
Computer Science 210
Computer Systems 1

2007 Semester 1

Tutorial
The Programmer’s View of

Computer Hardware

James Goodman

5-Jun-07 CS210 2

The Alpha Computer

CPU

PC IR

CTRL

Memory

MAR

MDR

Read

Write

Input

Output

I/O

OP ALU

RF

5-Jun-07 CS210 3

Four Categories of Instructions

• Arithmetic/Logical
– Arithmetic

– Logical

– Shift

– Compare

• Control
– Branch on condition

– Jump
• Jump and link

• Memory: Load & Store

• Special

5-Jun-07 CS210 4

Registers

• 32 registers

• $0 - $31; also names

• $31 is special
– when read, gives zero

– writing has no effect

5-Jun-07 CS210 5

Arithmetic Instructions

• add, sub, mul (no divide)

• two sources, one destination (can be common)
• Form: add A,B,C

– B can be an immediate, i.e., value contained in the
instruction.

• Two operand types
– Long word (32 bits): addl, subl, mull

– Quad word (64 bits): addq, subq, mulq

• Overflow
– Addition & subtraction: only one bit

– Multiplication: up to 31 bits (additional multiplication ops)

5-Jun-07 CS210 6

Logical Instructions

• Two sources, one destination
• Form: and A,B,C

– B cannot be an immediate, i.e., contained in the instruction.

• One operand type: 64 bits

• Overflow: none

5-Jun-07 CS210 7

Shift Operations

• Form: sll A,Count,B

• A count of i is equivalent to i shifts by 1 place.

• There are three types of Shift Operations
– logical

– arithmetic

– rotate

5-Jun-07 CS210 8

Control Instructions

Basic instruction for choosing alternate instruction path:
• Branch on condition (Kiwi-1): bne VA,VC,L1
• Alpha: bne a, L1

– Register tested against zero

• Possible tests
– beq : a = 0 ?
– bne : a ≠ 0 ?
– bge : a ≥ 0 ?
– bgt : a > 0 ?
– ble : a ≤ 0 ?
– blt : a < 0 ?
– jmp : Unconditional

5-Jun-07 CS210 9

Which is Correct View of Memory?

Answer: All views are correct (and quadword too!)

002
000

004
006
008

00c
00e

00a

010

014
012

016
018
01a

01e
020

01c

022
…

001
000

002
003
004

006
007

005

008

00a
009

00b
00c
00d

00f
010

00e

011
…

004
000

008
00c
010

018
01c

014

020

028
024

02c
030
034

03c
040

038

044
…

5-Jun-07 CS210 10

Byte Order

• Little Endian

002
000

004
006
008

00c
00e

00a

010

014
012

016
018
01a

01e
020

01c

022
…

001
000

002
003
004

006
007

005

008

00a
009

00b
00c
00d

00f
010

00e

011
…

004
000

008
00c
010

018
01c

014

020

028
024

02c
030
034

03c
040

038

044
…

11 10 01 001 0

5-Jun-07 CS210 11

Byte Order

• Big Endian

002
000

004
006
008

00c
00e

00a

010

014
012

016
018
01a

01e
020

01c

022
…

001
000

002
003
004

006
007

005

008

00a
009

00b
00c
00d

00f
010

00e

011
…

004
000

008
00c
010

018
01c

014

020

028
024

02c
030
034

03c
040

038

044
…

00 01 10 110 1

5-Jun-07 CS210 12

Views of Memory

• An array of quadwords (little-endian)

008
000

010
018
020

030
038

028

040

050
048

058
060
068

078
080

070

088
…

Aligned
quadword (008)

Unaligned
quadword (01f)

5-Jun-07 CS210 13

Load Instructions

• ldq reg, … Load quadword

• ldl reg, … Load sign-extended longword

• ldwu reg, … Load zero-extended word

• ldbu reg, … Load zero-extended byte

• stq reg, … Store quadword

• stl reg, … Store longword

• stw reg, … Store word

• stb reg, … Store byte

5-Jun-07 CS210 14

Motivation: Instruction Formats

– From The Alpha Architecture Handbook, Compaq Computer Corporation, 1998.

5-Jun-07 CS210 15

Where Do the Bits Go?

• Register specification requires 5 bits

• Memory specification requires up to 51 bits (at least 43)

• Opcode specification requires ?
– 515 unique opcodes

– 10 bits required?

