
COMPSCI 210 S1T
Computer Systems

Data Representation

Negative Number Representation

COMPSCI210 - 03 2

Agenda & Reading
Agenda:

Negative Number Representation
Sign and Magnitude
Excess (Biased)
Two’s Complement

Range
Overflow
Subtraction by Complement Addition

Java Example:
03\OverflowInt.java

Exercise:
03

COMPSCI210 - 03 3

Unsigned & Signed Integers
Unsigned Representation

Represent positive numbers only
Example: 8-bit

Range : 0 <= x <= 255
11111011 = 251
00000101 = 5

Signed Representation
Represent both positive and negative numbers
Three important representations:

Sign and Magnitude
Excess (biased)
Two’s complement

COMPSCI210 - 03 4

Sign And Magnitude
One bit to represent whether a number is positive or
negative

Left-most bit as the sign bit
0 – positive, 1 – negative

Represent numbers between –(2n-1 -1) and +(2n-1 -1)
Example: 8-bit Example: 3-bit

Example
10000101 = -5
00000101 = +5

Range:
-127 <= x <= 127

Disadvantage:
Two representations for zero

00000000 = +0
10000000 = -0

-3111

-2110

-1101

-0100

3011

2010

1001

0000

Value(3-bit)

000

001010

011

100
101 110

111

+0

1
2

-0

-1

-3

-2

3

COMPSCI210 - 03 5

Excess (biased)
Represent number by adding the absolute value of the most negative
number to the value
Represent numbers between –(2n-1) and +(2n-1 -1) in excess 2n-1

representation
A positive number x is represented as (1 << (n-1)) + x. (i.e. 2n-1 + x).
0 is represented as 1 << n-1. (i.e. 2n-1).
A negative number -x is represented as ((1 <<(n-1)) - 1) - x + 1. (i.e. (2n-1

- 1) - x + 1).
Example: 8-bit Example:3-bit

Example
00000101 = 5 – 128 = -123
10000100 = 4

Range:
-128 <= x <= 127

Advantage:
Good for ordering purpose
Used in the floating point

000

001010

011

100
101 110

111

-4

-3
-2

0

1

3

2

-1

3111

2110

1101

0100

-1011

-2010

-3001

-4000

Value(3-bit)

COMPSCI210 - 03 6

Excess (Biased) Conversion
Examples (8-bit)

Binary -> Decimal (Formula: Sum – 128)
00000101

Sum of all bits = 5
Answer = 5 – 128 = -123

10000001
Sum of all bits = 129
Answer = 129-128 = 1

Decimal to Binary
Positive number: Formula = 10000000 + x
Negative number: Formula = 01111111 - x + 1
30

10000000 + 00011110 = 10011110
-30

01111111 - 00011110 + 1= 01100001 + 1
= 01100010

01111111
-00011110
01100001

Invert all bits (except for
the most significant bit

COMPSCI210 - 03 7

Two’s Complement
Used to represent signed integers on most machines
Represent numbers between –(2n-1) and +(2n-1 -1)

A positive number x is represented as itself, x.
0 is represented as itself, 0.
A negative number -x is represented as ((1 << n) - 1) - x + 1 (i.e. (2n -1) -
x + 1, or ~x + 1)

Two’s complement: 1->0 or 0->1, +1
Example: 8-bit Example: 3-bit

Example:
00000101 = +5
11111011 = -5 (11111010 + 1)

Range:
-128 <= x <= 127

Advantage:
Only one representation for ZERO
Addition, subtraction, and multiplication are the same for both unsigned and
two’s complement numbers

-1111

-2110

-3101

-4100

3011

2010

1001

0000

Value(3-bit)

000

001010

011

100
101 110

111

+0

1
2

-4

-3

-1

-2

3

COMPSCI210 - 03 8

Two’s complement Conversion
Binary -> Decimal

Left most bit: 0 – the rest of the 7 bits represent normal binary
numbers
Left most bit: 1 – then this represents -ve number. Complement it
and add 1
00000101

+ve => Total of the last seven bits = 5, Answer = 5
10000001

-ve => Invert all bits + 1=> 01111110 + 1
= 01111111 = 127 => -127

Decimal to Binary
Positive number: Formula = x
Negative number: Formula = 11111111 - x + 1 (Invert all bits and
add 1)
30

= 00011110
-30

11111111 - 00011110 + 1= 11100001 + 1
= 11100010

COMPSCI210 - 03 9

Examples
Decimal -> Binary

Convert 2310 to binary numbers using
8-bit, Unsigned representation

00010111
8-bit, Excess representation :

10000000 + 00010111 = 10010111
8-bit, Two’s complement representation :

