
COMPSCI 210 S1T
Computer Systems

Floating Point Numbers

COMPSCI 210 07 2

Agenda & Reading
Agenda:

Introduction
Normalization
IEEE 754 Floating Point Representation

Single Precision (32-bit)
Double Precision (64-bit)

Examples
Special Numbers
Conversion

Recommended Reading:
IEEE Floating Point Numbers

http://en.wikipedia.org/wiki/IEEE_floating-point_standard

COMPSCI 210 07 3

Introduction
Given the following numbers:

37.2510 = 100101.012
7.62510 = 111.1012
0.312510 = 0.01012
+300000000 ms-1

+299, 792,458 ms-1

How can we store the above number in 4 bytes?
People usually represent very large and small numbers in “scientific
notation”, as a fixed point number times a power of 10.

Scientific Notation:
3 * 108

2.9979 * 108

3.125 * 10-1

3.725 * 101

Floating point numbers are represented in the computer in a similar
manner, but using base 2 rather than base 10.

1.0010101 x 25

1.11101 x 22

1.01 x 2-2

COMPSCI 210 07 4

Given the following number
12.34 = 0.1234 x 102 = 1.234 x 101 = 123.4 x 10-1

Scientific numbers are always written with one digit before
the point, giving a “normalized” representation.

After Normalization = 1.234 x 101

Normalization in Base 2
One digit to the left of the binary point. It must be 1.
Examples:

100101.012 = 1.0010101 x 25

111.1012 = 1.11101 x 22

0.01012 = 1.01 x 2-2

After normalization, the numbers now have a standard
format

Normalization

Radix point move
to left by 5 places

Radix point move
to left by 2 places

Radix point move
to right by 2 places

COMPSCI 210 07 5

Consists of three parts
Sign bit
Exponent
Mantissa/Signficand
Note: Normalized binary numbers always start with a 1 (the leftmost bit of
the signficand value). We don’t need to store the 1. IEEE 754
representation uses this idea. All numbers must be normalized.

IEEE 754 Floating Point Representation
Single Precision (32 bits)

a 1-bit sign, an 8-bit exponent with a bias of 127, and a 23-bit significand
(–1)sign *(1.0+significand) *2 (exponent–127)

Example:

Double Precision (64 bits)
a 1-bit sign, an 11-bit exponent with a bias of 1023, and a 52-bit significand
(-1)sign * (1.0 + significand) * 2 (exponent–1023)

Example:

Floating Point
+1.0010101 x 25

S E M

Mantissa/Signficand
Sign Exponent

0 10000100 00101010000000000000000

0 10000000100 0010101000

COMPSCI 210 07 6

Single Precision (float)
Sign Bit: (1 bit)

0 +ve, 1 –ve
Exponent Bits: (8 bits)

Excess/Biased representation
To store positive and negative exponents

Subtracting a bias 127 (28 -1) from the value
0 < e < 255; Actual exponent is: E = e - 127

Example:
00000001 is the representation of -126;
10000000 is the representation of +1
An exponent of 5 is therefore stored as 127+5 = 132 (10000100);
An exponent of -2 is stored as = 127-2 = 125 (1111101)

Mantissa Bits: (23 bits)
Mantissa is the set of 0’s and 1’s to the right of the radix point of the
normalized binary number

1.0010101 x 25 , Mantissa = 00101010…0
Numbers stored in normalized form; i.e. 1.xxx…, therefore it is assumed
(and therefore “1” is not stored) in the format

IEEE 754 Floating Point Representation
S E M

COMPSCI 210 07 7

Double Precision (double)
Sign Bit: (1 bit)

0 +ve, 1 –ve

Exponent Bits: (11 bits)
Excess/Biased representation

Subtracting a bias 1023 from the value
Note: The exponent is 11 bits, so the bias = 211 -1

Example:
00000000001 is the representation of -1022
10000000000 is the representation of +1

Mantissa Bits: (55 bits)
Mantissa is the set of 0’s and 1’s to the right of the radix point
of the normalized binary number

Numbers stored in normalized form; i.e. 1.xxx…, therefore it is
assumed (and therefore “1” is not stored) in the format

