COMPSCI 210 S1T
Computer Systems

Floating Point Numbers

Agenda & Reading

Agenda:

= Introduction

= Normalization

IEEE 754 Floating Point Representation
+ Single Precision (32-bit)
+ Double Precision (64-bit)

Examples

Special Numbers

= Conversion

Recommended Reading:

» |IEEE Floating Point Numbers
+ http://en.wikipedia.org/wiki/IEEE_floating-point_standard
COMPSCI 210 07 2

Introduction

Given the following numbers:
= 37.25,,=100101.01,
= 7.625,=111.101,
= 0.3125,,=0.0101,
= +300000000 mst
s +299, 792,458 ms1
4 How can we store the above number in 4 bytes?
People usually represent very large and small numbers in “scientific
notation”, as a fixed point number times a power of 10.
= Scientific Notation:
+ 3%108
+ 2.9979 * 108
+ 3.125 * 101
+ 3.725* 10!
= Floating point numbers are represented in the computer in a similar
manner, but using base 2 rather than base 10.
+ 1.0010101 x 25
+ 1.11101 x 22
»-1:01 % 22

COMPSCI 210 07

Normalization

Given the following number
» 12.34 =0.1234 x 102=1.234 x 10* = 123.4 x 10!

Scientific numbers are always written with one digit before
the point, giving a “normalized” representation.
= After Normalization = 1.234 x 101!

Normalization in Base 2
= One digit to the left of the binary point. It must be 1.

+ 100101.01, = 1.0010101 x 25 [toleftby 5 places
Radi i
+ 111.101,= 1.11101 x 22

After normalization, the numbers now have a standard
format

COMPSCI 210 07 4

| +1.0010101 X 231\

&tl ng POi nt Mantissa/Signficand | Exponent |

Consists of three parts

= Sign bit
Exponent ’ S‘ E ‘ M

|

|]
= Mantissa/Signficand
n

Note: Normalized binary numbers always start with a 1 (the leftmost bit of
the signficand value). We don't need to store the 1. IEEE 754
representation uses this idea. All numbers must be normalized.

|EEE 754 Floating Point Representation
= Single Precision (32 bits)
+ a 1-bit sign, an 8-bit exponent with a bias of 127, and a 23-bit significand
* (=1)sign *(1.0+significand) *2 (exponent-127)
* Bxample: 575000100 00101010000000000000000 |

» Double Precision (64 bits)
+ a 1-bit sign, an 11-bit exponent with a bias of 1023, and a 52-bit significand
+ (-1)sign* (1.0 + significand) * 2 (exponent=1023)

’ S ‘ E ‘ M \
IEEE 754 Floating Point Representation

Single Precision (float)
= Sign Bit: (1 bit)
* 0 +ve, 1-ve
= Exponent Bits: (8 bits)
+ Excess/Biased representation
= To store positive and negative exponents
= Subtracting a bias 127 (28 -1) from the value
= 0 < e < 255; Actual exponent is: E = e - 127
= Example:
= 00000001 is the representation of -126;
= 10000000 is the representation of +1
= An exponent of 5 is therefore stored as 127+5 = 132 (10000100);
= An exponent of -2 is stored as = 127-2 = 125 (1111101)
= Mantissa Bits: (23 bits)

+ Mantissa is the set of 0's and 1's to the right of the radix point of the
normalized binary number

+ Example: 0 10000000100 = 1.0010101 x 25, Mantissa = 00101010...0
0010101000 = Numbers stored in normalized form; i.e. 1.xxx..., therefore it is assumed
(and therefore “1” is not stored) in the format
COMPSCI 210 07 5 COMPSCI 210 07 6
B M |

IEEE 754 Floating Point Representation

Double Precision (double)
= Sign Bit: (1 bit)
+ 0 +ve, 1-ve
= Exponent Bits: (11 bits)
+ Excess/Biased representation
= Subtracting a bias 1023 from the value
= Note: The exponent is 11 bits, so the bias = 211 -1
= Example:
= 00000000001 is the representation of -1022
= 10000000000 is the representation of +1
= Mantissa Bits: (55 bits)

+ Mantissa is the set of 0’s and 1's to the right of the radix point
of the normalized binary number

= Numbers stored in normalized form; i.e. 1.xxx..., therefore it is
assumed (and therefore “1” is not stored) in the format

