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Reminders

e Mini-assignment 2 is due on Monday,
30April.

e There is a tutorial today in this room,
at 3.30.
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Recommended Readings

For the mini-assignment

e Chapter 6: program structure

e Chapter 7: strings

e Chapter 8: running the simulator

e Chapter 10: writing and debugging in assembly language
For today’s lecture

e Chapter 5: use of registers

e Chapter 11: function invocation.

7-Apr-07 Cs210

7-Apr-07

I/O Instructions

» Privileged Architecture Library (PAL)
— A set of functions of arbitrary complexity invoked by a
special call_pal instruction
— Performs privileged operations such as accessing disk,
reading and printing, etc.
e Form: call_pal constant
call_pal CALL_PAL_CALLSYS
call_pal CALL_PAL_BPT
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Simple I/O

getchar (result in $v0)
Idig $a0, Ox1 // CALLSYS_GETCHAR
call_pal 0x83 // CALL_PAL_CALLSYS

Equivalent operation: bsr Sys.putChar.enter;

putchar (character in $al)
Idiqg $a0, Ox2 // CALLSYS_PUTCHAR
call_pal 0x83 // CALL_PAL_CALLSYS

Equivalent operation: bsr Sys.getChar.enter;
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Registers Named

$0 $v0
$1-$8, $tO-$t9
$9-$14 $s0-$s5
$15 $fp
$16-$21 $a0-$a5
$22-$25 $t8-$tll
$26 $ra

$27 $pv

$28 $at

$29 $gp

$30 $sp

$31 $zero (special)
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Register Names

$t0-$t11 Temporary registers, used to hold temporary values,
when evaluating expressions, etc.

$s0-$s5 Saved registers, used to hold the values of local variables

in functions.

$a0-$a5 Argument registers, used to pass parameters to
functions.

$v0 Value register, used to return the result of a function.

$ra Return address register, used to hold the return address
of a function.

$gp Global pointer register, used to point to the table of
constants.

$sp Stack pointer register, used to point to the top of the

stack used to allocate space for functions.

$zero Zero register, that always contains the value zero.
Attempting to write to this register has no effect.
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Memory Allocation for a Variable

* Global variables, constants: allocate memory permanently
— Use registers? Maybe, if used frequently
e Local variables
— Allocate space permanently?
« Not needed: variables have a lifetime
* Not sufficient: same variable might have multiple instances
— Use registers? Likely, since they are short-lived and dynamic
e Temporary variables (used in computations)
— Similar to local variables
— Allocate space dynamically, probably in registers
* Arguments
— Also have a lifetime
— Pass in registers? Yes, if not too many
— Also result(s), but in reverse direction
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Two Distinct Storage Issues

» Registers vs. memory
e Dynamic variables
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Dynamic Variables

Variables have a lifetime
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A variable is defined within a scope

Variables do not need space allocated if they aren’t
assigned a value

Different variables can be assigned to the same
memory location at different times

The same variables in different instances requires two
different memory locations if they overlap
(recursion)
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Extreme Case: Write-once variables
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e Avariable requires storage when it is written
< Avariable does not require storage if it will not be read again

before it is written

e If we know a variable will not be read, we can deallocate storage

on the last read, allocate it on write.
— We must be certain that the variable will not be read again
— This is often possible in controlled situations, e.g., loops

< In effect, each write creates a new variable, written only once
« Hardware implications

— with multiple instructions being executed, a dead variable can be
inferred on each write (previous instructions may still need to read
it)

— A different buffer can be assigned the new value while the old value

is still live!
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The Stack

Modern programming languages require the ability to allocate
space for an indefinite number of variables

Each instance of a method requires its own space for variables,
arguments, and temps.

The Stack of Activation Records is a data structure that satisfies
this requirement.
— On invocation
« Allocate space for arguments, temps, local variables: a Frame
« Save (spill) some registers to allocate for subroutine
» Save linkage information (how to return)
« Transfer control to subroutine
— Onreturn
* Assign return value
« Restore spilled registers
¢ Deallocate space
* Jump back to original code
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