
Computer Science 210
Computer Systems 1

2007 Semester 1

Lecture Notes

Load/Store Instructions
Lecture 6
29 Mar 07

James Goodman

29-Mar-07 CS210 2

Recommended Readings

• Today’s lecture mostly based on Section 4.2 of Dr.
Hutton’s notes.

29-Mar-07 CS210 3

Assignment 2 Delayed

Mini-assignment 2 is not yet ready.

The due date (originally 3April) will be
deferred until after the break.

29-Mar-07 CS210 4

Load & Stores

ldq Reg, Address ! Direct

What’s the problem?

• Address is stored as a constant inside the instruction
– How to dynamically change the address?

• Instructions should be small, fixed size
– Addresses are large

– How to store a 51-bit address in a 32-bit instruction?

• Also a problem for branch instructions:
bne Reg, Address

29-Mar-07 CS210 5

Load/Store Instructions

• How to specify memory address (effective
address) with only 21 bits?

Load/Store Reg

6 bits 5 bits 21 bits

Target

29-Mar-07 CS210 6

Idea: Add another word

• Load/store instructions could be 64 bits

• 21 + 32 = 53 bits

But

• Instructions are not all the same size

• Load address is a constant—can’t be changed within
program

6 bits 5 bits 21 bits

Load/
Store Reg Upper 21 bits of address Low 32 bits of address

32 bits

29-Mar-07 CS210 7

Idea 2: Address is in Register

• Load instruction specifies a register to supply
address: Register Indirect

• Easy to change address without changing instruction

But

• How does the address get into the register?

• How is the address modified?

29-Mar-07 CS210 8

Idea 3: Construct Effective Address

• lda instruction loads constant into register
lda reg, constant

• Can adjust address dynamically (using addition)

• 21-bit constant is not big enough

• Assume <constant> is 32 bits

• Break <constant> into two 16-bit pieces:
16 most significant bits: <hi address>
16 least-significant bits: <low address>

29-Mar-07 CS210 9

Idea 3: Construct Effective Address

• Use instruction sequence:
lda $8, <hi address>
sll $8, $8, 16
lda $9, <low address>
bis $8, $9, $10 ! Logical OR
ldq $11, ($10) ! Register indirect

• Five instructions!

• Variant: use add instead of OR
– sign-extend <low address>
add $8, $9, $10 ! Instead of Logical OR

– Doesn’t quite work if <low address> is negative!

29-Mar-07 CS210 10

Optimization: lda, ldah

• lda A, <low address>(B)
– sign-extend constant <lowaddress> and add to contents of register

B; assign result to register A

• ldah A, <hi address>(B)
– multiply constant <hi address> by 65,536 and add to contents of

register B; assign result to register A

• Usually only requires 2 instructions
– Still only generates 32-bit addresses

– Some 32-bit integers cannot be generated this way

lda Reg A Reg B

6 bits 5 bits5 bits

<low address>

16 bits

ldah Reg A Reg B

6 bits 5 bits5 bits

<hi address>

16 bits

29-Mar-07 CS210 11

Locality of Reference

Observation: memory references are not random

• Accesses tend to be clustered
– in time (temporal locality)

– in space (spatial locality)

• Accesses are to objects
– structures

– arrays

• Can dynamic compute address arithmetically

• Can statically predict offset within known structure

29-Mar-07 CS210 12

Idea 4: Use Combination

• Base + Displacement

• Base: a long-term but approximate address
– Gives location of larger structure

– Can be dynamically varied

• Displacement
– Static offset embedded in instruction

– Cannot be dynamically varied

29-Mar-07 CS210 13

Load Reg, Disp(Base)

Effective address: (Base) + Displacement

• Base is a 64-bit address

• Displacement is a 16-bit signed constant, sign-extended
to 64 bits

• Displacement defines position relative to Base

ldq Dest Base

6 bits 5 bits5 bits

Displacement

16 bits

29-Mar-07 CS210 14

Special Case of Base + Displacement

• Register Direct
– Zero displacement

– Register specifies address

