
Computer Science 210
Computer Systems 1

2007 Semester 1

Lecture Notes Part 2
1. Floating Point

Lecture 12
18 May 07

James Goodman

18-May-07 CS210 2

Floating Point in the Alpha

• The Alpha has 32 floating-point registers $f0-$f31
– $f31 is always zero

• Instructions are same format as integer instructions
– Floating-point registers are implied (mostly)

– No literals allowed

• Two levels of precision
– S: “single-precision” 32-bit IEEE format

– T: “double-precision” 64-bit IEEE format

18-May-07 CS210 3

Arithmetic Instructions

• Arithmetic instructions have separate “operate”
opcode

• Instructions are either single (S) or double (T) type

• Operations
– ADD

– SUB

– MUL

– DIV

– SQRT

18-May-07 CS210 4

Load/Store Instructions

• Load: LDS, LDT
– Address comes from integer register

– Same as ldl, ldq but target is FP register

• Store: STS, STT
– Address comes from integer register

– Same as stl, stq but source is FP register

18-May-07 CS210 5

Control Instructions

• Branch on condition
– Same as integer, but using FP reg (6 cases)

– Additional problem: NAN

• Compare two FP regs
– EQ, GE, GT, LE, LT, NE

– Result set zero/non-zero value in FP reg

– Also “unordered”

• Conditional move instructions
– Test FP register a against zero: EQ, GE, GT, LE, LT, NE

– If true, copy register b into register c

18-May-07 CS210 6

Other Instructions

• Move: copy between I register and FP register
– FtoIS,FtoIT,ItoFS,ItoFT

– No format change

• Convert between floating point/Integer
– convert in-place in FP registers

– S <=> T; T <=> Q ; Q => S (no S=> Q)

– Longword <=> Quadword

• CPYS: Copy sign bit to destination (merge)

• CPYSN: Copy and invert sign bit to destination

• CPYSE: Copy sign and exponent to destination

18-May-07 CS210 7

Summary

• Alpha has excellent support for floating point
computations

• Fully support for IEEE Floating Point Standard

• Observations
– Most programs use little or no floating point, don’t care

about performance

– Programs that use floating point tend to be dominated by
floating point operations, care greatly about performance

Computer Science 210
Computer Systems 1

2007 Semester 1

Lecture Notes Part 2
2. Performance: the Big Picture

Lecture 12
18 May 07

James Goodman

18-May-07 CS210 9

Performance

Question:

“How long does it take to execute an instruction?”

Answer:

“It depends”

18-May-07 CS210 10

Modern Processors

Are pipelined (Assembly-line process)

One stage per clock cycle

• Stage 1: Fetch instruction

• Stage 2: Decode instruction

• Stage 3: Fetch operands

• Stage 4: Perform operation

• Stage 5: Put away result

18-May-07 CS210 11

Problems

• Need to fetch multiple operands in stage 3

• Sometimes operand is not ready
– Producing instruction has not completed

– Must stall pipeline

• For load instruction, operation is to memory
– Memory is slow

• What happens on a conditional branch???

18-May-07 CS210 12

Cache Memory

• Small memory runs at CPU speed

• Contains (redundant) subset of what is in memory

• Cache memory has two parts
– Data

– Address of the data

• Data is in cache (a hit)
– Data is supplied in one clock cycle

• Data is not in cache (miss)
– Must stall for many cycles while data is fetched

• Exploit temporal & spatial locality

18-May-07 CS210 13

Conditional Branch

• Problem: what instruction is next?

• Don’t even know this is a problem until instruction is
decoded
– Already fetching next instruction (OK, but maybe wasted)

• Perform test
– If true, must flush pipe, fetch new instruction and restart

• Starting up may be slow because fetching instruction
is “surprise”

18-May-07 CS210 14

Two Sources of Disruption

• Cache miss on load (or store)
– Must wait while data is fetched from memory

• Branch taken; instruction cache miss
– Must wait while data is fetched from memory

• Observation:

Memory performance is critical!

18-May-07 CS210 15

Tricks to Tolerate Cache Misses
• Further exploit temporal & spatial locality

– Anticipate memory requests

– Remember what happened last time

– Look for patterns

• Execute instructions out of order
– Bypass instructions waiting for memory

– Find instructions with available operands and execute

• Speculate!
– Fetch instructions and “execute” them before it is known

that they should be executed, but don’t “commit”

– Guess the value of an operand

• Branches: Predict whether taken
– Speculate down most likely path

18-May-07 CS210 16

Summary
Performance optimized by making the common case fast

• The uncommon case merely must execute correctly

• This approach has been highly successful, but results in
large variance in execution time

Memory plays a critical role in performance

• Many programs spend more time waiting for memory
than executing instructions

Implications for programmers

• Placement of data is critical
– Temporal & spatial locality can be exploited

• Branches are expensive
– Unpredictable branches are especially difficult

18-May-07 CS210 17

Find this topic interesting?

Consider taking CS 313 Computer Organization!

• Preparation needed for 313: Physics 243

• 2008: Physics 243 becomes CS 143 (no prerequisites)

