
Computer Science 210
Computer Systems 1

2007 Semester 1

Lecture Notes Part 2
The Programmer’s View of

Computer Hardware

James Goodman

2-May-07 CS210 2

Who Am I?

• Prof. James Goodman

• Computer Science Department

• Science Centre 303-591, 38 Princes St., City

• Office Hours: No scheduled time: drop by my office 
or make appointment

• E-mail: goodman@cs.auckland.ac.nz

2-May-07 CS210 3

Recommended Readings

• These notes (only after the lecture):

http://www.cs.auckland.ac.nz/compsci210s1t/lectures

• Dr. Bruce Hutton’s lecture notes:

http://www.cs.auckland.ac.nz/compsci210s1t/resources

2-May-07 CS210 4

Why Study Computer 
Organization?

• Understanding how hardware and software 
communicate will make you a better programmer

• Some things change; some things stay the same
– Moore’s Law vs. fundamental laws

• Appreciate the power of abstraction
– Don’t write in assembly language if you don’t have to!

• “Real Programmers do it in Assembly”
– No longer an important skill



2-May-07 CS210 5

All Computers are the Same!

• All computers, given sufficient time and memory,
can compute exactly the same things.

≡

Supercomputer
LaptopCellphone

≡

2-May-07 CS210 6

Turing Machine

• Mathematical model of a device that can perform
any computation – Alan Turing (1937)
– ability to read/write symbols on an infinite “tape”

– state transitions, based on current state and symbol

• Everything that can be computed can be 
performed by some Turing machine.  (Turing’s thesis)

Taddx, y x + y

Turing machine that adds

Tmulx, y x * y

Turing machine that multiplies

2-May-07 CS210 7

Universal Turing Machine
• Turing described a Turing machine that could 

implement all other Turing machines.
– inputs:  data, plus a description of computation (Turing 

machine)

U
x, y, z z * (x + y)

Universal Turing Machine

Tadd, Tmul

U is programmable – so is a computer!
• instructions are part of the input data

• a computer can emulate a Universal Turing Machine, 
and vice versa

Therefore, a computer is a universal computing device!

2-May-07 CS210 8

From Theory to Practice

• In theory, computer can compute anything that’s 
possible to compute if you
– Have enough memory

– Can wait long enough 

• In practice, solving problems involves 
computing under constraints.
– Time: photoshop, weather forecast,...

– Cost: hotel “key”, PDA, ...

– Power: cell phone, laptop, ...



2-May-07 CS210 9

The Von Neuman Computer

CPU

Input

Output

I/O

Memory

Read

Write

Address

Content

2-May-07 CS210 10

The Von Neumann Computer

CPU

IP (PC) IR

CTRL

Memory

MAR

MDR

Read

Write

Input

Output

I/O

ALUOP

2-May-07 CS210 11

The von Neumann Model

• Computer consists of CPU, Memory, I/O

• Memory may contain instructions or data (or 
meta-data)

• Does only one thing: the Instruction/Execution 
cycle

2-May-07 CS210 12

The Instruction/Execution 
Cycle

Do forever {

Fetch instruction into IR from memory address in IP

Update IP for next instruction

Decode instruction

Evaluate addresses

Fetch operands from memory

Store result

}



2-May-07 CS210 13

The Instruction/Execution Cycle:

Variant for Control Instructions

Do forever {

Fetch instruction into IR from memory address in IP

Update IP for next instruction

Decode instruction

Evaluate test criterion

If success, store new address to PC

}

2-May-07 CS210 14

A Few Sample Instructions

Instruction Meaning
add A, B, C C = A + B

sub A, B, C C = A – B

mul A, B, C C = A * B

bne A, B, Label if (A != B) goto Label

halt ?

• A Label designates a memory location.

• A Label can identify either an instruction or a variable

2-May-07 CS210 15

A Simple Program

Instructions:
L1: add VA, VB, VA
L2: sub VC, VD, VC
L3: mul VC, VE, VE
L4: bne VA, VC, L1
L5: halt

Initial values:
VA: 0
VB: 1
VC: 6
VD: 2
VE: 5

IP: L1

Computer Science 210
Computer Systems 1

2007 Semester 1

Lecture Notes

The Alpha Architecture

James Goodman



2-May-07 CS210 17

Recommended Readings

• These notes (only after the lecture):
http://www.cs.auckland.ac.nz/compsci210s1t/lectures

• Dr. Bruce Hutton’s lecture notes:
http://www.cs.auckland.ac.nz/compsci210s1t/resources

• These lectures mostly based on chapter 2 of Dr. Hutton’s 
notes.

