COMPSCI 210 S1T Computer Systems

Data Representation

Negative Number Representation

Unsigned & Signed Integers

- Unsigned Representation
 - Represent positive numbers only
 - Example: 8-bit
 - Range : 0 <= x <= 255
 - 11111011 = 251
 - 00000101 = 5

Signed Representation

- Represent both positive and negative numbers
- Three important representations:
 - Sign and Magnitude
 - Excess (biased)
 - Two's complement

COMPSCI210 - 03

Agenda & Reading

♦ Agenda:	
 Negative Number Representation 	
 Sign and Magnitude 	
 Excess (Biased) 	
 Two's Complement 	
Range	
Overflow	
 Subtraction by Complement Addition 	
♦ Java Example:	
 03\OverflowInt.java 	
Exercise:	
• 03	
COMPSCI210 - 03	2

Sign And Magnitude One bit to represent whether a number is positive or negative Left-most bit as the sign bit • 0 – positive, 1 – negative • Represent numbers between $-(2^{n-1} - 1)$ and $+(2^{n-1} - 1)$ (3-bit) Value Example: 8-bit Example: 3-bit 0 000 Example 001 1 2 • 10000101 = -5010 • 00000101 = +5011 3 101 -3 100 -0 Range: -0 101 -127 <= x <= 127 -1 000 -2 011 110 Disadvantage: +0111 -3 Two representations for zero 00000000 = +01000000 = -0COMPSCI210 - 03

Excess (biased)

- Represent number by adding the absolute value of the most negative number to the value
- Represent numbers between -(2ⁿ⁻¹) and +(2ⁿ⁻¹ -1) in excess 2ⁿ⁻¹ representation
 - A positive number x is represented as $(1 \le (n-1)) + x$. (i.e. $2^{n-1} + x$).
 - 0 is represented as 1 << n-1. (i.e. 2^{n-1}).
 - A negative number -x is represented as ((1 <<(n-1)) 1) x + 1. (i.e. (2ⁿ⁻¹ 1) x + 1).

0

-1

(3-bit)

000

001

010

011

100

101

110

111

3

Λ

2

000

110.

00

101

Value

-4

-3

-2

-1

0

1

2

3

5

- Advantage:
 - Good for ordering purpose
 - Used in the floating point

COMPSCI210 - 03

COMPSCI210 - 03	6
 011111111 - 00011110 + 1= 01100001 + 1 = 01100010 	Invert all bits (except for the most significant bit
■ 10000000 + 00011110 = 10011110 ◆ -30	01100001
 Negative number: Formula = 01111111 - x 30 	+ 1 01111111
 Decimal to Binary Positive number: Formula = 10000000 + x 	
 Sum of all bits = 129 Answer = 129-128 = 1 	
 Sum of all bits = 5 Answer = 5 - 128 = -123 10000001 	
Binary -> Decimal (Formula: Sum – 128 00000101	()

- V	<i>wo's</i> complement Conversion	
Bina	ry -> Decimal	
Le nu	eft most bit: 0 – the rest of the 7 bits represent normal binary umbers	
Le ar	eft most bit: 1 – then this represents -ve number. Complement nd add 1 0000101	t it
= 0. = 1(+ve => Total of the last seven bits = 5, Answer = 5 0000001 	
	 -ve => Invert all bits + 1=> 01111110 + 1 = 01111111 = 127 => -127 	
Deci	mal to Binary	
PC	ositive number: Formula = x	
 Nead 	egative number: Formula = 11111111 - x + 1 (Invert all bits ar dd 1)	nd
a 30	0	
	• = 00011110	
- 3	30	
	111111111 - 00011110 + 1= 11100001 + 1	
	• = 11100010 COMPSCI210 - 03	8
		-

Examples	
 Decimal -> Binary Convert 23₁₀ to binary numbers using 8-bit, Unsigned representation 00010111 8-bit, Excess representation : 10000000 + 00010111 = 10010111 8-bit, Two's complement representation : 	
 00010111 Convert -23₁₀ to binary numbers using 8-bit, Unsigned representation NA 8-bit, Excess representation : 01111111 - x + 1 = 01101000 + 1 = 01101001	
 8-bit, Two's complement representation : 23 -> Binary: 00010111 Complement it + 1 = 11101000 + 1 = 11101001 COMPSCI210 - 03 	

H '	X	Δ	r	ri	S	ρ
- -					J	

Convert Decimal –17 to 8-bit binary numbers using Excess

COMPSCI210 - 03

9

11

- Two's complement:
- Convert 10110011 to Decimal if the number is represented as
 Unsigned 8-bit

 - Signed 8-bit Excess
 - Signed 8-bit Two's complement

Examples	
Binary -> Decimal	
 Convert 10101010 to Decimal if the number is represented Unsigned 8-bit binary numbers 10101010 = 170 	as
 Signed 8-bit binary numbers in Excess 	
■ Sum = 170 – 128 =42	
 Signed 8-bit binary numbers in two's complement 10101010 -> Negative number 	
Scomplement it + 1 = 01010101 + 1 = 86 => Answer = -86	
 Convert 01010101 to Decimal if the number is represented 	as
Unsigned 8-bit binary numbers	
01010101 = 85	
 Signed 8-bit binary numbers in Excess Sum = 85 - 128 = -43 	
 Signed 8-bit binary numbers in two's complement 	
 01010101 -> +ve number =85 	
COMPSCI210 - 03	10

