
Computer Science 210
Computer Systems 1

2007 Semester 1

Lecture Notes Part 2
(Finish Subroutines)

The Assembly Process
Lecture 10
26 Apr 07

James Goodman

26-Apr-07 CS210 2

Reminders

• Mini-assignment 2 is due on Monday,
30April at noon.

• There will be a tutorial today in this
room at 3.30.

26-Apr-07 CS210 3

In-class Test

• Test next Wednesday 3May

• During class (this room)

• Coverage: lectures and assignments up to term break

26-Apr-07 CS210 4

Recommended Readings

For today’s lecture

• Chapter 11: function invocation.

• Randy Bryant, Alpha Assembly Language Guide
(available under Resources at the website) Section 3

• Chapter 12: assembling and disassembling

For the mini-assignment

• Chapter 6: program structure

• Chapter 7: strings

• Chapter 8: running the simulator

• Chapter 10: writing and debugging in assembly language

26-Apr-07 CS210 5

Caller/Callee Register Allocation

• Temporary registers for callee
– $t0-$t11

– Free for use, but not preserved

• Saved registers for caller
– $s0-$s5

– Free to use, but responsible for saving/restoring value

• Every method is potentially both a caller and callee
– Leaves (methods that invoke no other methods) often don’t

need to use S registers—no spills

– Other nodes save registers they use exactly once: on
invocation

26-Apr-07 CS210 6

Dealing with Arguments

• Used for communication between caller and callee

• No limit to number of allowed arguments
– Pass arguments in registers: $a0-$a5

– Pass additional arguments through stack

• Argument registers $a0-$a5 are like temporaries
– Must be preserved if needed after a call

– If not needed, can be used as a temporary

26-Apr-07 CS210 7

Use of Stack for Subroutines: Caller

• Caller has allocated space for arguments beyond $a4
in its stack frame
– Save current (caller’s) arguments on stack if needed
– Save previously returned result $v0 (if needed)

• Assign arguments to registers ($a0-$a5)
• If temporary registers are live, save
• Caller executes bsr instruction

– Address of subsequent instruction stored in $ra
– Jumps to beginning of callee

• On return
– Restore arguments ($a0-$a5) and tmps ($t0-$t5) if/when

needed

26-Apr-07 CS210 8

Use of Stack for Subroutines: Callee

• Allocate space for new activation record

• Saved any saved registers ($s0-$s11) to stack

• Save $ra to stack if any other procedure might be
called

• Perform function (possibly invoking other functions)

• Restore saved registers ($s0-$s11, $ra)

• Assign return value to $v0

• Deallocate space for current activation record

• Return to calling procedure via $ra

26-Apr-07 CS210 9

Accesses to the Stack

• The layout of a stack frame (activation record) is
determined when the method is compiled

• At assembly time, when the code is produced
– the abolute address cannot be fixed (it varies depending on

circumstances)

– the relative address (relative to the top of stack) is known: a
small constant

• Addressing mode of base register + displacement is
perfect
– base: frame pointer (or stack pointer)

– displacement (computed when the stack frame is laid out.

26-Apr-07 CS210 10

Example of Stack Access

sw $s1, 32($sp)

Offset from top of
stack to save $s3

Top of stack

26-Apr-07 CS210 11 26-Apr-07 CS210 12

Optimizations

• Stack is designed to handle worst case:
– Spilled registers

– Return address

– Extra arguments

• In practice stack can be very small
– If called procedure is a leaf (does not call other procedures),

it may not not need a stack at all.

– Even if it calls other procedures, it needs to save RA, but
• May not need to save arguments

• May not need to save registers

• Could be as little as one word!

Computer Science 210
Computer Systems 1

2007 Semester 1

Lecture Notes Part 2
The Assembly Process

Lecture 10
26 Apr 07

James Goodman

26-Apr-07 CS210 14

Translation vs. Interpretation

• A program written in language L defines a “machine”
• Problem:

– We have a program written in language L1
– We have a computer that understands how to execute

language L2
– How to “execute” program?

• Solution 1: Compilation/Translation/Assembly
– A “compiler” takes as input a program written in L1 and

creates a program written in L2

• Solution 2: Interpretation/Simulation/Emulation
– A “program” takes as input a program written in L1 and

walks through its execution, taking input and creating
output as if it were an L1 computer.

26-Apr-07 CS210 15

The assembly process: Overview
• A computer understands machine code

• People (and compilers) write assembly language
– Today it’s usually compilers

• Goal: create a file describing exactly what memory
should look like before starting execution of a
program

• Assembly: the process of translating a program
written in assembly language into a program written
in machine language.
– Machine language is specific to a computer

– Need to create memory image that includes
• instructions (including links to libraries, kernel, etc.)

• data (constants, static variables, dynamic variables

26-Apr-07 CS210 16

Steps in Assembly

• Read program and parse
– Identify declarations of instructions and static data

– identify pseudo-instructions

– Allocate space for instructions and data

– Recognize labels
• Define address if possible

• Remember for future reference