• You are responsible for the first 13 chapters of Dr. 
Hutton’s notes.
– However, if I don’t talk about it in class, it probably won’t be on 

the exam!

2-May-07 CS210 18

The Alpha Computer

CPU

PC IR

CTRL

Memory

MAR

MDR

Read

Write

Input

Output

I/O

OP ALU

RF

2-May-07 CS210 19

Four Categories of Instructions

• Arithmetic/Logical
– Arithmetic

– Logical

– Shift

– Compare

• Control
– Branch on condition

– Jump
• Jump and link

• Memory: Load & Store

• Special

Computer Science 210
Computer Systems 1

2007 Semester 1

Lecture Notes
Arithmetic & Logical 

Instructions

James Goodman



2-May-07 CS210 21

Registers

• 32 registers

• $0 - $31; also names

• $31 is special
– when read, gives zero

– writing has no effect

2-May-07 CS210 22

Arithmetic Instructions

• add, sub, mul (no divide)

• two sources, one destination (can be common)
• Form: add A,B,C

– B can be an immediate, i.e., value contained in the 
instruction.

• Two operand types
– Long word (32 bits): addl, subl, mull

– Quad word (64 bits): addq, subq, mulq

• Overflow
– Addition & subtraction:  only one bit

– Multiplication: up to 31 bits (additional multiplication ops)

2-May-07 CS210 23

Logical Instructions

• Two sources, one destination
• Form: and A,B,C

– B cannot be an immediate, i.e., contained in the instruction.

• One operand type: 64 bits

• Overflow: none

2-May-07 CS210 24

Boolean Functions of 2 
Variables

111111110000000011

111100001111000001

110011001100110010

101010101010101000

|&^BA

Zero One
OR/BISAND

NANDNOR
XOR
XNOR

ORNOTANDNOT/BIC XORNOT(EQV)



2-May-07 CS210 25

Alpha Logical Operations

111111110000000011

111100001111000001

110011001100110010

101010101010101000

BA

OR/BISANDXOR

ORNOTANDNOT/BIC XORNOT(EQV)

2-May-07 CS210 26

Shift Operations

• Form: sll A,Count,B
• A count of i is equivalent to i shifts by 1 place.

• There are three types of Shift Operations
– logical

– arithmetic 

– rotate

2-May-07 CS210 27

Shift Operations

• Basic Right Shift Operation:

?

msb lsb

?

2-May-07 CS210 28

Shift Operations

• Basic Left Shift Operation:

?

msb lsb

?



2-May-07 CS210 29

Shift Operations
• Right Rotate Operation:

• No information lost

• For N-bit word, rotate right N positions has no effect

• Rotate right i positions is same as rotate left N – i positions

• Not implemented in Alpha (why not?)

msb lsb

2-May-07 CS210 30

Logical Shift Operations

• Right Logical Shift Operation:

• Alpha instruction: srl
• Java equivalent: >>>

0

msb lsb

discard

2-May-07 CS210 31

Logical Shift Operations

• Left Logical Shift Operation:

• Alpha instruction: sll
• Java equivalent: <<

0

msb lsb

Discard

2-May-07 CS210 32

Arithmetic Shift Operations

• Right Arithmetic Shift Operation
– Unsigned integer division by power of 2

• Round down (toward negative infinity)
• Alpha instruction: sra
• Java equivalent: >>

– same as integer division by power of 2???

msb lsb

discard



2-May-07 CS210 33

Homework: What is -5/2 in Java?

C: “… in GNU C the ‘/’ operator always rounds towards 
zero. But in other C implementations, ‘/’ may round 
differently with negative arguments."

-- http://www.gnu.org/software/libc/manual/html_node/Integer-Division.html

Java: “Integer division rounds toward 0.”
-- http://java.sun.com/docs/books/jls/third_edition/html/expressions.html#15.17.2

Conclusion: In Java, ‘>>’ is not the same operation as ‘/2i’

2-May-07 CS210 34

Arithmetic Shift Operations

• Left Arithmetic Shift Operation
– Unsigned integer multiplication by power of 2

• Overflow if MSB changes

• Alpha instruction: sll (no sla)

• Java equivalent: ‘* 2i’

0

msb lsb

Discard?

