
1

COMPSCI 210 Lecture handout 03 16

Input/Output
int fread(void *ptr, int size, int numitems, FILE *stream)

Fread “reads” numitems objects of specified size into the block ptr, from
the stream. (Actually, “read” may just mean “copy from the stream
buffer”.). It returns the number of items “read”.

int fwrite(void *ptr, int size, int numitems, FILE *stream)
Fwrite “writes” numitems objects of size specified from the address ptr to
the stream. (Actually, “write” may just mean “copy to the stream buffer”.).
It returns the number of items “written”.

int getc(FILE *stream)
int getchar()

Getc is a macro that “reads” one character from the stream. Getchar is just
getc(stdin). They return EOF on end of file. (EOF is usually defined as -1.
Thus the procedures return a non-character value on end of file.).

char *gets(char *s)
Gets “reads” the rest of the line from stdin, and stores it, null terminated, in
s, which it returns as its result. The newline is consumed.

COMPSCI 210 Lecture handout 03 17

X-printf
int printf(char *format, ...)
int fprintf(FILE *stream, char *format, ...)
int sprintf(char *s, char *format, ...)

These functions convert their arguments into a string according to the format,
and “write” the resultant string out to the standard output, the specified stream,
or the specified string (null terminated), respectively.
The format string contains text (which is just transferred over), and a
conversion specification for each argument. A conversion specification is of the
form

% [–] [fieldwidth] [.[precision]] [l] [duoxfegcs]
The meaning is as follows:

– Left justify the result in the field.
fieldwidth

decimal digit string indicating the minimum size of the text created.
The text is padded with blanks to bring it up to the specified field width, or with a '0',
if the field width begins with a 0.

precision
decimal digit string indicating the number of digits to appear after the decimal point in
e and f format, or the maximum number of characters to be printed from a string.

L The argument is a long integer.

2

COMPSCI 210 Lecture handout 03 18

Printf(2)
duoxfegcs
The argument is formatted according to the character specified.

d (decimal), u (unsigned decimal), o (octal), x (hexadecimal) for
integer value,
f (fixed point), e (exponent), g (fixed or exponent, as appropriate)
for floating point value,
c (ASCII character),
s (ASCII string).

A format character is essential. The other parts of the specification
are optional.

To print %, the character is doubled, as in %%.
The return value is the number of characters printed.
An example of a printf statement is
printf("s = %s, n = %d in decimal, and %o in octal\n", s, n, n);

COMPSCI 210 Lecture handout 03 19

Example sheet 1

P / 0x510x1004

NULL/0x000x1005

O / 0x500x1003

T / 0x540x1002

S / 0x530x1001

String 1
/hex

Memory/
byte

M /0x4D0x1009

NULL/0x000x100a

L /0x4C0x1008

E /0x450x1007

H /0x480x1006

String 2
/hex

Memory/
byte

3

COMPSCI 210 Lecture handout 03 20

Example sheet 2

COMPSCI 210 Lecture handout 03 21

Alphanumerical table

4

COMPSCI 210 Lecture handout 03 22

Postfix-Prefix

a++, a--Postfix increment and decrement operators.
The operand is incremented or decremented (by 1
for integer variables, by the size of the object pointed
to for pointer variables). The value returned is the
initial value of the variable.

++a, --aPrefix increment and decrement operators.
The operand is incremented or decremented (by 1
for integer variables, by the size of the object pointed
to for pointer variables). The value returned is the
final value of the variable.

COMPSCI 210 Lecture handout 03 23

Structures
Structure types
The C structure type is equivalent to the Pascal record type, and similar to a Java

class with only instance fields. A structure is a compound object composed of
named component fields, packed together side by side. For example, we could
declare the structure type Node, representing a node of a linked list

struct Node {
int value;
struct Node *next;
};

then declare a variable of that type
struct Node node; // Actual structure
struct Node *listPtr; // Pointer to a structure
Note that the declaration of a structure variable allocates space for the

structure.
The variable is the structure, not a pointer to a structure. As a consequence
struct Node {

int value;
struct Node next; // Illegal!
};

is illegal, because it a value of this type would require infinite space.

5

COMPSCI 210 Lecture handout 03 24

Structures (2)
To access the components of a structure, we use the ‘.’ notation.

