
Computer Science 210
Computer Systems 1

2007 Semester 1

Lecture Notes Part 2
Instructions &

Addressing Modes
Lecture 7
30 Mar 07

James Goodman

30-Mar-07 CS210 2

Reminders

• Mini-assignment 2 is not yet ready.
The due date (originally 3April) will be
deferred until after the break.

• NO CLASS NEXT TUESDAY, 3April!!
– Only class next week: Thursday, 5April

30-Mar-07 CS210 3

Optimization: lda, ldah

• lda A, <low address>(B)
– sign-extend constant <lowaddress> and add to contents of register

B; assign result to register A

• ldah A, <hi address>(B)
– multiply constant <hi address> by 65,536 and add to contents of

register B; assign result to register A

• Usually only requires 2 instructions
– Still only generates 32-bit addresses

– Some 32-bit integers cannot be generated this way

lda Reg A Reg B

6 bits 5 bits5 bits

<low address>

16 bits

ldah Reg A Reg B

6 bits 5 bits5 bits

<hi address>

16 bits

30-Mar-07 CS210 4

Base + Displacement

• Base: a long-term but approximate address
– Gives location of larger structure

– Can be dynamically varied

• Displacement
– Static offset embedded in instruction

– Cannot be dynamically varied

30-Mar-07 CS210 5

Load Reg, Disp(Base)

Effective address: (Base) + Displacement

• Base is a 64-bit address

• Displacement is a 16-bit signed constant, sign-extended
to 64 bits

• Displacement defines position relative to Base

ldq Dest Base

6 bits 5 bits5 bits

Displacement

16 bits

30-Mar-07 CS210 6

Recommended Readings

• Today’s lecture mostly based on Chapters 4 & 5 of Dr.
Hutton’s notes.

30-Mar-07 CS210 7

Load Instructions
• ldq reg, disp(base) ! Load quadword
• ldl reg, disp(base) ! Load sign-extended longword
• ldwu reg, disp(base) ! Load zero-extended word
• ldbu reg, disp(base) ! Load zero-extended byte

• stq reg, disp(base) ! Store quadword
• stl reg, disp(base) ! Store longword
• stw reg, disp(base) ! Store word
• stb reg, disp(base) ! Store byte

• lda reg, disp(base) ! Assign computed addr to reg
• ldah reg, disp(base) ! Multiply displacement by

! 65,536 and add to base,
! assign to address

30-Mar-07 CS210 8

Summary: Possible Addressing
Modes for Memory Operations

• Direct
– address contained in instruction

• Indirect
– Instruction contains address where address is held

• Register indirect
– Instruction specifies register where address is held

• Register + Register
– Instruction specifies two registers
– Contents of registers are added to determine address

• Base + displacement
– Instruction specifies register and contains displacement
– Displacement is added to content of register to determine

address

30-Mar-07 CS210 9

Other Possible Addressing Modes

• Immediate operand
– Instruction contains the value, used as an operand

– Limited by word size to small constant (8 bits)
– Example: addq $5, 1, $5
– Example: lda reg, disp($31)

30-Mar-07 CS210 10

Branch Instruction

• How to specify full add (≤ 53 bits) in a 32-bit
instruction?

• Observation: most branches are short

• Branch can use relative address: difference from
current value of PC.

30-Mar-07 CS210 11

Example: bne

• Instruction must be aligned: two LSBs must be zero

• Test register specifies 1 of 32 registers for testing

• 21 bits can specify a branch relative to current
instruction of PC ± 220 instructions

• New PC = PC + sign-extend(4 * Target)

11 1010 Reg

6 bits 5 bits 21 bits

Target

30-Mar-07 CS210 12

Long-distance Branches

• Jump instruction
– Full address specified indirectly through register

– Unconditional transfer of control

30-Mar-07 CS210 13

Examples of Operand
Specifications

• Register (operate, control, memory)

• Unsigned 8-bit constant (operate instructions)

• Unsigned 6-bit count (shift instructions)

• Base + displacement (memory)

• 21-bit branch offset (control)

• 26-bit constant (PALcode format)

30-Mar-07 CS210 14

I/O Instructions

• Privileged Architecture Library (PAL)
– A set of functions of arbitrary complexity invoked by a

special call_pal instruction

– Performs privileged operations such as accessing disk,
reading and printing, etc.

• Form: call_pal constant
call_pal CALL_PAL_CALLSYS
call_pal CALL_PAL_BPT

30-Mar-07 CS210 15

Simple I/O

• getchar (result in $v0)
ldiq $a0, 0x1 // CALLSYS_GETCHAR
call_pal 0x83 // CALL_PAL_CALLSYS

• putchar (character in $a1)
ldiq $a0, 0x2 // CALLSYS_PUTCHAR
call_pal 0x83 // CALL_PAL_CALLSYS

30-Mar-07 CS210 16

Registers Named
$0 $v0

$1-$8, $t0-$t9

$9-$14 $s0-$s5

$15 $fp

$16-$21 $a0-$a5

$22-$25 $t8-$t11

$26 $ra

$27 $pv

$28 $at

$29 $gp

$30 $sp

$31 $zero (special)

30-Mar-07 CS210 17

Register Names
$t0-$t11 Temporary registers, used to hold temporary values,

when evaluating expressions, etc.
$s0-$s5 Saved registers, used to hold the values of local variables

in functions.
$a0-$a5 Argument registers, used to pass parameters to

functions.
$v0 Value register, used to return the result of a function.
$ra Return address register, used to hold the return address

of a function.
$gp Global pointer register, used to point to the table of

constants.
$sp Stack pointer register, used to point to the top of the

stack used to allocate space for functions.
$zero Zero register, that always contains the value zero.

Attempting to write to this register has no effect.

