Computer Science 210

Computer Systems 1

2007 Semester 1

Lecture Notes Part 2
Registers & Subroutines

Lecture 8
5 Apr 07

James Goodman

/
~

Department
b

0l
Computer Science

7-Apr-07

Reminders

e Mini-assignment 2 is due on Monday,
30April.

e There is a tutorial today in this room,
at 3.30.

CS210

Recommended Readings

For the mini-assignment

e Chapter 6: program structure

e Chapter 7: strings

e Chapter 8: running the simulator

e Chapter 10: writing and debugging in assembly language
For today’s lecture

e Chapter 5: use of registers

e Chapter 11: function invocation.

7-Apr-07 Cs210

7-Apr-07

I/O Instructions

» Privileged Architecture Library (PAL)
— A set of functions of arbitrary complexity invoked by a
special call_pal instruction
— Performs privileged operations such as accessing disk,
reading and printing, etc.
e Form: call_pal constant
call_pal CALL_PAL_CALLSYS
call_pal CALL_PAL_BPT

CS210

7-Apr-07

Simple I/O

getchar (result in $v0)
Idig $a0, Ox1 // CALLSYS_GETCHAR
call_pal 0x83 // CALL_PAL_CALLSYS

Equivalent operation: bsr Sys.putChar.enter;

putchar (character in $al)
Idiqg $a0, Ox2 // CALLSYS_PUTCHAR
call_pal 0x83 // CALL_PAL_CALLSYS

Equivalent operation: bsr Sys.getChar.enter;

CS210

7-Apr-07

Registers Named

$0 $v0
$1-$8, $tO-$t9
$9-$14 $s0-$s5
$15 $fp
$16-$21 $a0-$a5
$22-$25 $t8-$tll
$26 $ra

$27 $pv

$28 $at

$29 $gp

$30 $sp

$31 $zero (special)

CS210

7-Apr-07

Register Names

$t0-$t11 Temporary registers, used to hold temporary values,
when evaluating expressions, etc.

$s0-$s5 Saved registers, used to hold the values of local variables

in functions.

$a0-$a5 Argument registers, used to pass parameters to
functions.

$v0 Value register, used to return the result of a function.

$ra Return address register, used to hold the return address
of a function.

$gp Global pointer register, used to point to the table of
constants.

$sp Stack pointer register, used to point to the top of the

stack used to allocate space for functions.

$zero Zero register, that always contains the value zero.
Attempting to write to this register has no effect.

Cs210

7-Apr-07

Memory Allocation for a Variable

* Global variables, constants: allocate memory permanently
— Use registers? Maybe, if used frequently
e Local variables
— Allocate space permanently?
« Not needed: variables have a lifetime
* Not sufficient: same variable might have multiple instances
— Use registers? Likely, since they are short-lived and dynamic
e Temporary variables (used in computations)
— Similar to local variables
— Allocate space dynamically, probably in registers
* Arguments
— Also have a lifetime
— Pass in registers? Yes, if not too many
— Also result(s), but in reverse direction

CS210

7-Apr-07

Two Distinct Storage Issues

» Registers vs. memory
e Dynamic variables

Cs210

Dynamic Variables

Variables have a lifetime

7-Apr-07

A variable is defined within a scope

Variables do not need space allocated if they aren’t
assigned a value

Different variables can be assigned to the same
memory location at different times

The same variables in different instances requires two
different memory locations if they overlap
(recursion)

CS210

10

Extreme Case: Write-once variables

7-Apr-07

e Avariable requires storage when it is written
< Avariable does not require storage if it will not be read again

before it is written

e If we know a variable will not be read, we can deallocate storage

on the last read, allocate it on write.
— We must be certain that the variable will not be read again
— This is often possible in controlled situations, e.g., loops

< In effect, each write creates a new variable, written only once
« Hardware implications

— with multiple instructions being executed, a dead variable can be
inferred on each write (previous instructions may still need to read
it)

— A different buffer can be assigned the new value while the old value

is still live!

Cs210

11

7-Apr-07

The Stack

Modern programming languages require the ability to allocate
space for an indefinite number of variables

Each instance of a method requires its own space for variables,
arguments, and temps.

The Stack of Activation Records is a data structure that satisfies
this requirement.
— On invocation
« Allocate space for arguments, temps, local variables: a Frame
« Save (spill) some registers to allocate for subroutine
» Save linkage information (how to return)
« Transfer control to subroutine
— Onreturn
* Assign return value
« Restore spilled registers
¢ Deallocate space
* Jump back to original code

CS210

12