If a is a structure variable, and b is a field of the structure, then
“a.b” represents the appropriate field b within a.

struct Complex { int x, y; };
struct Complex one;
one.x = 1;
one.y = 0;
Pointers to structures are commonly used in C.
struct Node *listPtr;
The accessing of fields by “(*listPtr).value” occurs so often, that a

special equivalent notation has been provided,
namely “listPtr->value”.

COMPSCI 210 Lecture handout 03 25

Function types

Not only can we declare functions in C, we can also declare
function variables and parameters (really pointers to functions),
and dynamically assign (a pointer to) a function to the variable
or parameter.

For any non array type, we can have a function returning that
type.

To formally declare a function, when not specifying its body, write
something like int f(int x, int y, char *s);

In a formal declaration of a function, it is possible to omit the
names of the formal parameters int f(int, int, char *);

To invoke a function, write the function name, followed by the
actual parameters, enclosed in parentheses, and separated by
commas. For example f(a, b, &c)

The parentheses are essential, even if there are no parameters.

6

COMPSCI 210 Lecture handout 03 26

Declaration
Typedef declarations
It is also possible to declare type names, by a typedef declaration of the

form
typedef Type DeclaratorSequence;
The identifiers appearing in the declarator sequence are declared to be

equal to the type they would correspond to if the above was an
ordinary declaration, without the typedef keyword:

typedef struct Node *List; declares List to be the type corresponding to
the type pointer to struct Node. The typedef name can then be used
anywhere a type can occur. For example List p;

Function declarations
A full declaration of a function is of the form
Type Declarator (ParameterDeclSequence) {

Body
}

A formal declaration of a function is of the form
Type Declarator (ParameterDeclSequence);
Functions have to be declared before they are used (for example,

in a #include file).

COMPSCI 210 Lecture handout 03 27

Programme examples
The following function invokes getchar() to read in a line of text, and store in a buffer.

If the line is too long, it still reads the line, but discards the characters that cannot
fit in the buffer.

char *readLine(char *s, int max) {
register int i = 0;
register int c;
while (TRUE) {

c = getchar();
if (c < 0 || c == '\n')

break;
if (i < max)

s[i] = c;
i++;
}

if (i > max)
i = max;

s[i] = '\0';
if (c < 0)

return NULL;
else

return s + i;
}

7

COMPSCI 210 Lecture handout 03 28

Storage class
The register storage class specifier
Indicates to the compiler that the object should be stored in a machine

register.
Typically specified for heavily used variables to improve performance by

minimizing access time.
Because of the limited size and number of registers available the request

may not be granted.
In this case the object is treated as belongingto the storage class

specifier auto.
An object having the register storage class specifier must be

defined within a block or declared as a parameter to a
function.

Restrictions to the register storage class specifier:
1. You cannot use pointers to reference register storage class specified

objects.
2. You cannot use the register storage class specifier when declaring

objects in global scope.
3. A register does not have an address. You cannot apply the address

operator (&) to a register variable.

COMPSCI 210 Lecture handout 03 29

Matching pattern (1)
/*
match1.c

finds lines containing a matching pattern

*/
//------------------------------

#include <stdio.h>
#define MAXLINE 1000 //maximum line length
//------------------------------

int getline(char line[], int max);
int strindex(char source[],char searchfor[]);

char pattern[] = "ere"; // pattern to search for

//------------------------------

8

COMPSCI 210 Lecture handout 03 30

Matching pattern (2)
/* find all lines matching pattern */
int main(){

char line[MAXLINE];
int found;

if (getline(line,MAXLINE) > 0){
if ((found = strindex(line,pattern))>=0) {

printf("%s occurs at position %d in ",
pattern, found+1);

printf("\"%s\"", line);
}

}
return 0;

}

COMPSCI 210 Lecture handout 03 31

Matching pattern (3)-getline

//------------------------------

/* getline: get line into s, return length*/
int getline(char s[], int lim){

int c, i;

i = 0;

while(--lim > 0 && (c=getchar())!='\n')
s[i++] = c;

s[i] = '\0';
return i;

}

9

COMPSCI 210 Lecture handout 03 32

Matching pattern (4)-strindex
//------------------------------
/* strindex: return index of t in s, -1 if none */
int strindex(char s[], char t[]){

int i, j, k;

for (i=0; s[i]!='\0'; i++){

for (j=i, k=0; t[k]!='\0' && s[j]==t[k]; j++, k++)
;

if (k>0 && t[k]=='\0')
return i;

}//for (i=0; s[i]!='\0'; i++){

return -1;
}

