
1

Supplement Notes on Alphanumeric Representation

2.1 Introduction

Inside a computer program or data file, text is stored as a sequence of numbers, just like everything else. These sequences are
integers of various sizes, values, and interpretations, and it is the code pages, character sets, and encodings that determine how
integer values are interpreted.

Text consists of characters, mostly. Fancy text or rich text includes display properties like color, italics, and superscript styles,
but it is still based on characters forming plain text. Sometimes the distinction between fancy text and plain text is complex,
and the distinction may depend on the application. Here, we focus on plain text.

So, what is a character? Typically, it is a letter. Also, it is a digit, a period, a hyphen, punctuation, and mathematic symbol.
There are also control characters (typically not visible) that define the end of a line or paragraph. There is a character for
tabulation, and a few others in common use.

2.2 ASCII

ASCII - The American Standard Code for Information Interchange is a standard seven-bit code that was proposed by ANSI in
1963, and finalized in 1968. Other sources also credit much of the work on ASCII to work done in 1965 by Robert W. Bemer
(www.bobbemer.com). ASCII was established to achieve compatibility between various types of data processing equipment.
Later-day standards that document ASCII include ISO-14962-1997 and ANSI-X3.4-1986(R1997).

ASCII, pronounced "ask-key", is the common code for microcomputer equipment. The standard ASCII character set consists
of 128 decimal numbers ranging from zero through 127 assigned to letters, numbers, punctuation marks, and the most common
special characters. It is basically a 7-bit code. The 8th (most significant) bit may be 0, 1 or parity. There are 32 “transmission
control” and “formatting” characters. A “6-bit subset” includes the upper-case letters and the more frequent punctuation
symbols.

The Extended ASCII Character Set also consists of 128 decimal numbers and ranges from 128 through 255 representing
additional special, mathematical, graphic, and foreign characters.

Hex 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI
1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US
2 SP ! “ # $ % & ‘ () * + , - . /
3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4 @ A B C D E F G H I J K L M N O
5 P Q R S T U V W X Y Z [\] ^ _
6 ` a b c d e f g h i j k l m n o
7 p q r s t u v w x y z { | } ~ DEL

The ASCII code for “A” is 4116 and ASCII code for “a” is 6116.

ASCII character coding

The character code is {row: column} (‘B’ is x100 0010, and ‘k’ x110 1011) where x is usually 0. The ASCII codes then divide
into several groups

1. 000x xxxx Transmission control codes. The only ones of these which are important for now are CR Carriage Return,
LF New Line, HT Horizontal Tab. The other codes are mostly used in data communications to surround messages
and to signal between stations. (Reference only)

NUL (null) DLE (data link escape)
SOH (start of heading) DC1 (device control 1)
STX (start of text) DC2 (device control 2)
ETX (end of text) DC3 (device control 3)
EOT (end of transmission) - Not the same as ETB DC4 (device control 4)
ENQ (enquiry) NAK (negative acknowledge)
ACK (acknowledge) SYN (synchronous idle)
BEL (bell) - Caused teletype machines to ring a bell. Causes a
beep in many common terminals and terminal emulation programs.

ETB (end of transmission block) - Not the same as
EOT

BS (backspace) - Moves the cursor (or print head) move
backwards (left) one space.

CAN (cancel)

TAB (horizontal tab) - Moves the cursor (or print head) right to the
next tab stop. The spacing of tab stops is dependent on the output

EM (end of medium)

2

device, but is often either 8 or 10.
LF (NL line feed, new line) - Moves the cursor (or print head) to a
new line. On Unix systems, moves to a new line
AND all the way to the left.

SUB (substitute)

VT (vertical tab) ESC (escape)
FF (form feed) - Advances paper to the top of the next page (if the
output device is a printer).

FS (file separator)

CR (carriage return) - Moves the cursor all the way to the left, but
does not advance to the next line.

