Computer Science 210
Computer Systems 1

2007 Semester 1

Lecture Notes Part 2
Instructions &
Addressing Modes

Lecture 7
30 Mar 07

James Goodman

/

Depar}menl

0
Computer Science

Reminders

« Mini-assignment 2 is not yet ready.
The due date (originally 3April) will be
deferred until after the break.

« NO CLASS NEXT TUESDAY, 3April!!
— Only class next week: Thursday, 5April

30-Mar-07 Cs210

30-Mar-07

Optimization: lda, Idah

Ida RegA| RegB <low address>
6 bits 5 bits 5 bits 16 bits

Idah RegA| RegB <hi address>
6 bits 5 bits 5 bits 16 bits

Ida A, <low address>(B)

— sign-extend constant <lowaddress> and add to contents of register
B; assign result to register A

Idah A, <hi address>(B)
— multiply constant <hi address> by 65,536 and add to contents of
register B; assign result to register A
Usually only requires 2 instructions
— Still only generates 32-bit addresses

— Some 32-bit integers cannot be generated this way
Cs210

Base + Displacement

+ Base: along-term but approximate address
— Gives location of larger structure
— Can be dynamically varied
« Displacement
— Static offset embedded in instruction
— Cannot be dynamically varied

30-Mar-07 CS210

30-Mar-07

Load Reg, Disp(Base)

Idg Dest Base Displacement

6 bits 5 bits 5 bits 16 bits

Effective address: (Base) + Displacement
« Base is a 64-bit address

« Displacement is a 16-bit signed constant, sign-extended
to 64 bits
« Displacement defines position relative to Base

Cs210

Recommended Readings

» Today’s lecture mostly based on Chapters 4 & 5 of Dr.
Hutton’s notes.

30-Mar-07 CS210

< lIdq reg, disp(base)
< Idl reg, disp(base)
< ldwu reg, disp(base)
e ldbu reg, disp(base)

e stq reg, disp(base)
< stl reg, disp(base)
e stw reg, disp(base)
e stb reg, disp(base)

< lda reg, disp(base)
< ldah reg, disp(base)

Load Instructions

Load quadword

Load signh-extended longword
Load zero-extended word
Load zero-extended byte

Store quadword
Store longword
Store word
Store byte

Assign computed addr to reg

Multiply displacement by
65,536 and add to base,
assign to address

30-Mar-07 Cs210

Summary: Possible Addressing
Modes for Memory Operations

+ Direct
— address contained in instruction
« Indirect
— Instruction contains address where address is held
« Register indirect
— Instruction specifies register where address is held
» Register + Register
— Instruction specifies two registers
— Contents of registers are added to determine address
« Base + displacement
— Instruction specifies register and contains displacement

— Displacement is added to content of register to determine
address

30-Mar-07 CS210

Other Possible Addressing Modes

« Immediate operand
— Instruction contains the value, used as an operand
— Limited by word size to small constant (8 bits)
— Example: addg $5, 1, $5
— Example: Ida reg, disp($31)

30-Mar-07 Cs210

30-Mar-07

Branch Instruction

How to specify full add (< 53 bits) in a 32-bit
instruction?

Observation: most branches are short

Branch can use relative address: difference from
current value of PC.

CS210 10

Example: bne

111010 Reg Target

6 bits 5 bits 21 bits

« Instruction must be aligned: two LSBs must be zero
 Test register specifies 1 of 32 registers for testing

21 bits can specify a branch relative to current
instruction of PC £ 22° instructions

« New PC = PC + sign-extend(4 * Target)

30-Mar-07 Cs210

11

30-Mar-07

Long-distance Branches

Jump instruction
— Full address specified indirectly through register
— Unconditional transfer of control

CS210 12

Examples of Operand
Specifications

Register (operate, control, memory)

Unsigned 8-bit constant (operate instructions)
Unsigned 6-bit count (shift instructions)

« Base + displacement (memory)

21-bit branch offset (control)

« 26-bit constant (PALcode format)

30-Mar-07 Cs210

13

30-Mar-07

I/O Instructions

« Privileged Architecture Library (PAL)

— A set of functions of arbitrary complexity invoked by a
special call_pal instruction

— Performs privileged operations such as accessing disk,
reading and printing, etc.
« Form: call_pal constant
call_pal CALL_PAL_CALLSYS
call_pal CALL_PAL_BPT

CS210 14

Simple I/O

« getchar (result in $vo)
Idig $a0, Ox1 // CALLSYS_GETCHAR
call_pal 0x83 // CALL_PAL_CALLSYS

« putchar (character in $a1)
Idiq $a0, Ox2 // CALLSYS_PUTCHAR
call_pal 0x83 // CALL_PAL_CALLSYS

30-Mar-07 Cs210

15

30-Mar-07

Registers Named

$0 $vo
$1-$8, $to-$tg
$9-$14 $s0-$s5
$15 $fp
$16-$21 $a0-%a5
$22-$25 $t8-$t11
$26 $ra
$27 $pv
$28 $at
$29 $gp
$30 $sp

$31 $zero (special)

CS210 16

30-Mar-07

$to-$t11
$s0-$s5
$ao-$as5

$vo
$ra

$gp
$sp

$zero

Register Names

Temporary registers, used to hold temporary values,
when evaluating expressions, etc.

Saved registers, used to hold the values of local variables
in functions.

Argument registers, used to pass parameters to
functions.

Value register, used to return the result of a function.

Return address register, used to hold the return address
of a function.

Global pointer register, used to point to the table of
constants.

Stack pointer register, used to point to the top of the
stack used to allocate space for functions.

Zero register, that always contains the value zero.
Attempting to write to this register has no effect.

Cs210 17