Opcode Src1 Src2 Dest

5-Jun-07 CS210 16

Arithmetic/Logical Instruction

• Opcode indicates a class of instructions
– Opcode 1016 indicates an arithmetic function

– Opcode 1116 indicates a logical function

– Opcode 1216 indicates a shift function

• “Function” is extended Opcode, specifying which
arithmetic/logical function

Operate Src1 Src2 Dest

6 bits 5 bits 5 bits5 bits

Function

11 bits

5-Jun-07 CS210 17

Example: addq

• Opcode for arithmetic instructions is 1016

• Function code for addq instruction is 2016

• Src1, Src2 and Dest each specify 1 of 32 registers

01 0000 Src1 Src2 Dest

6 bits 5 bits 5 bits5 bits

000 0010 0000

11 bits

5-Jun-07 CS210 18

Example: bne

• Opcode for bne instruction is 3d16

• Test register specifies 1 of 32 registers for testing

• Only 21 bits left for target instruction address!!!

11 1010 Reg

6 bits 5 bits 21 bits ???

Target

5-Jun-07 CS210 19

Branch Instruction

• How to specify full add (≤ 53 bits) in a 32-bit
instruction?

• Observation: most branches are short

• Branch can use relative address: difference from
current value of PC.

5-Jun-07 CS210 20

Example: bne

• Instruction must be aligned: two LSBs must be zero

• Test register specifies 1 of 32 registers for testing

• 21 bits can specify a branch relative to current
instruction of PC ± 220 instructions

• New PC = PC + sign-extend(4 * Target)

11 1010 Reg

6 bits 5 bits 21 bits

Target

5-Jun-07 CS210 21

Long-distance Branches

• Jump instruction
– Full address specified indirectly through register

– Unconditional transfer of control

5-Jun-07 CS210 22

Idea 3: Construct Effective Address

• Use instruction sequence:
lda $8, <hi address>
sll $8, $8, 16
lda $9, <low address>
bis $8, $9, $10 ! Logical OR
ldq $11, ($10) ! Register indirect

• Five instructions!

• Variant: use add instead of OR
– sign-extend <low address>
add $8, $9, $10 ! Instead of Logical OR

– Doesn’t quite work if <low address> is negative!

5-Jun-07 CS210 23

Optimization: lda, ldah

• lda A, <low address>(B)
– sign-extend constant <lowaddress> and add to contents of register

B; assign result to register A

• ldah A, <hi address>(B)
– multiply constant <hi address> by 65,536 and add to contents of

register B; assign result to register A

• Usually only requires 2 instructions
– Still only generates 32-bit addresses

– Some 32-bit integers cannot be generated this way

lda Reg A Reg B

6 bits 5 bits5 bits

<low address>

16 bits

ldah Reg A Reg B

6 bits 5 bits5 bits

<hi address>

16 bits

5-Jun-07 CS210 24

Idea 4: Use Combination

• Base + Displacement

• Base: a long-term but approximate address
– Gives location of larger structure

– Can be dynamically varied

• Displacement
– Static offset embedded in instruction

– Cannot be dynamically varied

5-Jun-07 CS210 25

Load Reg, Disp(Base)

Effective address: (Base) + Displacement

• Base specifies a 64-bit address

• Displacement is a 16-bit signed constant, sign-extended
to 64 bits

• Displacement defines position relative to Base

ldq Dest Base

6 bits 5 bits5 bits

Displacement

16 bits

5-Jun-07 CS210 26

“Load” Instructions
• ldq reg, disp(base) ! Load quadword
• ldl reg, disp(base) ! Load sign-extended longword
• ldwu reg, disp(base) ! Load zero-extended word
• ldbu reg, disp(base) ! Load zero-extended byte

• stq reg, disp(base) ! Store quadword
• stl reg, disp(base) ! Store longword
• stw reg, disp(base) ! Store word
• stb reg, disp(base) ! Store byte

• lda reg, disp(base) ! Assign computed addr to reg
• ldah reg, disp(base) ! Multiply displacement by

! 65,536 and add to base,
! assign to address

5-Jun-07 CS210 27

Registers Named
$0 $v0

$1-$8, $t0-$t9

$9-$14 $s0-$s5

$15 $fp

$16-$21 $a0-$a5

$22-$25 $t8-$t11

$26 $ra

$27 $pv

$28 $at

$29 $gp

$30 $sp

$31 $zero (special)

5-Jun-07 CS210 28

Register Names
$t0-$t11 Temporary registers, used to hold temporary values,

when evaluating expressions, etc.
$s0-$s5 Saved registers, used to hold the values of local variables

in functions.
$a0-$a5 Argument registers, used to pass parameters to

functions.
$v0 Value register, used to return the result of a function.
$ra Return address register, used to hold the return address

of a function.
$gp Global pointer register, used to point to the table of

constants.
$sp Stack pointer register, used to point to the top of the

stack used to allocate space for functions.
$zero Zero register, that always contains the value zero.