GS (group separator)

SO (shift out) - Switches output device to alternate character set. RS (record separator)
SI (shift in) - Switches output device back to default character set. US (unit separator)

2. 001x xxxx Numeric and “specials” or punctuation.
3. 010x xxxx Upper case letters (and some punctuation)
4. 011x xxxx Lower case letters

We can usually assume that successive characters of text will be placed in adjacent bytes of memory and that the text “grows”
to higher memory addresses. With 32-bit words (4 characters to a word), the string “A text sample.” would be stored as —
 characters hexadecimal
word 1 A te 41 20 74 65
word 2 xt s 78 74 20 73
word 3 ampl 61 6D 70 6c
word 4 e. 65 2E xx xx

2.3 16-bit Codings or Unicode

Unicode extends ASCII to allow the handling of many different alphabets. Instead of using a basic 8-bit code and escaping into
versions for different alphabets, a single unified code covers all alphabets. Unicode is used for Java strings and in some
modern operating systems. Unicode is based on “pages” or “blocks” of 128 symbols, where each block is typically allocated to
a particular alphabet, as shown in the large table.

ASCII codes, zero-extended to 16 bits, are the first few values. Other 8-bit prefixes identify Arabic, Hebrew, Thai, various
Indian alphabets and the accented letters for some central European languages. About half the total space (30,000 symbols) is
used for Chinese, Japanese and Korean ideographs.

The following table shows the Unicode page allocations.
======= A-ZONE (alphabetical characters and symbols) ======================
00 (Control characters,) Basic Latin, Latin-1 Supplement (=ISO/IEC 8859-1)
01 Latin Extended-A, Latin Extended-B
02 Latin Extended-B, IPA Extensions, Spacing Modifier Letters
03 Combining Diacritical Marks, Basic Greek, Greek Symbols and Coptic
04 Cyrillic
05 Armenian, Hebrew
06 Basic Arabic, Arabic Extended
07-08 (Reserved for future standardization)
09 Devanagari, Bengali
0A Gumukhi, Gujarati
0B Oriya, Tamil
0C Telugu, Kannada
0D Malayalam
0E Thai, Lao
0F (Reserved for future standardization)
10 Georgian
11 Hangul Jamo
12--1D (Reserved for future standardization)
1E Latin Extended Additional
1F Greek Extended
20 General Punctuation, Super/subscripts, Currency, Combining Symbols
21 Letterlike Symbols, Number Forms, Arrows
22 Mathematical Operators
23 Miscellaneous Technical Symbols
24 Control Pictures, OCR, Enclosed Alphanumerics
25 Box Drawing, Block Elements, Geometric Shapes

3

26 Miscellaneous Symbols
27 Dingbats
28--2F (Reserved for future standardization)
30 CJK Symbols and Punctuation, Hiragana, Katakana
31 Bopomofo, Hangul Compatibility Jamo, CJK Miscellaneous
32 Enclosed CJK Letters and Months
33 CJK Compatibility
34-4D Hangul
======= I-ZONE (ideographic characters) ===================================
4E--9F CJK Unified Ideographs
======= O-ZONE (open zone) ==
A0--DF (Reserved for future standardization)
======= R-ZONE (restricted use zone) ======================================
E0--F8 (Private Use Area)
F9--FA CJK Compatibility Ideographs
FB Alphabetic Presentation Forms, Arabic Presentation Forms-A
FC--FD Arabic Presentation Forms-A
FE Combining Half Marks, CJK Compatibility Forms, Small Forms, Arabic-B
FF Halfwidth and Fullwidth Forms, Specials

Example 1:
A single 16-bit number is assigned to each code element defined by the Unicode Standard. Each of these 16-bit numbers is
called a code value and, when referred to in text, is listed in hexadecimal form following the prefix "U". Each character is also
assigned a unique name that specifies it and no other. For example, the code value U+0041 is the hexadecimal number 0041
(equal to the decimal number 65). It represents the character "A" in the Unicode Standard. U4E00 means 1 in Chinese, 4E09
means 3 in Chinese etc.

Example 2:
The following pictures show the Unicode for Chinese, Korean, Japanese and Greek. You can view the entire list from
http://www.unicode.org/charts/.