Same as logical left shift!

Computer Science 210
Computer Systems 1

2007 Semester 1

Lecture Notes

Control Instructions

James Goodman

2-May-07 CS210 36

Control Instructions

Basic instruction for choosing alternate instruction path:
• Branch on condition (Kiwi-1): bne VA,VC,L1
• Alpha: bne a, L1

– Register tested against zero

• Possible tests
– beq : a = 0 ?
– bne : a ≠ 0 ?
– bge : a ≥ 0 ?
– bgt : a > 0 ?
– ble : a ≤ 0 ?
– blt : a < 0 ?
– jmp : Unconditional



2-May-07 CS210 37

Implementing Control 
Structures

• While loop

• If-then-else

• For loop

2-May-07 CS210 38

While Loop

Java:

while (a>0) {
…
a--;

}

Alpha Assembly:

WHILE: ble a, AFTERLOOP
…
sub a, 1, a
jmp WHILE
…

Test for FALSE

2-May-07 CS210 39

If-Then

Java:

if (a>0) {
…

}

Alpha Assembly:

IF_THEN:
ble a, Continue
…

Continue:
…

Test for FALSE

2-May-07 CS210 40

If-Then-Else

Java:

if (a>0) {
…

} else {
…

}

Alpha Assembly:

IF_THEN_ELSE:
ble a, Else
…
jmp Continue

Else:
…

Continue:
…

Test for FALSE



2-May-07 CS210 41

For Loop
Alpha Assembly:

For:
add $31, 10, Limit
add $31, 0, i

Loop:
sub Limit, i, Test
ble test, Continue
...
add i, 1, i
jmp Loop

Continue:
…

Java:

for (int i=0;i<10;i++) {
…

}

2-May-07 CS210 42

Problems with For Loop Code
Alpha Assembly:

For:
add $31, 10, Limit
add $31, 0, i

Loop:
sub Limit, i, Test
ble test, Continue
...
add i, 1, i
jmp Loop

Continue:
…

Could get overflow!

2-May-07 CS210 43

An Alternate Control Structure

• “Arithmetic” instruction Compare:
– cmpeq a,b,result if (a=b) result=1 else result = 0

– cmplt a,b,result if (a < b) result=1 else result = 0

– cmple a,b,result if (a>b) result=1 else result = 0

• Additional Conditional Branch instruction
– blbs result, L1 if (low bit of result=1) jump to L1

– blbc result, L1 if (low bit of result=0) jump to L1

Computer Science 210
Computer Systems 1

2007 Semester 1

Lecture Notes

Load/Store Instructions

James Goodman



2-May-07 CS210 45

Views of Memory

• An array of bytes

001
000

002
003
004

006
007

005

008

00a
009

00b
00c
00d

00f
010

00e

011
…

2-May-07 CS210 46

Views of Memory

• An array of words

002
000

004
006
008

00c
00e

00a

010

014
012

016
018
01a

01e
020

01c

022
…

2-May-07 CS210 47

Views of Memory

• An array of longwords

004
000

008
00c
010

018
01c

014

020

028
024

02c
030
034

03c
040

038

044
…

2-May-07 CS210 48

Views of Memory

• An array of quadwords

008
000

010
018
020

030
038

028

040

050
048

058
060
068

078
080

070

088
…



2-May-07 CS210 49

Which is Correct View of Memory?

Answer: All views are correct (and quadword too!)

002
000

004
006
008

00c
00e

00a

010

014
012

016
018
01a

01e
020

01c

022
…

001
000

002
003
004

006
007

005

008

00a
009

00b
00c
00d

00f
010

00e

011
…

004
000

008
00c
010

018
01c

014

020

028
024

02c
030
034

03c
040

038

044
…

2-May-07 CS210 50

Byte Order

• Little Endian

002
000

004
006
008

00c
00e

00a

010

014
012

016
018
01a

01e
020

01c

022
…

001
000

002
003
004

006
007

005

008

00a
009

00b
00c
00d

00f
010

00e

011
…

004
000

008
00c
010

018
01c

014

020

028
024

02c
030
034

03c
040

038

044
…

11 10 01 001 0

2-May-07 CS210 51

Byte Order

• Big Endian

002
000

004
006
008

00c
00e

00a

010

014
012

016
018
01a

01e
020

01c

022
…

001
000

002
003
004

006
007

005

008

00a
009

00b
00c
00d

00f
010

00e

011
…

004
000

008
00c
010

018
01c

014

020

028
024

02c
030
034

03c
040

038

044
…

00 01 10 110 1

2-May-07 CS210 52

Alignment

• An array of words (little-endian)

