Computer Science 210 Computer Systems 1 2007 Semester 1 Lecture Notes

Arithmetic & Logical Instructions

Lecture 3 22 Mar 07

Јатез Goodman

Errata: NOT on the Alpha

The Alpha has no NOT instruction. I incorrectly stated that it could be synthesized with the XOR instruction, using register \$31 to supply a zero operand. That was incorrect. It can be synthesized with the NOR (Alpha calls this ORNOT) instruction using register \$31:

not A, $B \equiv$ ornot A, \$31, B

Alternatively, the XNOR instruction can be used (Alpha calls this operation XORNOT, but calls the instruction EQV):

not $A,B \equiv eqv A$, \$31, B

Recommended Readings

- These notes (only after the lecture): http://www.cs.auckland.ac.nz/compsci210s1t/lectures
- Dr. Bruce Hutton's lecture notes: http://www.cs.auckland.ac.nz/compsci210s1t/resources
- Today's lecture mostly based on chapter 2 of Dr. Hutton's notes.
- You are responsible for the first 13 chapters of Dr. Hutton's notes.
 - However, if I don't talk about it in class, it probably won't be on the exam!

The Instruction/Execution Cycle

CS210

Do forever {

Fetch instruction into IR from memory address in IP Update IP for next instruction Decode instruction Evaluate addresses Fetch operands from memory Store result

}

22-Mar-07

2

The Instruction/Execution Cycle: Variant for Control Instructions

Do forever { Fetch instruction into IR from memory address in IP Update IP for next instruction Decode instruction Evaluate test criterion

If success, store new address to PC

}

22-Mar-07

A Simple Program

Instructions:				Initial values:			
add	VA,	VВ,	VA	VA:	$0 \rightarrow 1 \rightarrow 2$		
				VB:	-		
sub	vc,	VD,	vc		$6 \rightarrow 4 \rightarrow 2$		
				VD:	-		
mul	vc,	VE,	VE	VE:	5→20 →80		
bne	VA,	vc,	L1	IP:	L1L2L3L4L12L3 L4L5		
halt							
22-Mar-07				CS210	6		
	add sub mul	add VA, sub VC, mul VC, bne VA,	add VA, VB, sub VC, VD, mul VC, VE, bne VA, VC,	add VA, VB, VA sub VC, VD, VC mul VC, VE, VE bne VA, VC, L1	add VA, VB, VA VA: VB: sub VC, VD, VC VC: VD: mul VC, VE, VE VE: bne VA, VC, L1 IP: halt		

The Von Neuman Computer

CS210

5

The von Neuman Model

- Computer consists of CPU, Memory, I/O
- Memory may contain instructions or data (or meta-data)
- Does only one thing: the Instruction/Execution cycle

22-Mar-07

The Alpha Computer

Registers

- 32 registers
- \$0 \$31; also names
- \$31 is special
 - when read, gives zero
 - writing has no effect

Four Categories of Instructions

- Arithmetic/Logical
 - Arithmetic
 - Logical
 - Shift
 - Compare
- Control
 - Branch on condition
 - Jump
 - Jump and link
- Memory: Load & Store
- Special

Arithmetic Instructions

CS210

- add, sub, mul (no divide)
- two sources, one destination (can be common)
- Form: add A,B,C
 - B can be an immediate, i.e., value contained in the instruction.
- Two operand types
 - Long word (32 bits): addl, subl, mull
 - Quad word (64 bits): addq, subq, mulq
- Overflow
 - Addition & subtraction: only one bit
 - Multiplication: up to 31 bits (additional multiplication ops)

CS210

11

22-Mar-07

10

Logical Instructions

- Two sources, one destination
- Form: and A,B,C
 - B cannot be an immediate, i.e., contained in the instruction.
- One operand type: 64 bits
- Overflow: none

Boolean Functions of 2 Variables

Alpha Logical Operations

CS210

Shift Operations

CS210

- Form: sll A,Count,B
- A count of *i* is equivalent to *i* shifts by 1 place.
- There are three types of Shift Operations
 - logical
 - arithmetic
 - rotate

22-Mar-07

13

22-Mar-07

14

Shift Operations

• Basic Right Shift Operation:

Shift Operations

• Basic Left Shift Operation:

22-Mar-07	CS210	17	22-Mar-07	C5210	18

Shift Operations

• Right Rotate Operation:

- No information lost
- For N-bit word, rotate right N positions has no effect
- Rotate right *i* positions is same as rotate left N i positions
- Not implemented in Alpha (why not?)

Logical Shift Operations

• Right Logical Shift Operation:

- Alpha instruction: srl
- Java equivalent: >>>

Logical Shift Operations

• Left Logical Shift Operation:

- Alpha instruction: **sll**
- Java equivalent: <<

Arithmetic Shift Operations

22-Mar-07 CS210 21 22-Mar-07 CS210

Arithmetic Shift Operations

- Left Arithmetic Shift Operation
 - Unsigned integer multiplication by power of 2

• Overflow if MSB changes

Same as logical left shift!

- Alpha instruction: sll (no sla)
- No Java equivalent either