2.3.1 Unicode in Java

Java employs Unicode in the following sense:

• The "char" data type is defined to be a Unicode type.
• Strings, since they are composed of char data, are therefore also Unicode-based.
• Java identifiers can contain Unicode characters. You can specify Unicode characters using the \u escape sequence

How to print Unicode in Java?
You need to use a font that supports Unicode. The font that you can use is “Arial Unicode MS”.

Example 3:
public void paint(Graphics g) {
 Font font = new Font("Arial Unicode MS", Font.BOLD, 18);
 String s = "\u4f60\u597d\u55ce?";

Greek

Japanese

Korean

4

 char c1 = 0x3052, c2 = 0x3093, c3=0x304d;
 char c4=0x3067, c5=0x3059, c6=0x304B, c7 = '?';
 char c8=0xc548, c9=0xb155, c10=0xd558, c11=0xc138, c12=0xc694;

 g.setFont(font);
 g.drawString("How are you?", 50, 30);
 g.drawString(s, 50, 60);
 g.drawString((""+ c1 + c2 + c3 + c4 + c5 + c6 + c7) , 50, 90) ;
 g.drawString((""+ c8 + c9 + c10 + c11 + c12) , 50, 120) ;
 }

Note: If you are unable to read some Unicode characters in your Applet, it may be because your
system is not properly configured. Please check if you have installed the correct font!

Help: Installing Fonts
A list of Unicode character ranges indicates which fonts support each range. You can find details
of the ranges supported by each font, and information on how to obtain the fonts. Not all of the
characters in a given range will always be present in a font, and many fonts contain a few
characters from ranges where they are not listed.

(Reference: http://www.hclrss.demon.co.uk/unicode/fontsbyrange.html).

Any problems, please visit http://www.unicode.org/help/display_problems.html

2.4 UTF-8

Unicode text can be represented in another format. A Unicode Transformation format (UTF) is an algorithm mapping from
every Unicode scalar value to a unique byte sequence. This is a way of transforming all Unicode characters into a variable
length encoding of bytes. It has the advantages that the Unicode characters corresponding to the familiar ASCII set end up
having the same byte values as ASCII, and that Unicode characters transformed into UTF-8 can be used with much existing
software without extensive software rewrites. The Unicode Consortium also endorses the use of UTF-8 as a way of
implementing the Unicode Standard. Any Unicode character expressed in the 16-bit form can be converted to the UTF-8 form
and back without loss of information.

Example 4:

Characters UCS-2 UTF-8 Characters UCS-2 UTF-8
A 0041 41

C138 EC84B8

a 0061 61
C694 EC9A94

00A9 C2A9

3052 E38192

4F60 E4BDA0

3093 E38293

597D E5A5BD

304D E3818d

55CE E5978E

3067 E381a7

C548 EC9588

3059 E38199

B155 EB8595 304B E3818b

D558 ED9598

2.5 Conversion

The encoding of Unicode characters will be according to the rules of UTF-8 which uses designated bits to indicate whether a
Unicode character is represented by 8 bits or 16 bits etc.

2.5.1 Convert from UCS-2 to UTF-8

The following transformation is used when converting UCS/Unicode 16-bit characters to UTF-8.

Case UCS/Unicode Values UTF-8 Values
 Range

1 0000 0000 0xxx xxxx 0xxxxxxx
2 0000 0xxx xxyy yyyy to 0000 0000 xxyy yyyy 110x xxxx 10yy yyyy
3 xxxx yyyy yyzz zzzz 1110 xxxx 10yy yyyy 10zz zzzz

• Case 1: If there are 9 or more leading zeros (code <= 0x7F) the low-order 8 bits or right-hand byte are taken as the

UTF-8 code. This case, and this case only, may be interpreted as an ASCII character.

5

• Case 2: If there are 5 – 8 leading zeros, divide the 16 bits of the UCS-2 coding as 0000 0xxx xxyy yyyy and form the
2 bytes 110x xxxx and 10yy yyyy. These two bytes are the UTF-8 code. (Here, as before, the x’s and y’s may be any
mixture of 0 and 1 bits.)