002
000

004
006
008

00c
00e

00a

010

014
012

016
018
01a

01e
020

01c

022
…

Aligned word (008)

Unaligned word (01f)



2-May-07 CS210 53

Views of Memory

• An array of longwords (little-endian)

004
000

008
00c
010

018
01c

014

020

028
024

02c
030
034

03c
040

038

044
…

Aligned longword (008)

Unaligned longword (01f)

2-May-07 CS210 54

Views of Memory

• An array of quadwords (little-endian)

008
000

010
018
020

030
038

028

040

050
048

058
060
068

078
080

070

088
…

Aligned
quadword (008)

Unaligned
quadword (01f)

2-May-07 CS210 55

Load Instructions

• ldq reg, … Load quadword

• ldl reg, … Load sign-extended longword

• ldwu reg, … Load zero-extended word

• ldbu reg, … Load zero-extended byte

• stq reg, … Store quadword

• stl reg, … Store longword

• stw reg, … Store word

• stb reg, … Store byte

2-May-07 CS210 56

Motivation: Instruction Formats

– From The Alpha Architecture Handbook, Compaq Computer Corporation, 1998.



2-May-07 CS210 57

Loads & Stores

ldq Reg, Address ! Direct

What’s the problem?

• Address is stored as a constant inside the instruction
– How to dynamically change the address?

• Instructions should be small, fixed size
– Addresses are large

– How to store a 51-bit address in a 32-bit instruction?

• Also a problem for branch instructions:
bne Reg, Address

2-May-07 CS210 58

Where Do the Bits Go?

• Register specification requires 5 bits

• Memory specification requires up to 51 bits (at least 43)

• Opcode specification requires ?
– 515 unique opcodes

– 10 bits required?

Opcode Src1 Src2 Dest

2-May-07 CS210 59

Arithmetic/Logical Instruction

• Opcode indicates a class of instructions 
– Opcode 1016 indicates an arithmetic function

– Opcode 1116 indicates a logical function

– Opcode 1216 indicates a shift function

• “Function” is extended Opcode, specifying which 
arithmetic/logical function

Operate Src1 Src2 Dest

6 bits 5 bits 5 bits5 bits

Function

11 bits

2-May-07 CS210 60

Example: addq

• Opcode for arithmetic instructions is 1016

• Function code for addq instruction is 2016

• Src1, Src2 and Dest each specify 1 of 32 registers

01 0000 Src1 Src2 Dest

6 bits 5 bits 5 bits5 bits

000 0010 0000

11 bits



2-May-07 CS210 61

Example: bne

• Opcode for bne instruction is 3d16

• Test register specifies 1 of 32 registers for testing

• Only 21 bits left for target instruction address!!!

11 1010 Reg

6 bits 5 bits 21 bits ???

Target

2-May-07 CS210 62

Idea: Add another word

• Load/store instructions could be 64 bits

• 21 + 32 = 53 bits

But

• Instructions are not all the same size

• Load address is a constant—can’t be changed within 
program

6 bits 5 bits 21 bits

Load/
Store Reg Upper 21 bits of address Low 32 bits of address

32 bits

2-May-07 CS210 63

Idea 2: Address is in Register

• Load instruction specifies a register to supply 
address: Register Indirect

• Easy to change address without changing instruction

But

• How does the address get into the register?

• How is the address modified?

2-May-07 CS210 64

Idea 3: Construct Effective Address

• lda instruction loads constant into register
lda reg, constant

• Can adjust address dynamically (using addition)

• 21-bit constant is not big enough

• Assume <constant> is 32 bits

• Break <constant> into two 16-bit pieces:
16 most significant bits: <hi address>
16 least-significant bits: <low address>



2-May-07 CS210 65

Idea 3: Construct Effective Address

• Use instruction sequence:
lda $8, <hi address>
sll $8, $8, 16
lda $9, <low address>
bis $8, $9, $10 ! Logical OR
ldq $11, ($10) ! Register indirect

• Five instructions!

