
Computer Science 210
Computer Systems 1

2007 Semester 1

Lecture Notes Part 2
Registers & Subroutines

Lecture 8
5 Apr 07

James Goodman

7-Apr-07 CS210 2

Reminders

• Mini-assignment 2 is due on Monday,
30April.

• There is a tutorial today in this room,
at 3.30.

7-Apr-07 CS210 3

Recommended Readings

For the mini-assignment

• Chapter 6: program structure

• Chapter 7: strings

• Chapter 8: running the simulator

• Chapter 10: writing and debugging in assembly language

For today’s lecture

• Chapter 5: use of registers

• Chapter 11: function invocation.

7-Apr-07 CS210 4

I/O Instructions

• Privileged Architecture Library (PAL)
– A set of functions of arbitrary complexity invoked by a

special call_pal instruction

– Performs privileged operations such as accessing disk,
reading and printing, etc.

• Form: call_pal constant
call_pal CALL_PAL_CALLSYS
call_pal CALL_PAL_BPT

7-Apr-07 CS210 5

Simple I/O

• getchar (result in $v0)
ldiq $a0, 0x1 // CALLSYS_GETCHAR
call_pal 0x83 // CALL_PAL_CALLSYS

• Equivalent operation: bsr Sys.putChar.enter;

• putchar (character in $a1)
ldiq $a0, 0x2 // CALLSYS_PUTCHAR
call_pal 0x83 // CALL_PAL_CALLSYS

• Equivalent operation: bsr Sys.getChar.enter;

7-Apr-07 CS210 6

Registers Named
$0 $v0

$1-$8, $t0-$t9

$9-$14 $s0-$s5

$15 $fp

$16-$21 $a0-$a5

$22-$25 $t8-$t11

$26 $ra

$27 $pv

$28 $at

$29 $gp

$30 $sp

$31 $zero (special)

7-Apr-07 CS210 7

Register Names
$t0-$t11 Temporary registers, used to hold temporary values,

when evaluating expressions, etc.
$s0-$s5 Saved registers, used to hold the values of local variables

in functions.
$a0-$a5 Argument registers, used to pass parameters to

functions.
$v0 Value register, used to return the result of a function.
$ra Return address register, used to hold the return address

of a function.
$gp Global pointer register, used to point to the table of

constants.
$sp Stack pointer register, used to point to the top of the

stack used to allocate space for functions.
$zero Zero register, that always contains the value zero.

Attempting to write to this register has no effect.

7-Apr-07 CS210 8

Memory Allocation for a Variable
• Global variables, constants: allocate memory permanently

– Use registers? Maybe, if used frequently

• Local variables
– Allocate space permanently?

• Not needed: variables have a lifetime
• Not sufficient: same variable might have multiple instances

– Use registers? Likely, since they are short-lived and dynamic

• Temporary variables (used in computations)
– Similar to local variables
– Allocate space dynamically, probably in registers

• Arguments
– Also have a lifetime
– Pass in registers? Yes, if not too many
– Also result(s), but in reverse direction

7-Apr-07 CS210 9

Two Distinct Storage Issues

• Registers vs. memory

• Dynamic variables

7-Apr-07 CS210 10

Dynamic Variables

Variables have a lifetime

• A variable is defined within a scope

• Variables do not need space allocated if they aren’t
assigned a value

• Different variables can be assigned to the same
memory location at different times

• The same variables in different instances requires two
different memory locations if they overlap
(recursion)

7-Apr-07 CS210 11

Extreme Case: Write-once variables
• A variable requires storage when it is written
• A variable does not require storage if it will not be read again

before it is written
• If we know a variable will not be read, we can deallocate storage

on the last read, allocate it on write.
– We must be certain that the variable will not be read again
– This is often possible in controlled situations, e.g., loops

• In effect, each write creates a new variable, written only once
• Hardware implications

– with multiple instructions being executed, a dead variable can be
inferred on each write (previous instructions may still need to read
it)

– A different buffer can be assigned the new value while the old value
is still live!

7-Apr-07 CS210 12

The Stack
• Modern programming languages require the ability to allocate

space for an indefinite number of variables
• Each instance of a method requires its own space for variables,

arguments, and temps.
• The Stack of Activation Records is a data structure that satisfies

this requirement.
– On invocation

• Allocate space for arguments, temps, local variables: a Frame
• Save (spill) some registers to allocate for subroutine
• Save linkage information (how to return)
• Transfer control to subroutine

– On return
• Assign return value
• Restore spilled registers
• Deallocate space
• Jump back to original code