Attempting to write to this register has no effect.

5-Jun-07 CS210 29

Memory Allocation for a Variable
• Global variables, constants: allocate memory permanently

– Use registers? Maybe, if used frequently

• Local variables
– Allocate space permanently?

• Not needed: variables have a lifetime
• Not sufficient: same variable might have multiple instances

– Use registers? Likely, since they are short-lived and dynamic

• Temporary variables (used in computations)
– Similar to local variables
– Allocate space dynamically, probably in registers

• Arguments
– Also have a lifetime
– Pass in registers? Yes, if not too many
– Also result(s), but in reverse direction

5-Jun-07 CS210 30

Two Distinct Storage Issues

• Registers vs. memory

• Dynamic variables

5-Jun-07 CS210 31

Dynamic Variables

Variables have a lifetime

• A variable is defined within a scope

• Variables do not need space allocated if they aren’t
assigned a value

• Different variables can be assigned to the same
memory location at different times

• The same variables in different instances requires two
different memory locations if they overlap
(recursion)

5-Jun-07 CS210 32

The Stack
• Modern programming languages require the ability to allocate

space for an indefinite number of variables
• Each instance of a method requires its own space for variables,

arguments, and temps.
• The Stack of Activation Records is a data structure that satisfies

this requirement.
– On invocation

• Allocate space for arguments, temps, local variables: a Frame
• Save (spill) some registers to allocate for subroutine
• Save linkage information (how to return)
• Transfer control to subroutine

– On return
• Assign return value
• Restore spilled registers
• Deallocate space
• Jump back to original code

5-Jun-07 CS210 33

Caller vs. Callee

• Who should allocate space?
– Callee knows how much space it needs

– Arguments and return are special: they are shared

• Who should save registers?

• Caller should save
– Don’t need to save registers not being used

– Only caller knows this

• Callee should save
– Don’t need to save registers that won’t be touched

– Only callee knows

• Solution: do both!

5-Jun-07 CS210 34

Caller/Callee Register Allocation

• Temporary registers for callee
– $t0-$t11

– Free for use, but not preserved

• Saved registers for caller
– $s0-$s5

– Free to use, but responsible for saving/restoring value

• Every method is potentially both a caller and callee
– Leaves (methods that invoke no other methods) often don’t

need to use S registers—no spills

– Other nodes save registers they use exactly once: on
invocation

5-Jun-07 CS210 35

Dealing with Arguments

• Used for communication between caller and callee

• No limit to number of allowed arguments
– Pass arguments in registers: $a0-$a5

– Pass additional arguments through stack

• Argument registers $a0-$a5 are like temporaries
– Must be preserved if needed after a call

– If not needed, can be used as a temporary

5-Jun-07 CS210 36

Accesses to the Stack

• The layout of a stack frame (activation record) is
determined when the method is compiled

• At assembly time, when the code is produced
– the abolute address cannot be fixed (it varies depending on

circumstances)

– the relative address (relative to the top of stack) is known: a
small constant

• Addressing mode of base register + displacement is
perfect
– base: frame pointer (or stack pointer)

– displacement (computed when the stack frame is laid out.

5-Jun-07 CS210 37

Example of Stack Access

sw $s1, 32($sp)

Offset from top of
stack to save $s3

Top of stack

5-Jun-07 CS210 38

5-Jun-07 CS210 39

Optimizations

• Stack is designed to handle worst case:
– Spilled registers

– Return address

– Extra arguments

• In practice stack can be very small
– If called procedure is a leaf (does not call other procedures),

it may not not need a stack at all.

– Even if it calls other procedures, it needs to save RA, but
• May not need to save arguments

• May not need to save registers

• Could be as little as one word!

5-Jun-07 CS210 40

Translation vs. Interpretation

• A program written in language L defines a “machine”
• Problem:

– We have a program written in language L1
– We have a computer that understands how to execute

language L2
– How to “execute” program?

• Solution 1: Compilation/Translation/Assembly
– A “compiler” takes as input a program written in L1 and

creates a program written in L2

• Solution 2: Interpretation/Simulation/Emulation
– A “program” takes as input a program written in L1 and

walks through its execution, taking input and creating
output as if it were an L1 computer.