• Variant: use add instead of OR
– sign-extend <low address>
add $8, $9, $10 ! Instead of Logical OR

– Doesn’t quite work if <low address> is negative!

2-May-07 CS210 66

Optimization: lda, ldah

• lda A, <low address>(B)
– sign-extend constant <lowaddress> and add to contents of register 

B; assign result to register A

• ldah A, <hi address>(B)
– multiply constant <hi address> by 65,536 and add to contents of 

register B; assign result to register A

• Usually only requires 2 instructions
– Still only generates 32-bit addresses

– Some 32-bit integers cannot be generated this way

lda Reg A Reg B

6 bits 5 bits5 bits

<low address>

16 bits

ldah Reg A Reg B

6 bits 5 bits5 bits

<hi address>

16 bits

2-May-07 CS210 67

Locality of Reference

Observation: memory references are not random

• Accesses tend to be clustered
– in time (temporal locality)

– in space (spatial locality)

• Accesses are to objects
– structures

– arrays

• Can dynamic compute address arithmetically

• Can statically predict offset within known structure

2-May-07 CS210 68

Idea 4: Use Combination

• Base + Displacement

• Base: a long-term but approximate address
– Gives location of larger structure

– Can be dynamically varied

• Displacement
– Static offset embedded in instruction

– Cannot be dynamically varied



2-May-07 CS210 69

Load Reg, Disp(Base)

Effective address: (Base) + Displacement

• Base specifies a 64-bit address

• Displacement is a 16-bit signed constant, sign-extended 
to 64 bits

• Displacement defines position relative to Base

ldq Dest Base

6 bits 5 bits5 bits

Displacement

16 bits

2-May-07 CS210 70

Special Case of Base + Displacement

• Register Direct
– Zero displacement

– Register specifies address

2-May-07 CS210 71

Load Instructions
• ldq reg, disp(base) ! Load quadword
• ldl reg, disp(base) ! Load sign-extended longword
• ldwu reg, disp(base) ! Load zero-extended word 
• ldbu reg, disp(base) ! Load zero-extended byte

• stq reg, disp(base) ! Store quadword
• stl reg, disp(base) ! Store longword
• stw reg, disp(base) ! Store word 
• stb reg, disp(base) ! Store byte

• lda reg, disp(base) ! Assign computed addr to reg
• ldah reg, disp(base) ! Multiply displacement by

! 65,536 and add to base, 
! assign to address

2-May-07 CS210 72

Summary: Possible Addressing 
Modes for Memory Operations

• Direct
– address contained in instruction

• Indirect
– Instruction contains address where address is held

• Register indirect
– Instruction specifies register where address is held

• Register + Register
– Instruction specifies two registers
– Contents of registers are added to determine address

• Base + displacement
– Instruction specifies register and contains displacement
– Displacement is added to content of register to determine 

address



2-May-07 CS210 73

Other Possible Addressing Modes

• Immediate operand
– Instruction contains the value, used as an operand

– Limited by word size to small constant (8 bits)
– Example: addq $5, 1, $5
– Example: lda reg, disp($31)
– Example: bne reg, target

2-May-07 CS210 74

Branch Instruction

• How to specify full add (≤ 53 bits) in a 32-bit 
instruction?

• Observation: most branches are short

• Branch can use relative address: difference from 
current value of PC.

2-May-07 CS210 75

Example: bne

• Instruction must be aligned: two LSBs must be zero

• Test register specifies 1 of 32 registers for testing

• 21 bits can specify a branch relative to current 
instruction of PC ± 220 instructions

• New PC = PC + sign-extend(4 * Target)

11 1010 Reg

6 bits 5 bits 21 bits

Target

2-May-07 CS210 76

Long-distance Branches

• Jump instruction
– Full address specified indirectly through register

– Unconditional transfer of control  



2-May-07 CS210 77

Examples of Operand 
Specifications

• Register (operate, control, memory)

• Unsigned 8-bit constant (operate instructions)

• Unsigned 6-bit count (shift instructions)

• Base + displacement (memory)

• 21-bit branch offset (control)

• 26-bit constant (PALcode format)

2-May-07 CS210 78

I/O Instructions

• Privileged Architecture Library (PAL)
– A set of functions of arbitrary complexity invoked by a 

special call_pal instruction

– Performs privileged operations such as accessing disk, 
reading and printing, etc.