00010111
Convert -2310 to binary numbers using

8-bit, Unsigned representation
NA

8-bit, Excess representation :
01111111 - x + 1 = 01101000 + 1 = 01101001

8-bit, Two’s complement representation :
23 -> Binary: 00010111
Complement it + 1 = 11101000 + 1 = 11101001

COMPSCI210 - 03 10

Examples
Binary -> Decimal

Convert 10101010 to Decimal if the number is represented as
Unsigned 8-bit binary numbers

10101010 = 170
Signed 8-bit binary numbers in Excess

Sum = 170 – 128 =42
Signed 8-bit binary numbers in two’s complement

10101010 -> Negative number
=> Complement it + 1 = 01010101 + 1 = 86 => Answer = -86

Convert 01010101 to Decimal if the number is represented as
Unsigned 8-bit binary numbers

01010101 = 85
Signed 8-bit binary numbers in Excess

Sum = 85 – 128 = -43
Signed 8-bit binary numbers in two’s complement

01010101 -> +ve number
=85

COMPSCI210 - 03 11

Exercise
Convert Decimal –17 to 8-bit binary numbers using

Excess

Two’s complement:

Convert 10110011 to Decimal if the number is
represented as

Unsigned 8-bit

Signed 8-bit Excess

Signed 8-bit Two’s complement

COMPSCI210 - 03 12

Range
4-bit

Range of unsigned: 0 <= x <= 15
Excess: - 8 <= x <= 7
Two’s complement: - 8 <= x <= 7

8-bit
Range of unsigned: 0 <= x <= 28 - 1
Excess - (27) <= x <= (27 – 1)
Two’s complement - (27) <= x <= (27 – 1)

32-bit
Range of unsigned: 0 <= x <= 232 - 1
Excess - (231) <= x <= (231 – 1)
Two’s complement - (231) <= x <= (231 – 1)

COMPSCI210 - 03 13

Overflow
Example: 4-bit

Two’s complement - 8 <= x <= 7
After calculation, if value represents is outside the range, leading to
an overflow
Examples:

0110
+ 0111
01100 carries
01101 (4-bit) => 1101

6

7

Answer = -3
Invalid answer

6 + 7 = 13
(outside the range)

1010
+ 1001
10000 carries
10011 (4-bit) = 0011

-6

-7

Answer = 3
Invalid answer

-6 + -7 = -13
(outside the range)

1110
+ 0011
11100 carries
10001 (4-bit)= 0001

-2

3
Answer = 1
valid answer

-2 + 3 = 1 0010
+0011

0100 carries
0101

2

3

Answer = 5
Valid answer

2 + 3 = 5

COMPSCI210 - 03 14

Valid or invalid?
Overflow occurs if

+ve number add +ve number => -ve number
-ve number add –ve number => +ve number

A better way:
look at the carries into and out of the sign bit. If they are not
equal, there is an overflow.

Not equal: -> overflow

Equal = OK

0110
+ 0111
01100 carries
01101

1010
+ 1001
10000 carries
10011

1110
+ 0011
11100 carries
10001

0010
+ 0011
00100 carries
0101

Carry into
the sign bit

Carry out of
the sign bit

No carry

Carry into
& Carry out

COMPSCI210 - 03 15

Exercise
0111

+ 0101
1001

+ 1100

1100
+ 0111

1001
+ 0011

COMPSCI210 - 03 16

Java Example
Java uses 4 bytes (32 bits) to store integers

Range: Two’s complement - (231) <= x <= (231 – 1)
Range: –2147483648 to 2147483647

Example:

Answer = -294967296
Why?

An int is 32-bit, the result is 4, 000, 000, 000 which needs >32-bit to
store the value.
Use 64 bits to store the value =0000000EE6B2800 (hex)
Use 32 bits = EE6B2800 (negative, overflow occurs)

int num = 2000000000;
System.out.println(num * 2);

COMPSCI210 - 03 17

Subtraction by Complement Addition
Perform subtraction by adding the complement of
subtrahend
X – Y = X + (-Y)
Example:

18 – 11 (18 = 00010010, 11 = 00001011)
Two’s complement of 11 is 11110101
00010010 (18)

+ 11110101 (-11)
111100000 carries
100000111
Carry into = carry out => valid (no overflow)
Answer = 00000111

COMPSCI210 - 03 18

Subtraction by Complement Addition
01110011 – 00001110

Two’s complement of 00001110 is 11110010
01110011

+ 11110010
111100100 carries
101100101
Carry into and out are equal => valid

00001010 – 10000011
Two’s complement of 10000011 is 01111101
00001010

+ 01111101
011110000 carries
10000111
Carry into and out are not equal => overflow, invalid answer

COMPSCI210 - 03 19

01101011 – 00010110

00101100 – 01101001

Exercises