IEEE 754 Floating Point Representation
S E M

COMPSCI 210 07 8

Examples
32-bit IEEE 754 Floating point representation

0 01111101 101 0000 0000 0000 0000 0000
Sign = 0
Exponent = 01111101 = 125 =>

125 – 127 = -2
Mantissa = 1010…0 = 0.5 + 0.125 = 0.625
Answer = (-1)0 * (1.0 + 0.625) * 2 (-2)

= (1.625) * 2 (-2) = 0.40625
64-bit IEEE 754 Floating point representation

0 01111111101 101 0000 0000 0000 0000 0000 … 0
Sign = 0
Exponent = 01111111101 = 1021 =>

1021 – 1023 = -2
Mantissa = 1010…0 = 0.5 + 0.125 = 0.625
Answer = (-1)0 * (1.0 + 0.625) * 2 (-2)

= (1.625) * 2 (-2) = 0.40625

COMPSCI 210 07 9

Special Numbers
Special Exponents (Single)

00000000
Case 1: Represent number in Denormalized format!

Exponent is all zeros, the floating-point number is Denormalized
= (0.0+significand) *2 (exponent–bias)

Case 2: Represent ZERO with all zeros in exponent and mantissa
bits

+0, -0

11111111
NaN

An exponent of all ones with any other mantissa is interpreted to
mean "not a number". Example: 0 11111111
00000000000000000000001

Infinity:
An exponent of all ones with a mantissa whose bits are all zero
indicates an infinity. The sign of the infinity is indicated by the sign
bit. Example: 0 11111111 00000000000000000000000

COMPSCI 210 07 10

Table

7F7FFFFF0 11..10 11…11Positive Normalized

…

008000000 00..01 00…00Positive Normalized

000000010 00..00 00…01Positive Denormalized

…

007FFFFF0 00..00 11…11Positive Denormalized

800000001 00..00 00..00-0

000000000 00..00 00..00+0

7F8000000 11..11 00..00+Infinity

7F8000010 11..11 00..01+NaN

800000011 00..00 00…01Negative Denormalized

…

807FFFF1 00..00 11…11Negative Denormalized

808000001 00…01 00..00Negative Normalized

…

FF7FFFFF1 11..10 11..11Negative Normalized

FF8000001 11…11 00…00-Infinity

FF8000011 11…11 00…01-NaN

Range Name

COMPSCI 210 07 11

Conversion:
Example 1: Decimal -> IEEE Floating Point Representation

-1.2510
Binary = -1.01
Normalization => -1.01

= -1.01 * 20

Bits:
Exponent = 127 = 01111111
Sign = 1
Mantissa = 010…0

Answer = 1 01111111 010…0 = BFA00000
Example 2: IEEE Floating Point Representation -> Decimal

40900000 = 0100 0000 1001 0000 … 0000
Sign = 0
Exponent = 100 0000 1

= 129 = 129-127
Mantissa = 001 0000 … 0000

= 0.125
Answer = (-1)0 * (1.0 + 0.125) * 2 (2) = 4.5 q

float num = -1.25;
int temp;
temp = *((int*) &num); //convert the float to the Hex bit patterns
printf("\nThe number is %f = %x", num, temp);

COMPSCI 210 07 12

Range & Problems
Range:

Magnitude of numbers that can be represented is in the range:
Single Precision (Normalized)

2-126 * (1.0) to 2127 * (2 -2-23)
2-126 * (1.0): Exponent: 00000001 Mantissa: 000…000
2127 * (2 -2-23): Exponent: 11111110, Mantissa: 111…111 = 3.40 x 1038

= 1.18 x 10-38 to 3.40 x 1038 (approximately)
Double Precision

2-1022*(1.0) to 21023*(2 – 2-52)
= 2.23*10-308 to 1.8*10308 (double)

Problems
Overflow occurs when the exponent is larger than the allocated
space
Underflow occurs when a negative exponent is too large in absolute
value to fit within the bits allocated to store it
Truncation occurs when there are not enough digits in the mantissa
to represent the number:

Examples: 1/3, 1/10 etc

3.40 x 1038-3.40 x 1038 1.80 x 10-38

