
Computer Science 210
Computer Systems 1

2007 Semester 1

Lecture Notes Part 2
Subroutines

Lecture 9
24 Apr 07

James Goodman

24-Apr-07 CS210 2

Reminders

• Mini-assignment 2 is due on Monday,
30April at noon.

• There will be a tutorial Thursday,
probably in this room (not yet
confirmed), at 3.30. [No tutorial
tomorrow]

24-Apr-07 CS210 3

Recommended Readings

For the mini-assignment

• Chapter 6: program structure

• Chapter 7: strings

• Chapter 8: running the simulator

• Chapter 10: writing and debugging in assembly language

For today’s lecture

• Chapter 5: use of registers

• Chapter 11: function invocation.

24-Apr-07 CS210 4

Correction to Template

Assignment 2 template (available from website)

• File Assignment2.user.s has two extraneous lines:
39 ldiq $a0, 2;
40 call_pal 0x83;

• Delete both lines (or download revised template)

24-Apr-07 CS210 7

Memory Allocation for a Variable
• Global variables, constants: allocate memory permanently

– Use registers? Maybe, if used frequently

• Local variables
– Allocate space permanently?

• Not needed: variables have a lifetime
• Not sufficient: same variable might have multiple instances

– Use registers? Likely, since they are short-lived and dynamic

• Temporary variables (used in computations)
– Similar to local variables
– Allocate space dynamically, probably in registers

• Arguments
– Also have a lifetime
– Pass in registers? Yes, if not too many
– Also result(s), but in reverse direction

24-Apr-07 CS210 8

Two Distinct Storage Issues

• Registers vs. memory

• Dynamic variables

24-Apr-07 CS210 9

Dynamic Variables

Variables have a lifetime

• A variable is defined within a scope

• Variables do not need space allocated if they aren’t
assigned a value

• Different variables can be assigned to the same
memory location at different times

• The same variables in different instances requires two
different memory locations if they overlap
(recursion)

24-Apr-07 CS210 10

The Stack
• Modern programming languages require the ability to allocate

space for an indefinite number of variables
• Each instance of a method requires its own space for variables,

arguments, and temps.
• The Stack of Activation Records is a data structure that satisfies

this requirement.
– On invocation

• Allocate space for arguments, temps, local variables: a Frame
• Save (spill) some registers to allocate for subroutine
• Save linkage information (how to return)
• Transfer control to subroutine

– On return
• Assign return value
• Restore spilled registers
• Deallocate space
• Jump back to original code

24-Apr-07 CS210 11

Caller vs. Callee

• Who should allocate space?
– Callee knows how much space it needs

– Arguments and return are special: they are shared

• Who should save registers?

• Caller should save
– Don’t need to save registers not being used

– Only caller knows this

• Callee should save
– Don’t need to save registers that won’t be touched

– Only callee knows

• Solution: do both!

24-Apr-07 CS210 12

Caller/Callee Register Allocation

• Temporary registers for callee
– $t0-$t11

– Free for use, but not preserved

• Saved registers for caller
– $s0-$s5

– Free to use, but responsible for saving/restoring value

• Every method is potentially both a caller and callee
– Leaves (methods that invoke no other methods) often don’t

need to use S registers—no spills

– Other nodes save registers they use exactly once: on
invocation

24-Apr-07 CS210 13

Dealing with Arguments

• Used for communication between caller and callee

• No limit to number of allowed arguments
– Pass arguments in registers: $a0-$a5

– Pass additional arguments through stack

24-Apr-07 CS210 15

Use of Stack for Subroutines:
Caller

• Caller has allocated space for arguments in its stack
frame
– Save current (caller’s) arguments on stack

– Save previously returned result (if needed)

• Assign arguments to registers ($a0-$a5)

• If temporary registers are live, save

• Caller executes bsr instruction
– Address of subsequent instruction stored in $ra

– Jumps to beginning of callee

• On return
– Restore arguments (if needed)

24-Apr-07 CS210 16

Use of Stack for Subroutines:
Callee

• Callee allocates new stack frame
– Space for local variables

– Space to save S/T registers if needed

– Space to save return address (if not a leaf)

– Space for parameters (if not a leaf)

• Execute code
– May invoke other subroutines

• Assign result

• Restore registers

• Deallocate stack space

• Return to caller

24-Apr-07 CS210 17

Accesses to the Stack

• The layout of a stack frame (activation record) is
determined when the method is compiled

• At assembly time, when the code is produced
– the abolute address cannot be fixed (it varies depending on

circumstances)

– the relative address (relative to the top of stack) is known: a
small constant

• Addressing mode of base register + displacement is
perfect
– base: frame pointer (or stack pointer)

– displacement (computed when the stack frame is laid out.