• Form: call_pal constant
call_pal CALL_PAL_CALLSYS
call_pal CALL_PAL_BPT

2-May-07 CS210 79

Simple I/O

• getchar (result in $v0)
ldiq $a0, 0x1 // CALLSYS_GETCHAR
call_pal 0x83 // CALL_PAL_CALLSYS

• putchar (character in $a1)
ldiq $a0, 0x2 // CALLSYS_PUTCHAR
call_pal 0x83 // CALL_PAL_CALLSYS

Computer Science 210
Computer Systems 1

2007 Semester 1

Lecture Notes Part 2

Subroutines

James Goodman



2-May-07 CS210 81

Recommended Readings

• Chapter 5: use of registers

• Chapter 11: function invocation

• Randy Bryant,  Alpha Assembly Language Guide
(available under Resources at the website) Section 3

2-May-07 CS210 82

Registers Named
$0 $v0

$1-$8, $t0-$t9

$9-$14 $s0-$s5

$15 $fp

$16-$21 $a0-$a5

$22-$25 $t8-$t11

$26 $ra

$27 $pv

$28 $at

$29 $gp

$30 $sp

$31 $zero (special)

2-May-07 CS210 83

Register Names
$t0-$t11 Temporary registers, used to hold temporary values, 

when evaluating expressions, etc.
$s0-$s5 Saved registers, used to hold the values of local variables 

in functions.
$a0-$a5 Argument registers, used to pass parameters to 

functions.
$v0 Value register, used to return the result of a function.
$ra Return address register, used to hold the return address 

of a function.
$gp Global pointer register, used to point to the table of 

constants.
$sp Stack pointer register, used to point to the top of the 

stack used to allocate space for functions.
$zero Zero register, that always contains the value zero. 

Attempting to write to this register has no effect.

2-May-07 CS210 84

Memory Allocation for a Variable
• Global variables, constants: allocate memory permanently

– Use registers?  Maybe, if used frequently

• Local variables
– Allocate space permanently?

• Not needed: variables have a lifetime
• Not sufficient: same variable might have multiple instances

– Use registers?  Likely, since they are short-lived and dynamic

• Temporary variables (used in computations)
– Similar to local variables
– Allocate space dynamically, probably in registers

• Arguments
– Also have a lifetime
– Pass in registers?  Yes, if not too many
– Also result(s), but in reverse direction



2-May-07 CS210 85

Two Distinct Storage Issues

• Registers vs. memory

• Dynamic variables

2-May-07 CS210 86

Dynamic Variables

Variables have a lifetime

• A variable is defined within a scope

• Variables do not need space allocated if they aren’t 
assigned a value

• Different variables can be assigned to the same 
memory location at different times

• The same variables in different instances requires two 
different memory locations if  they overlap 
(recursion)

2-May-07 CS210 87

Extreme Case: Write-once variables
• A variable requires storage when it is written
• A variable does not require storage if it will not be read again

before it is written
• If we know a variable will not be read, we can deallocate storage 

on the last read, allocate it on write.
– We must be certain that the variable will not be read again
– This is often possible in controlled situations, e.g., loops

• In effect, each write creates a new variable, written only once
• Hardware implications

– with multiple instructions being executed, a dead variable can be 
inferred on each write (previous instructions may still need to read 
it)

– A different buffer can be assigned the new value while the old value 
is still live!

2-May-07 CS210 88

The Stack
• Modern programming languages require the ability to allocate 

space for an indefinite number of variables
• Each instance of a method requires its own space for variables, 

arguments, and temps.
• The Stack of Activation Records is a data structure that satisfies 

this requirement. 
– On invocation

• Allocate space for arguments, temps, local variables: a Frame
• Save (spill) some registers to allocate for subroutine
• Save linkage information (how to return)
• Transfer control to subroutine

– On return
• Assign return value
• Restore spilled registers
• Deallocate space
• Jump back to original code



2-May-07 CS210 89

Caller vs. Callee

• Who should allocate space?
– Callee knows how much space it needs

– Arguments and return are special: they are shared

• Who should save registers?

• Caller should save
– Don’t need to save registers not being used

– Only caller knows this

• Callee should save
– Don’t need to save registers that won’t be touched

– Only callee knows

• Solution: do both!

