COMPSCI 210 S1T Computer Systems

Floating Point Numbers

Agenda: Introduction Normalization IEEE 754 Floating Point Representation Single Precision (32-bit) Double Precision (64-bit) Examples

Agenda & Reading

Special NumbersConversion

-

- Recommended Reading:
 - IEEE Floating Point Numbers
 - http://en.wikipedia.org/wiki/IEEE_floating-point_standard

 COMPSCI 210
 07

2

Introducti	on	
 Given the following nu 37.25₁₀ = 100101.01 7.625₁₀ = 111.101₂ 0.3125₁₀ = 0.0101₂ +30000000 ms⁻¹ +299, 792,458 ms⁻¹ 		
	above number in 4 bytes? ent very large and small numbers joint number times a power of 10	; in "scientific).
 Floating point number manner, but using base 1.0010101 x 2⁵ 1.11101 x 2² 1.01 x 2⁻² 	ers are represented in the computer ase 2 rather than base 10.	in a similar
COMPSCI 210	07	3

Normaliza	tion	
Given the following		
	$0^2 = 1.234 \times 10^1 = 123.4 \times 10^{-1}$	
 Scientific numbers the point, giving a After Normalization 	are always written with one digit before "normalized" representation. In = 1.234 x 10 ¹	ore
Normalization in Ba	ase 2	
One digit to the left	t of the binary point. It must be 1.	
 Examples: 100101.01₂ = 1.0 	010101 x 2 ⁵ to left by 5 places	
 ◆ 111.101₂ = 1.111 	01 x 2 ² Radix point move to left by 2 places	
• 0.0101 ₂ = 1.01 x	2-2 Radix point move to right by 2 places	
After normalization	, the numbers now have a standard	
format		
COMPSCI 210	07	4

S E	Μ	
IEEE 754 Floa	ating Point Representation	า
 Single Precision (f Sign Bit: (1 bit) • 0 +ve, 1 -ve 		
 Exponent Bits: (8 Excess/Biased rest 		
 To store posi Subtrac 0 < e Example: 0000000 1000000 An expo 	tive and negative exponents ting a bias 127 (2^8 -1) from the value 255; Actual exponent is: E = e - 127 01 is the representation of -126; 00 is the representation of +1 onent of 5 is therefore stored as 127+5 = 132 (100 onent of -2 is stored as = 127-2 = 125 (1111101)	000100);
Mantissa Bits: (23		
normalized bina 1.0010101 x Numbers sto	set of 0's and 1's to the right of the radix pointry number 2 ⁵ , Mantissa = 001010100 red in normalized form; i.e. 1.xxx, therefore it is re "1" is not stored) in the format	
COMPSCI 210	07	6

S E	M	
IEEE 754 Flo	ating Point Represent	ation
Double Precision	on (double)	
Sign Bit: (1 bit	t)	
 ◆ 0 +ve, 1 -ve 		
Exponent Bits:	: (11 bits)	
 Excess/Biased 	d representation	
Subtracting	g a bias 1023 from the value	
Note:	The exponent is 11 bits, so the bias =	· 2 ¹¹ -1
Example:		
	0000001 is the representation of -1022	<u>.</u>
	0000000 is the representation of +1	
Mantissa Bits:		
	ne set of 0's and 1's to the right of lized binary number	the radix point
	stored in normalized form; i.e. 1.xxx and therefore "1" is not stored) in the	
COMPSCI 210	07	7

Examples		
 0 01111101 101 00 Sign = 0 Exponent = 0111 125 - 127 = -2 Mantissa = 1010. 		on
 = (1.625) * 2 ⁽⁻²⁾ 64-bit IEEE 754 Flo 0 0111111101 101 Sign = 0 Exponent = 0111 1021 - 1023 = Mantissa = 1010. 	= 0.40625 ating point representation 0000 0000 0000 0000 0000 1111101 = 1021 => -2 0 = 0.5 + 0.125 = 0.625 (1.0 + 0.625) * 2 ⁽⁻²⁾	
COMPSCI 210	07	8

Special Numbers

Special Exponents (Single)

• 0000000

- Case 1: Represent number in Denormalized format!
 - Exponent is all zeros, the floating-point number is Denormalized
 - = (0.0+*significand*) *2 ^(exponent-bias)
- Case 2: Represent ZERO with all zeros in exponent and mantissa bits

■ +0, -0

- 111111111
 - NaN

Infinity:

Range Name			
-NaN	1 1111 0001	FF800001	
-Infinity	1 1111 0000	FF800000	
Negative Normalized	1 1110 1111	FF7FFFF	
Negative Normalized	1 0001 0000	8080000	
Negative Denormalized	1 0000 1111	807FFFF	
Negative Denormalized	1 0000 0001	8000001	
-0	1 0000 0000	8000000	
+0	0 0000 0000	0000000	
Positive Denormalized	0 0000 0001	0000001	
Positive Denormalized	0 0000 1111	007FFFFF	
Positive Normalized	0 0001 0000	0080000	
Positive Normalized	0 1110 1111	7F7FFFFF	
+Infinity	0 1111 0000	7F800000	
+NaN	0 1111 0001	7F800001	

Conversion: Example 1: Decimal -> IEEE Floating Point Representation -1.25₁₀ Binary = -1.01 Normalization => -1.01 = -1.01 * 2⁰ Bits: Exponent = 127 = 01111111 Sian = 1 • Mantissa = 010...0 Answer = 1 01111111 010...0 = BFA00000 Example 2: IEEE Floating Point Representation -> Decimal 40900000 = 0100 0000 1001 0000 ... 0000 • Sign = 0 Exponent = 100 0000 1 ■ = 129 = 129-127 • Mantissa = 001 0000 ... 0000 = 0.125 • Answer = $(-1)^0 * (1.0 + 0.125) * 2^{(2)} = 4.5 q$ float num = -1.25;int temp; temp = *((int*) &num); //convert the float to the Hex bit patterns printf("\nThe number is %f = %x", num, temp); COMPSCI 210 07 11

Range:	-3.40 x 10 ³⁸	1.80 x 10 ⁻³⁸ 3.40 x 10 ³
 Magnitude of numbers that ca 	n be represented	is in the range:
 Single Precision (Normalized) 		J
 2-126 * (1.0) to 2¹²⁷ * (2 -2-23) 		
2-126 * (1.0): Exponent: 000		
■ 2 ¹²⁷ * (2 -2 ⁻²³): Exponent: 1		$11111 = 3.40 \times 10^{38}$
 = 1.18 x 10⁻³⁸ to 3.40 x 10³⁸ Double Precision 	(approximately)	
• $2^{-1022*}(1.0)$ to $2^{1023*}(2-2^{-52})$		
$\bullet = 2.23^{*}10^{-308}$ to $1.8^{*}10^{308}$ (d		
Problems	ŕ	
 Overflow occurs when the exp space 	onent is larger th	an the allocated
 Underflow occurs when a neg- value to fit within the bits allo 	ative exponent is cated to store it	too large in absolute
 Truncation occurs when there to represent the number: 	are not enough o	ligits in the mantissa
 Examples: 1/3, 1/10 etc 		
COMPSCI 210	07	12