiplied by 2 exponent ), or less often 16 or 8. The significand is 
usually held in sign & magnitude form, with the exponent in say excess 127. A 0.0 value is an all-0 word.  Important points to 
remember are  

• Do not confuse the range and the precision of floating point numbers.  
• The range is determined by the exponent and determines how close to zero or far from zero a number may be. It is 

closely connected to the exponent form of scientific notation. An 8-bit signed exponent can have values from -128 to 
+127 (–126 to +127 in IEEE 754 floating point). The smallest representable number will be about 2–128 and the largest 
2+127 . Remembering that log 2 10 is closed to 1/0.3 (page 5 of booklet), the number range is about 10–38 and the largest 
10+38 . It is shown later that this range is quite inadequate for some calculations.  

• The precision is governed by the significand (or fraction or mantissa) and gives the accuracy with which a number may 
be represented. Remember that N bits equals about 0.3*N decimal digits. A standard “32-bit real” has 23-bit precision, or 
not quite 7 decimal digits. A 64-bit “double” has 52-bit or 15 decimal digits. Even a 32 bit real can handle the accuracy 
of most physical measurements, but much of the precision is lost by rounding in lengthy calculations; this is the real 
justification for using 64- bit or 128-bit floating point numbers.  

 
Floating point arithmetic is subject to rounding and truncation errors. The significand can represent only so many bits; any less 
significant bits must be discarded. Often, if the first discarded bit is a 1, we add 1 onto the significand to “round” the result. Thus 
1.7 would round to 2, which is probably a better result than 1 (from just forgetting the bits).   

 
Care is needed when using real-number arithmetic. Some of the problems seem to disappear with “long” numbers, but really stay 
there and are never more than reduced.  

• The 32 bit floating point “real” on many computers is quite limited in comparison with many scientific calculators. Its 
range is about 10 ±38 , and its precision is not quite 7 decimal digits. Even short calculation sequences can overwhelm it.  

• Arithmetic with floating point numbers is seldom exact and great care must be taken in long calculation sequences as 
“round-off” errors accumulate. For example a solution of a set of 40 simultaneous equations had the 3–4 least significant 
decimal digits quite meaningless.  

• Beware of mathematical techniques which involve differences of large quantities. This is related to the previous point. 
Say we have two values close to 1000, both with the last decimal digit uncertain, such as 102x and 99x (both known to 
about 10 parts in 1000, or 1%). Subtracting gives a value 3x, where the last digit is still uncertain, but the error is now 10 
parts in 30, or about 30%. Two moderately accurate values have combined to give a value which is nearly meaningless. 
Some types of statistical calculation are especially sensitive to this problem. 

• The result is that floating point arithmetic is not exact. Because of possible disappearance of low-order bits we cannot 
guarantee that (A+B)+C = A+(B+C). In most cases it is very nearly true, if we are careful, but in extreme cases it is 
anything but true.  

• Be very careful if using floating point arithmetic for financial calculations. Rounding errors may make it almost 
impossible to achieve reliable balances, especially if the number precision is barely adequate to represent the whole 
amount.   

 
 