2-May-07 CS210 90

Recommended Readings

For today’s lecture

• Chapter 11: function invocation.

• Randy Bryant,  Alpha Assembly Language Guide
(available under Resources at the website) Section 3

• Chapter 12: assembling and disassembling

For the mini-assignment

• Chapter 6: program structure

• Chapter 7: strings

• Chapter 8: running the simulator

• Chapter 10: writing and debugging in assembly language

2-May-07 CS210 91

Caller/Callee Register Allocation

• Temporary registers for callee
– $t0-$t11

– Free for use, but not preserved

• Saved registers for caller
– $s0-$s5

– Free to use, but responsible for saving/restoring value

• Every method is potentially both a caller and callee
– Leaves (methods that invoke no other methods) often don’t 

need to use S registers—no spills

– Other nodes save registers they use exactly once: on 
invocation

2-May-07 CS210 92

Dealing with Arguments

• Used for communication between caller and callee

• No limit to number of allowed arguments
– Pass arguments in registers: $a0-$a5

– Pass additional arguments through stack

• Argument registers $a0-$a5 are like temporaries
– Must be preserved if needed after a call

– If not needed, can be used as a temporary



2-May-07 CS210 93

Use of Stack for Subroutines: Caller

• Caller has allocated space for arguments beyond $a4 
in its stack frame
– Save current (caller’s) arguments on stack if needed
– Save previously returned result $v0 (if needed)

• Assign arguments to registers ($a0-$a5)
• If temporary registers are live, save 
• Caller executes bsr instruction

– Address of subsequent instruction stored in $ra
– Jumps to beginning of callee

• On return
– Restore arguments ($a0-$a5) and tmps ($t0-$t5) if/when 

needed

2-May-07 CS210 94

Use of Stack for Subroutines: Callee

• Allocate space for new activation record

• Saved any saved registers ($s0-$s11) to stack

• Save $ra to stack if any other procedure might be 
called

• Perform function (possibly invoking other functions)

• Restore saved registers ($s0-$s11, $ra)

• Assign return value to $v0

• Deallocate space for current activation record

• Return to calling procedure via $ra

2-May-07 CS210 95

Accesses to the Stack

• The layout of a stack frame (activation record) is 
determined when the method is compiled

• At assembly time, when the code is produced
– the abolute address cannot be fixed (it varies depending on 

circumstances)

– the relative address (relative to the top of stack) is known: a 
small constant

• Addressing mode of base register + displacement is 
perfect
– base: frame pointer (or stack pointer)

– displacement (computed when the stack frame is laid out.

2-May-07 CS210 96

Example of Stack Access

sw $s1, 32($sp)

Offset from top of 
stack to save $s3

Top of stack



2-May-07 CS210 97 2-May-07 CS210 98

Optimizations

• Stack is designed to handle worst case:
– Spilled registers

– Return address

– Extra arguments

• In practice stack can be very small
– If called procedure is a leaf (does not call other procedures), 

it may not not need a stack at all.

– Even if it calls other procedures, it needs to save RA, but
• May not need to save arguments

• May not need to save registers

• Could be as little as one word!

Computer Science 210
Computer Systems 1

2007 Semester 1

Lecture Notes Part 2

The Assembly Process

James Goodman

2-May-07 CS210 100

Recommended Readings

• Hutton’s Notes, Chapter 12: assembling and 
disassembling



2-May-07 CS210 101

Translation vs. Interpretation

• A program written in language L defines a “machine”
• Problem:

– We have a program written in language L1
– We have a computer that understands how to execute 

language L2
– How to “execute” program?

• Solution 1: Compilation/Translation/Assembly
– A “compiler” takes as input a program written in L1 and 

creates a program written in L2

• Solution 2: Interpretation/Simulation/Emulation
– A “program” takes as input a program written in L1 and 

walks through its execution, taking input and creating 
output as if it were an L1 computer.

2-May-07 CS210 102

The assembly process: Overview
• A computer understands machine code

• People (and compilers) write assembly language
– Today it’s usually compilers

• Goal: create a file describing exactly what memory 
should look like before starting execution of a 
program

• Assembly: the process of translating a program 
written in assembly language into a program written 
in machine language.
– Machine language is specific to a computer

– Need to create memory image that includes
• instructions (including links to libraries, kernel, etc.)

