Computer Science 210 Computer Systems 1 2007 Semester 1 Lecture Notes

The Programmer's View of Computer Hardware

James Goodman

Who Am I?

- Prof. James Goodman
- Computer Science Department
- Science Centre 303-591, 38 Princes St., City
- Office Hours: No scheduled time: drop by my office or make appointment
- E-mail: goodman@cs.auckland.ac.nz

Recommended Readings

- These notes (only after the lecture): http://www.cs.auckland.ac.nz/compsci210s1t/lectures
- Dr. Bruce Hutton's lecture notes: http://www.cs.auckland.ac.nz/compsci210s1t/resources

Why Study Computer Organization?

CS210

- Understanding how hardware and software communicate will make you a better programmer
- Some things change; some things stay the same Moore's Law vs. fundamental laws
- Appreciate the power of abstraction
 - Don't write in assembly language if you don't have to!
- "Real Programmers do it in Assembly"
 - No longer an important skill

16-Mar-07

2

All Computers are the Same!

• All computers, given sufficient time and memory, can compute exactly the same things.

Turing Machine

Mathematical model of a device that can perform any computation – Alan Turing (1937)

 ability to read/write symbols on an infinite "tape"
 state transitions, based on current state and symbol

Everything that can be computed can be performed by some Turing machine. (Turing's thesis)
x, y → T_{add} → x + y x, y → T_{mul} → x * y

Turing machine that adds

Turing machine that multiplies

Universal Turing Machine

- Turing described a Turing machine that could implement all other Turing machines.
 - inputs: data, plus a description of computation (Turing machine)

Universal Turing Machine

- U is programmable so is a computer!
 - instructions are part of the input data
 - a computer can emulate a Universal Turing Machine, and vice versa

Therefore, a computer is a universal computing device!

CS210

7

16-Mar-07

16-Mar-07

From Theory to Practice

CS210

- In theory, computer can *compute* anything that's possible to compute if you
 - Have enough memory
 - Can wait long enough
- In practice, *solving problems* involves computing under constraints.
 - Time: photoshop, weather forecast,...
 - Cost: hotel "key", PDA, ...
 - Power: cell phone, laptop, ...

6

The Von Neuman Computer

The Von Neuman Computer

The von Neuman Model

- Computer consists of CPU, Memory, I/O
- Memory may contain instructions or data (or meta-data)
- Does only one thing: the Instruction/Execution cycle

The Instruction/Execution Cycle

Do forever {

Fetch instruction into IR from memory address in IP Update IP for next instruction Decode instruction Evaluate addresses Fetch operands from memory Store result

16-Mar-07

11

}

The Instruction/Execution Cycle: Variant for Control Instructions

Do forever {

Fetch instruction into IR from memory address in IP

Update IP for next instruction

Decode instruction

Evaluate test criterion

If success, store new address to PC

}

A Few Sample Instructions

Instru	ctior	ו		Meaning	
add	A,	в,	C	$\mathbf{C} = \mathbf{A} + \mathbf{B}$	
sub	A,	в,	C	C = A - B	
mul	A,	в,	C	C = A * B	
bne	A,	в,	Label	if (A != B) goto Label	
halt				?	

- A *Label* designates a memory location.
- A Label can be either an instruction or a variable

CS210

14

AS	imp	le P	rogram

CS210

Instr	uction	s:		Initial values:
L1:	add	VA, VB	, VA	VA: 0
L2:	sub	VC, VD	, VC	VB: 1
L3:	mul	VC, VE	, VE	VC: 6
L4:	bne	VA, VC	, L1	VD: 2
L5:	halt			VE: 5

IP: L1

16-Mar-07

13

16-Mar-07