• Case 3: If there are 4 or fewer leading zeros, divide the UCS-2 coding as xxxx yyyy yyzz zzzz, and then encode into 3
bytes as 1110 xxxx 10yy yyyy 10zz zzzz.

Example 49:
Convert “5E F6 00 44 00 73 03 B1” from UCS-2 to UTF-8.
5E F6 => 0101 1110 11 11 0110 => case 3
 =>1110 0101 1011 1011 1011 0110 = E5 BB B6
00 44 => ASCII => case 1
 = 44
0073 => ASCII => case 1
 = 73
03B1 => 0000 0011 10 11 0001 => case 2
 =>110 01110 10 110001 = CE B1
Answer: E5 BB B6 44 73 CE B1

Exercise:
Convert “0062 0073 0042 662E 0020 5DF6” from UCS-2 to UTF-8 coding.

2.5.2 Convert from UTF-8 to UCS-2

UTF-8 represents characters in a systematic way as 1, 2 or 3 8-bit, using the left-most bits of each byte to indicate how the byte
is to be interpreted.

Case Left-most bits
encoding

Meaning of left-most bits for character

1 0 The character is encoded in a single byte, equivalent to ASCII .
2 110 First byte of 2-bytes character.

Emit 5 leading zeros and then the remaining 5 bits of this byte, as the first 10 bits of
the UCS-2 code. One 10… byte must follow

3 1110 First byte of 3-bytes character.
Emit the remaining 4 bits of this byte and then, in order, 6 bits from each of the two
following bytes, both of which must start with 10...

 10 It is not the first byte for a character. It is the 2nd or 3rd byte of a multi-byte character.
The following 6 bits are used to continue whatever has been previously emitted for the
partial UCS-2 coding.

Example 50:
Convert “20 E6 98 AF C7 9A 20 20” from UTF-8 to UCS-2
20 => case 1: 0010 0000

 20
E6 => 1110 0110 => case 3, take 3 bytes: E6 98 AF = (1110 0110 1001 1000 1010 1111)

 0110 0110 0010 1111 = 662F
C7 => 1100 0111 case 2, take 2 bytes: C7 9A= (1100 0111 1001 1010)

 0001 1101 1010 = 01DA
20 => Case 1: 0010 0000

 20
Answer: 0020 662F 01DA 0020 0020

Exercise:
Convert “21 E8 A2 93 C7 8E” from UTF-8 to UCS-2 coding.

6

2.6 Java Code to Convert Unicode

The conversion of Unicode between UCS-2 and UTF-8 gives a good demonstration of Java’s bit handling facilities, with
combination of AND, OR and shift operations.

UCS-2 to UTF-8
if ((ucs2[i] & 0xFF80) == 0) {// 1 byte
 utf8[0] = (byte) (ucs2[i] & 0x7f);
 }
 else if ((ucs2[i] & 0xF800) == 0) { // 2 bytes
 utf8[0] =(byte) (0xc0 | ((ucs2[i]>> 6) & 0x1f));
 utf8[1] = (byte) (0x80 | (ucs2[i] & 0x3F));
 }
 else { // 3 bytes
 utf8[0] = (byte) (0xe0 | ((ucs2[i]>> 12) & 0x0f));
 utf8[1] = (byte) (0x80 | ((ucs2[i]>> 6) & 0x3f));
 utf8[2] = (byte) (0x80 | (ucs2[i] & 0x3F));
 }

Suppose the value of an array ucs-2 is: {0020, 03B1, 5EF6}
Code: Description Examples
Check for case 1: (starts with 9 leading
zeros)
if ((ucs2[i] & 0xFF80)== 0)

• & 0xFF80 (clears the last 7 bits to
zero)

• If the answer is equals to zero, it is
case 1.

0x20 & 0xFF80
=> 0000 0000 0001 0000
& 1111 1111 1000 0000
= 0

Case 1: take the last 7 bits
Utf8[0]=ucs2[i] & 0x7f;

• & 0x7F (clears everything to zero
except the last seven bits.)