COMPSCI 210 07 7

Examples

32-bit IEEE 754 Floating point representation
= 001111101 101 0000 0000 0000 0000 0000
+ Sign=0
+ Exponent = 01111101 = 125 =>
s 125-127 =-2
+ Mantissa = 1010...0 = 0.5 + 0.125 = 0.625
+ Answer = (-1)° * (1.0 + 0.625) * 2 (2
+ = (1.625) * 2 (2 = 0.40625
64-bit IEEE 754 Floating point representation
= 001111111101 101 0000 0000 0000 0000 0000 ... 0
* Sign=0
+ Exponent = 01111111101 = 1021 =>
= 1021 - 1023 = -2
+ Mantissa = 1010...0 = 0.5 + 0.125 = 0.625
+ Answer = (-1)° * (1.0 + 0.625) * 2 (:2)
+ = (1.625) * 2 (2 = 0.40625

COMPSCI 210 07 8

Special Numbers

@ Special Exponents (Single)

= 00000000
+ Case 1: Represent number in Denormalized format!
= Exponent is all zeros, the floating-point number is Denormalized
m = (0.0+significana)) *2 (exponent-bias)
+ Case 2: Represent ZERO with all zeros in exponent and mantissa
bits
s +0, -0
w 11111111

+ NaN

= An exponent of all ones with any other mantissa is interpreted to
mean "“not a number". Example: 0 11111111
00000000000000000000001

+ Infinity:
= An exponent of all ones with a mantissa whose bits are all zero

indicates an infinity. The sign of the infinity is indicated by the sign
bit. Example: 0 11111111 00000000000000000000000

COMPSCI 210 9

Table

Range Name

-NaN 111..11 00...01 FF800001
-Infinity 111..11 00...00 FF800000
Negative Normalized 111..1011..11 FF7FFFFF
Negative Normalized 1 00...01 00..00 80800000
Negative Denormalized 100..00 11...11 807FFFF
Negative Denormalized 1 00..00 00...01 80000001
-0 1 00..00 00..00 80000000
+0 0 00..00 00..00 00000000
Positive Denormalized 0 00..00 00...01 00000001
Positive Denormalized 000..00 11...11 007FFFFF
Positive Normalized 0 00..01 00...00 00800000
Positive Normalized 011..10 11..11 TFTFFFFF
+Infinity 0 11..11 00..00 7F800000
+NaN 0 11..11 00..01 7F800001

COMPSCI 210 07 10

Conversion:

4 Example 1: Decimal -> IEEE Floating Point Representation
= -1.25,
= Binary = -1.01
= Normalization => -1.01
s =-1.01%20
= Bits:
+ Exponent = 127 = 01111111
+ Sign =1
+ Mantissa = 010...0
= Answer = 101111111 010...0 = BFAO0000
Example 2: IEEE Floating Point Representation -> Decimal
= 40900000 = 0100 0000 1001 0000 ... 0000
+ Sign=0
+ Exponent = 100 0000 1
= =129 = 129-127
+ Mantissa = 001 0000 ... 0000
= =0.125
+ Answer = (-1)° * (1.0 + 0.125) *2 @ =45

float num = -1.25;

int temp;

temp = *((int*) &num); //convert the float to the Hex bit patterns
printf(C"\nThe number is %f = %X, num, temp);

COMPSCI 210 07 11

Range & Problems | |

1
-3.40 x 10% 1.80 x 10 3.40 x 10%

Range:
= Magnitude of numbers that can be represented is in the range:
= Single Precision (Normalized)
+ 2126 % (1.0) to 2127 * (2 -2:23)
m 27126 * (1,0): Exponent: 00000001 Mantissa: 000...000
m 2127 * (2 -2:23): Exponent: 11111110, Mantissa: 111...111 = 3.40 x 1038
¢+ =1.18 x 1038 to 3.40 x 1038 (approximately)
= Double Precision
» 2-1022% (] () to 21023%(2 — 2-52)
+ = 2.23*10-38 to 1.8%10%8 (double)
@ Problems
= Overflow occurs when the exponent is larger than the allocated
space
= Underflow occurs when a negative exponent is too large in absolute
value to fit within the bits allocated to store it
= Truncation occurs when there are not enough digits in the mantissa
to represent the number:
+ Examples: 1/3, 1/10 etc

COMPSCI 210 07 12

