TEST COMPSCI.210.S1.T Computer Systems

 3^{rd} May 2005, 14:35 - 15:25pm

(TIME ALLOWED: 50 MINUTES)

DO NOT START, DO NOT OPEN SCRIPT! UNTIL INSTRUCTED TO DO SO.

Please write your family name, given name and student ID at the top of every page. Answer all questions on the test paper in the spaces provided. The test is worth 15% of your final grade.

No calculators are allowed!

There are two parts to the test. Part A (worth 30%) is on Data Representation, Part B (worth 70%) is on Unix.

Section:	Α	В	Total
Possible marks:	30	70	100
Awarded marks:			

SURNAME:

FORENAME(S):

STUDENT ID:

Print name clearly: _

PART A-Data Representation: multiple choice (worth 30%)

Put a <u>tick</u> or <u>cross</u> in the box on the left of the correct answer (or answers). <u>Important</u>: In some questions you need to possibly mark more than one box in a given question to get full marks for that question. Incorrect answers on the MCQ are penalised (one mark off for each incorrect answer).

Q. 1	The number 233_{16}	is equal to the following:	;			
	307_{10}	29710		1000110001_2		1000110011_2
Q. 2	The number 233_{10}	is equal to the following:	•			
	None of the other.	s 11111010 ₂		$f6_{16}$		$e5_{16}$
Q. 3	What is the magni	tude of the 10-bit two's	complex	ment number 1011	100011	$_2$:
	285_{10}	73910		-738_{10}		-285_{10}
Q. 4	What is the 10's co	omplement of 6 :				
	8's complement+2	5		-4		4
Q. 5	Express the unsign	$ed \ binary \ 11111.10010_2$	as a de	cimal, assuming th	ne form	$at \ bbbbb.bbbbb_2$:
	31.06250	31.56250		-31.56250		32.56250
Q. 6	ACDC may repres	ent:				
	a number in base 1					
	a number in base 1 a number in base 1					
	a hard rock group					
Q. 7	The Unsigned Hexe	$a decimal \ number \ 67532_{16}$	$_{5}$ has a	value :		
	$= 1472462_8$	$< 67532_{10}$		$< FFF00_{16}$		$< 1000000_{10}$
Q. 8	The sum 110111_2 +	-0.111_2 is equivalent to:				
	none of the others					
	53.624_{10}					
	$67_8 + 0.7_8$					
	110111.111_2					

Q. 9 The binary product $110111_2 \times 101_2$ is equivalent to:

 $\begin{array}{c|c} none \ of \ the \ others \\ 110111_2 \ + \ 11011100_2 \\ 110111_2 \ < \ 2 \ + \ 0110111_2 \\ 5_{10} \ \times \ 67_8 \end{array}$

Q. 10 Appendix A gives a table for 7-bit ASCII. Using this table, give the hexadecimal value corresponding to the encoding of the ascii string "ACDC" (Assume each 7-bit code occupies the space of an 8-bit byte with the MSB=0):

Q. 11 What decimal value has to be added to the ASCII for the upper case letter "H'" to obtain the ASCII for the lower case letter "i" (see Appendix A):

$2^5 - 1$	105 - 72	$69_{16} - 48_{16}$	146 - 106
Q. 12 From Append	lix A, the binary ASCII co	ode for the letter "G" is:	
1000111	0111 × 100	0111 + 100	0111100
Q. 13 The binary n	umber 11010.110011 is equ	uvalent to:	
1.110110001 ×	2^{6}		
1.1101100001 :	$\times 2^4$		
0.11010110011	$ imes 2^5$		
11010110011 ×	52^{-6}		

	Ρ	rint	name	clearly:	
--	---	-----------------------	------	----------	--

Q. 14	Given	the represent	ation 110101_2 , as	ssuming XS-	32 (excess 3)	2), its value	is:
	none o	f the others	$< 32_{10}$		$> 32_{10}$		21_{10}
expone	ent and	÷		°			n, 11 bits for the are represented in

2^{11}	2^{42}	2^{52}	2^{53}

Q. 16 Can the rational number 4/8 be expressed exactly in IEEE single precision floating point format?:

definitely not
only with 64-bits RISC architecture
yes
possibly

Q. 17 Can the rational number 3/11 be expressed exactly in IEEE double precision floating point format?:

It can with a Pc but not with a Mac
it depends on the word size available in the computer used
definitely yes
definitely not!