5-Jun-07 CS210 41

The assembly process: Overview
• A computer understands machine code

• People (and compilers) write assembly language
– Today it’s usually compilers

• Goal: create a file describing exactly what memory
should look like before starting execution of a
program

• Assembly: the process of translating a program
written in assembly language into a program written
in machine language.
– Machine language is specific to a computer

– Need to create memory image that includes
• instructions (including links to libraries, kernel, etc.)

• data (constants, static variables, dynamic variables

5-Jun-07 CS210 42

Steps in Assembly

• Pass 1: Scan program and parse
– Identify declarations of instructions and static data
– identify pseudo-instructions
– Allocate space for instructions and data
– Recognize labels

• Define address if possible
• Remember for future reference: Symbol Table

– For data
• Allocate space
• Associate label with address
• Generate appropriate representation

• Pass 2: Rescan and generate code
– Translate instruction to machine code

5-Jun-07 CS210 43

A Picture of
Memory

0x0080 0000

0x0100 0000

0x0380 0000

Stack

Data

Code

Reserved

$sp

$gp

pc

0x0000 0000

5-Jun-07 CS210 44

Symbol Table

Symbol

number
string1

xxx
yyy

Address

0x0100 0000
0x0100 0004
0x0080 0004
0x0080 0010

5-Jun-07 CS210 45

Floating Point in the Alpha

• The Alpha has 32 floating-point registers $f0-$f31
– $f31 is always zero

• Instructions are same format as integer instructions
– Floating-point registers are implied (mostly)

– No literals allowed

• Two levels of precision
– S: “single-precision” 32-bit IEEE format

– T: “double-precision” 64-bit IEEE format

5-Jun-07 CS210 46

Arithmetic Instructions

• Arithmetic instructions have separate “operate”
opcode

• Instructions are either single (S) or double (T) type

• Operations
– ADD

– SUB

– MUL

– DIV

– SQRT

5-Jun-07 CS210 47

Load/Store Instructions

• Load: LDS, LDT
– Address comes from integer register

– Same as ldl, ldq but target is FP register

• Store: STS, STT
– Address comes from integer register

– Same as stl, stq but source is FP register

5-Jun-07 CS210 48

Control Instructions

• Branch on condition
– Same as integer, but using FP reg (6 cases)

– Additional problem: NAN

• Compare two FP regs
– EQ, GE, GT, LE, LT, NE

– Result set zero/non-zero value in FP reg

– Also “unordered”

• Conditional move instructions
– Test FP register a against zero: EQ, GE, GT, LE, LT, NE

– If true, copy register b into register c

5-Jun-07 CS210 49

Other Instructions

• Move: copy between I register and FP register
– FtoIS,FtoIT,ItoFS,ItoFT

– No format change

• Convert between floating point/Integer
– convert in-place in FP registers

– S <=> T; T <=> Q ; Q => S (no S=> Q)

– Longword <=> Quadword

• CPYS: Copy sign bit to destination (merge)

• CPYSN: Copy and invert sign bit to destination

• CPYSE: Copy sign and exponent to destination

Computer Science 210
Computer Systems 1

2007 Semester 1

Lecture Notes Part 2
2. Performance: the Big Picture

Lecture 12
18 May 07

James Goodman

5-Jun-07 CS210 51

Performance

Question:

“How long does it take to execute an instruction?”

Answer:

“It depends”

5-Jun-07 CS210 52

Modern Processors

Are pipelined (Assembly-line process)

One stage per clock cycle

• Stage 1: Fetch instruction

• Stage 2: Decode instruction

• Stage 3: Fetch operands

• Stage 4: Perform operation

• Stage 5: Put away result

5-Jun-07 CS210 53

Problems

• Need to fetch multiple operands in stage 3

• Sometimes operand is not ready
– Producing instruction has not completed

– Must stall pipeline

• For load instruction, operation is to memory
– Memory is slow

• What happens on a conditional branch???

5-Jun-07 CS210 58

Summary
Performance optimized by making the common case fast

• The uncommon case merely must execute correctly

• This approach has been highly successful, but results in
large variance in execution time

Memory plays a critical role in performance

• Many programs spend more time waiting for memory
than executing instructions

Implications for programmers

• Placement of data is critical
– Temporal & spatial locality can be exploited

• Branches are expensive
– Unpredictable branches are especially difficult