Range	
◆ 4-bit	
Range of unsigned: 0 <= x <= 15	
■ Excess: - 8 <= x <= 7	
Two's complement: - 8 <= x <= 7	
♦ 8-bit	
■ Range of unsigned: 0 <= x <= 2 ⁸ - 1	
■ Excess - (2 ⁷) <= x <= (2 ⁷ - 1)	
■ Two's complement - (2 ⁷) <= x <= (2 ⁷ - 1)	
♦ 32-bit	
■ Range of unsigned: 0 <= x <= 2 ³² - 1	
• Excess - $(2^{31}) <= x <= (2^{31} - 1)$	
■ Two's complement - (2 ³¹) <= x <= (2 ³¹ - 1)	
COMPSCI210 - 03	12

Java Example	
Java uses 4 bytes (32 bits) to store integers	
■ Range: Two's complement - (2 ³¹) <= x <= (2 ³¹ - 1)	
Range: -2147483648 to 2147483647	
<pre> Example: int num = 2000000000; System.out.println(num * 2); </pre>	
Answer = -294967296	
Why?	
 An int is 32-bit, the result is 4, 000, 000, 000 which needs > store the value. 	32-bit to
 Use 64 bits to store the value =0000000EE6B2800 (hex) 	
 Use 32 bits = EE6B2800 (negative, overflow occurs) 	
COMPSCI210 - 03	16

Subtrailerind ★ X - Y = X + (-Y) Example: 18 - 11 (18 = 00010010, 11 = 00001011) Two's complement of 11 is 11110101 00010010 (18) 11110000 carries 100000111 Carry into = carry out => valid (no overflow) Answer = 00000111 COMPSCI210 - 03 Exercises 01101011 - 00010110 ♦ 00101100 - 01101001	Perform subtraction by adding the comple subtrabond	ment of
• A - Y = X + (-Y) Example: 18 - 11 (18 = 00010010, 11 = 00001011) Two's complement of 11 is 11110101 00010010 (18) + 11110101 (-11) <u>111100000 carries</u> 100000111 Carry into = carry out => valid (no overflow) Answer = 00000111 COMPSCI210 - 03 Exercises 01101011 - 00010110 • 00101100 - 01101001		
Example: • 18 - 11 (18 = 00010010, 11 = 00001011) • Two's complement of 11 is 11110101 00010010 (18) + 11110101 (-11) <u>111100000 carries</u> 100000111 Carry into = carry out => valid (no overflow) Answer = 00000111 COMPSCI210 - 03 17	= X + (-1)	
 IS - IT (IS = 00010010, IT = 00001011) Two's complement of 11 is 11110101 00010010 (18) + 11110101 (-11) <u>11100000 carries</u> 100000111 Carry into = carry out => valid (no overflow) Answer = 00000111 COMPSCI210 - 03 17 Exercises • 01101011 - 00010110 • 00101100 - 01101001	• Example:	
 Two s complement of TT is TTTOTOT 00010010 (18) + 11110101 (-11) <u>111100000 carries</u> 100000111 Carry into = carry out => valid (no overflow) Answer = 00000111 COMPSCI210 - 03 17 Exercises • 01101011 - 00010110 • 00101100 - 01101001	18 - 11 (18 = 00010010, 11 = 00001011)	
 + 11110101 (-11) <u>111100000 carries</u> 100000111 Carry into = carry out => valid (no overflow) Answer = 00000111 COMPSCI210 - 03 17 Exercises • 01101011 - 00010110 • 00101100 - 01101001		
111100000 carries 100000111 Carry into = carry out => valid (no overflow) Answer = 00000111 COMPSCI210 - 03 17 Exercises • 01101011 - 00010110	$\pm 1110101 (-11)$	
100000111 Carry into = carry out => valid (no overflow) Answer = 00000111 COMPSCI210 - 03 17 Exercises ◆ 01101011 - 00010110	11 1100000 carries	
Carry into = carry out => valid (no overflow) Answer = 00000111 COMPSCI210 - 03 17 Exercises • 01101011 - 00010110 • 00101100 - 01101001	100000111	
Answer = 00000111 COMPSCI210 - 03 17 Exercises • 01101011 - 00010110 • 00101100 - 01101001	Carry into = carry out => valid (no overflow)	
COMPSCI210 - 03 17	Answer = 00000111	
Exercises ♦ 01101011 - 00010110 ♦ 00101100 - 01101001	COMPSCI210 - 03	17
Exercises ♦ 01101011 - 00010110 ♦ 00101100 - 01101001		
♦ 00101100 – 01101001		
♦ 00101100 – 01101001	Exercises	
• 00101100 - 01101001	Exercises ◆ 01101011 – 00010110	
♦ 00101100 – 01101001	Exercises • 01101011 – 00010110	
• 00101100 - 01101001	Exercises ♦ 01101011 - 00010110	
	Exercises • 01101011 – 00010110	
	Exercises ♦ 01101011 - 00010110	
	 ► 01101011 - 00010110 ◆ 00101100 - 01101001 	
	 ► 01101011 - 00010110 ♦ 00101100 - 01101001 	

COMPSCI210 - 03

19

Subtraction by Complement Addition	1
 01110011 - 00001110 Two's complement of 00001110 is 11110010 01110011 + 11110010 111100100 carries 101100101 	
Carry into and out are equal => valid	
• 00001010 - 10000011	
 Two's complement of 10000011 is 01111101 00001010 01111101 011110000 carries 10000111 	
 Carry into and out are not equal => overflow, invalid answer 	
COMPSCI210 - 03	18