• data (constants, static variables, dynamic variables

2-May-07 CS210 103

Steps in Assembly

• Pass 1: Scan program and parse
– Identify declarations of instructions and static data
– identify pseudo-instructions
– Allocate space for instructions and data
– Recognize labels

• Define address if possible
• Remember for future reference: Symbol Table

– For data
• Allocate space
• Associate label with address
• Generate appropriate representation

• Pass 2: Rescan and generate code
– Translate instruction to machine code

2-May-07 CS210 104

A Picture of 
Memory

0x0080 0000

0x0100 0000

0x0380 0000

Stack

Data

Code

Reserved

$sp

$gp

pc

0x0000 0000



2-May-07 CS210 105

Program to Assemble
data {

number:
quad 32769;

string1:
asciiz: "Hello!\n"

} data
code {
public enter:

beq $t0, yyy;
xxx:

ldq $s0, ($t0);
subq $s0, 1
bne $s0, xxx;

yyy:
addq $zero, 123, $t0
br xxx;
clr $a1;
ldiq $a0, 0; / CALLSYS_EXIT;
call_pal 0x83; / CALL_PAL_CALLSYS;

} code
2-May-07 CS210 106

ASCII Characters

H 0x48
e 0x65
l 0x6c
l 0x6c
o 0x6f
! 0x21
\n 0x0a
0 ox00

2-May-07 CS210 107

Symbol Table

Symbol

number
string1

xxx
yyy

Address

0x0100 0000
0x0100 0004
0x0080 0004
0x0080 0010

2-May-07 CS210 108

Instruction Formats

– From The Alpha Architecture Handbook, Compaq Computer Corporation, 1998.



2-May-07 CS210 109

Opcode Assignment

0x290x10Operatesubq

0x00PALcodecal_pal

0x200x10Operateaddq

0x29Memoryldq

0x200x11Operatebis

0x30Branchbr

0x3dBranchbne

0x39Branchbeq

Function codeOpcodeFormatInstruction

2-May-07 CS210 110

Register Names
$0 $v0

$1-$8, $t0-$t9

$9-$14 $s0-$s5

$15 $fp

$16-$21 $a0-$a5

$22-$25 $t8-$t11

$26 $ra

$27 $pv

$28 $at

$29 $gp

$30 $sp

$31 $zero (special)

2-May-07 CS210 111

Program to Assemble
data {

number:
quad 32769;

string1:
asciiz: "Hello!\n"

} data
code {
public enter:

beq $t0, yyy;
xxx:

ldq $s0, ($t0);
subq $s0, 1
bne $s0, xxx;

yyy:
addq $zero, 123, $t0
br xxx;
clr $a1;
ldiq $a0, 0; / CALLSYS_EXIT;
call_pal 0x83; / CALL_PAL_CALLSYS;

} code
2-May-07 CS210 112

Working Assembly

0x32 $t0=1 +3
0x0080 0000 1100 10|00 001|0 0000 0000 0000 0000 0011 0000

0x29 $s0=9 $t0=1 +0000
0x0080 0004 1010 01|01 001|0 0001|0000 0000 0000 0000 0000
0x0080 0008

…

0x0100 0000 0000|0000|0000|0000|1000|0000|0000|0001
0x0100 0004 0000 0000 0000 0000 0000 0000 0000 0000
0x0100 0008 0110 1100|0110 1100|0110 0101|0100 1000
0x0100 000c 0000 0000|0000 1010|0010 0001|0110 1111
0x0100 0010

…



2-May-07 CS210 113

Assembled Code
00800000 e4200003 beq $t0, .main.yyy
00800004 a5210000 ldq $s0, +0000($t0)
00800008 41203529 subq $s0, 01, $s0
0080000c f53ffffd bne $s0, .main.xxx
00800010 43ef7401 addq $zero, 7b, $t0
00800014 c3fffffb br $zero, main.xxx
00800018 47ff0411 bis $zero, $zero, $a1
0080001c a61d0000 ldq $a0, +0000($gp)
00800020 00000083 call_pal 0000083
00800024 00000000 call_pal 0000000

.main.number:
01000000 00008001 Hex 8001
01000004 00000000

.main.string1:
01000008 6c6c6548 Hell Hex a216f6c6c6548
0100000c 000a216f o!??       