0x20 & 0x7f
=> 0000 0000 0001 0000
& 0000 0000 0111 1111
= 0x20

Check for case 2: (5 leading zeros)

if ((ucs2[i] & 0xF800)== 0)

• & 0xF800 (clears the last 11 bits to
zero)

• If the answer is equals to 0, it is case
2.

Ucs2[1] = 0x03B1;
=> 0000 0011 1011 0001
& 1111 1000 0000 0000
= 0

Case 2: 0000 0xxx xxyy yyyy => 110x
xxxx 10yy yyyy
0xc0 | ((ucs2[i]>> 6) & 0x1f
(The First byte: 110x xxxx)

0x80 | (ucs2[i] & 0x3F));
(The Second byte: 10yy yyyy)

• Move the middle 5 bits, use right shift

by 6

• Take 5 bits

& 0x1f (clears everything to zero
except the last 5 bits)

• prefix with “110” (| 0xC0)

• Take the last 6 bits

• prefix with “10” (| 0x80)

Ucs2[1] = 0x03B1;

0000 0011 1011 0001 >> 6
= 0000 0000 0000 1110

=> 0000 0000 0000 1110
& 0000 0000 0001 1111
= 0000 0000 0000 1110

=> 0000 0000 0000 1110
| 0000 0000 1100 0000
= 0000 0000 1100 1110 = 0xCE
=> 0000 0011 1011 0001
& 0000 0000 0011 1111
= 0000 0000 0011 0001

=> 0000 0000 0011 0001
| 0000 0000 1000 0000
= 0000 0000 1011 0001 = 0xB1

Case 3: xxxx yyyy yyzz zzzz
=> 1110xxxx 10yyyyyy 10zzzzzz
0xe0 | ((ucs2[i]>> 12) & 0x0f
(The first byte: 1110 + the first 4 bits)

0x80 | ((ucs2[i]>> 6) & 0x3f)
(The second byte: 110 + the middle 5 bits)

• Move the first 4 bits, use right shift

by 12
• Take 4 bits

& 0x0f (clears everything to zero
except the last 4 bits)

• prefix with “1110” (| 0xE0)

• Move the middle 6 bits, use right shift

by 6

• Take 6 bits

&0x3F (clears everything to zero
except the last 6 bits)

Ucs2[2] = 0x5EF6
0101 1110 1111 0110 >> 12
= 0000 0000 0000 0101

=> 0000 0000 0000 0101
& 0000 0000 0000 1111
= 0000 0000 0000 0101

=> 0000 0000 0000 0101
| 0000 0000 1110 0000
= 0000 0000 1110 0101 = 0xE5

0101 1110 1111 0110 >> 6
= 0101 1110 1111 0110

=> 0000 0000 0011 1011
& 0000 0000 0011 1111
= 0000 0000 0011 1011

7

0x80 | (ucs2[i] & 0x3F)
(The third byte: 10 + the last 6 bits)

• prefix with “10” (| 0x80)

• Take the last 6 bits

• Prefix with “10”

=> 0000 0000 0011 1011
| 0000 0000 1000 0000
= 0000 0000 1011 1011 = 0xBB

=> 0101 1110 1111 0110
& 0000 0000 0011 1111
= 0000 0000 0011 0110

=> 0000 0000 0011 0110
| 0000 0000 1000 0000
= 0000 0000 1011 0110 = 0xB6

UFT-8 to UCS-2
while (i < utf8.length) {
 if ((utf8[i] & 0x80) == 0) {// 1 byte
 ucs2 = utf8[i] & 0x00ff;
 i++;
 } else if ((utf8[i] & 0xE0) == 0xc0) { //2 bytes
 if ((utf8[i+1] & 0xC0) != 0x80)
 out.append("Error!\n");
 else ucs2=(((utf8[i] & 0x1f)<<6) | (utf8[i+1] & 0x3f));
 i+=2;
 } else if ((utf8[i] & 0xf0)==0xe0) { //3 bytes
 if (((utf8[i+1]&0xC0)!=0x80)||((utf8[i+2]&0xC0!=0x80))
 out.append("Error!\n");
 else
 ucs2=(((utf8[i]&0x0f)<<12)|((utf8[i+1]&0x3f)<<6)|(utf8[i+2]&0x3f));
 i+=3;
 } else {
 out.append("Error!");
 i++;
 }
 out.append("" + Integer.toHexString(ucs2));
}

Suppose the value of an array utf8 is: {0x20, 0xC7 0x9A, 0xE6, 0x98, 0xAF}
Code: Description Example
Check for case 1: (starts with a leading
zero)
if ((utf8[i] & 0x80) == 0)

• AND clears to 0 wherever the mask is 0.
• & 0x80 (clears all bits to zero except the

first bit)
• If the answer is equals to zero, it is case 1.

0x20 & 0x80
=> 00100000
& 10000000
= 00000000

Case 1: need to take a single byte.
ucs2 = utf8[i] & 0x00ff;

• Take 8 bits

=> 00100000
& 11111111
= 00100000

Check for case 2: (starts with “110”)
if ((utf8[i] & 0xE0) ==
0xc0)

• & 0xe0 (clears all bits to zero except the
first three bit)

• If the answer is equals to 11000000, it is
case 2.

Utf8[1] = 0xc7;
=> 11000111
& 11100000
= 11000000

If it is case 2, we also need to check the
following byte. It must start with “10”
if ((utf8[i+1] & 0xC0) !=
0x80)

• & 0xc0 (clears all bits to zero except the
first two bits)

• Checks if the answer is equals to
10000000

Utf8[2] = 0x9a
=> 10011010
& 11000000
= 10000000

Case 2: 00000yyyyy zzzzzz

(utf8[i] & 0x1f)<<6
1) take 5 bits uft8[index] and

utf8[i+1] & 0x3f
2) take 6 bits from utf8[index+1]

• Take the last 5 bits

• Move to the middle, use left shift by 6

• Take 6 bits

• Use OR operator to combine the above
two answers

Utf8[1] = 0xc7
Utf8[2] = 0x9a
=> 11000111
& 00011111
= 00000111

00000111 << 6 =
0000 0001 1100 0000 =0x01C0

=> 10011010
& 00111111
= 00011010 = 0x1A

=> 0000 0001 1100 0000
| 0001 1010
 0000 0001 1101 1010 = 0x1DA

Check for case 3: (starts with “1110”)
if ((utf8[i] & 0xf0) ==
0xe0)

• & 0xf0 (clears everything to zero except
the middle 4 bits)

• If the answer is equals to 11100000, it is

Utf8[3] = 0xe6;
=> 1110 0110
& 1111 0000

8

 case 3. 1110 0000
If it is case 3, we also need to check the
following two bytes. They must start
with “10”

((utf8[i+1]&0xC0)!=0x80)
||
((utf8[i+2]&0xC0)!=0x80)

• & 0xc0 (clears all bits to zero except the
first two bits of the last byte)

• checks if the answer is equals to 1000000

Utf8[4] = 0x98
=> 10011000
& 11000000
= 10000000

utf8[5] = 0xaf
=> 10100101
& 11000000
= 10000000

Case 3: yyyy zzzzzz wwwwww
(utf8[i]&0x0f)<<12
1) take 4 bits uft8[i] and

(utf8[i+1]&0x3f)<<6
2) take 6 bits from utf8[i+1]

utf8[i+2] & 0x3f
3) take 6 bits from utf8[i+2]

Combine the answers

• Take 4 bits

• Move to the beginning, use left shift by 12

• Take the last 6 bits from utf8[i+1]

• Move to the middle, use left shift by 6

• Take 6 bits from utf8[i+2]

• Use OR operator to combine the above
three answers

{0xe6, 0x98, 0xaf}
=> 11100110
& 00001111
= 00000110

00000110 << 12
= 0110 0000 0000 0000 = 0x60

=> 10011000
& 00111111
= 00011000

00011000 << 6
= 0000 0110 0000 0000 = 0x0600

=> 10101111
& 00111111
= 00101111 = 0x2F

 0110 0000 0000 0000
 0000 0110 0000 0000
| 0000 0000 0010 1111
 0110 0110 0010 1111 = 0x662f