Q. 18 The CPU comprises a number of functional subsystems. These include:

CISC	RAM	integer registers data cache
Xbox	DDRAM	fetch/decode unit iPod

Print name clearly: _____

PART B-Unix: multiple choice (worth 70%)

Q. 19

Assuming the following is a content of the current directory: a*85.txt ?*.txt a.txt abbftxtafile.bash b.txt b?gu *.txt What is the output of the following commands? a. ls *.txt[2 marks] b. ls "*.txt" [2 marks] c. ls *?.txt [2 marks]d. ls -r ?.txt* [2 marks] e. ls [a - zA - Z0 - 9] * .txt[2 marks] f. ls $* \mid tr "a" "A"$ [2 marks]

Print name clearly:		
Q. 20		
Give a definition of the	"absolute nathrame"	

[2 marks]

Q. 21

Give the content of the variable var after each command is executed. If var is empty then write "var is empty" in the answer box, if you leave the answer box empty you will not get a mark! <u>a. var= $(expr "f^{+}hfh425bj" : ".**([a-z0-9]* \).*")$ [2 marks]</u>

<u>b.</u> $var = \frac{(expr "f^*hfh425bj" : "([a-z]*[0-9]*(*)).*")}{(a-z)*[0-9]*(*).*")}$

Q. 22

[10 marks]

<u>[2 marks]</u>

Assume there is a file called echo.bash in your current directory. Following is its content: #!/bin/bashecho \$1 echo \$2 echo \$3 echo \$4 echo \$5 echo \$6 echo \$7 echo \$8 echo \$9 Current directory also contains following files: ghiabcdefjklmnoWhat would be the output if following command were executed? ./echo.bash hello 1 "a b C" *

Print name clearly: _ Q. 23

The current directory contains a file called file 1. Give the absolute (octal) command which changes the file permission to:

owner: all permission everyone: read only

[5 marks]

Q. 24

If the following is the output of the ls command, write down following information that you can gather about this file:

5	-rw-rr	1	eyer001	all	6 May 2	11:11	file1
<i>a</i> .	File Type		-		_		[2 marks]
h	Group permissions						[2 marks]
0.							
с.	Everyone else's permi	ssions					[2 marks]
_							
$\frac{a}{b}$	Owner's name						[2 marks]
e.	Group name						2 marks
_	<u>a (1:a</u>	1.					
<u>t.</u>	Creation/modification	date					[2 marks]

Print name clearly: _

Q. 25

[15 marks]

Write a shell script that will read from file line by line. Take first letter out of each word and store it in the new file. Words are separated by space.

Your script **must contain function** that is called **GetFirstLetters**. This function will accept a line from file and return only first letters from each word in one string, you function **should not** write to the file directly or you will loose 1 mark. You must use for loop in the function and **while loop** in the script to read from file.

Your script will accept two arguments. First argument is a file name from which to read and second argument is a file name of the new file that will be created.

Here is an example of the file that is to be passed and the expected output: Input file Darrin 2 12983 BSc Bob 5 29093 BCom Philip 3 95011 BSc Tania 4 3820093 BE

Output file

D21B B52B P39B T43B Print name clearly: _

Q. 26

Write UNIX one line shell command to achieve the following:a. List names of all the files in the current directory that have a third character a digit.Eg: El3na ad2jd[2 marks]

b. The file called columns contains two numerical columns separated by; (semicolon). Read from columns and store the numerically sorted second column into file data.txt [2 marks]

c. Accept input from the keyboard and store it into the variable **name**

[2 marks]

Appendix	А
rppondia	T T

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	b7 0 0											0			0			1			1			1	1			1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			ł	6			0			0			1			1			0			0			1			1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BITS b5						0				_		0			1			0			1			0			_1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						CONTROL											UPPER CASE						LOWER CASE							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	b4	b4 b3 b2 b1				CONTROL					NUMBERS																			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						0	NIII		16	DIE		32	сD		48	0		64	۵		80	D		96	1		112			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0		0	0	0	NOL	0		DLL	20		эг	40		0	60		e	100		Г	120			140		þ	160	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0		0	1	1	SOH	1		DC1	21		ļ	41		1	61		А	101		Q	121		а	141		q	161	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0		1	0	2	ςтχ		18	DC2		34	,,		50	2		66	B		82	R		98	h		114	r		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						-	517	2		0.02	22			42		-	62		D	102			122		2	142			162	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0		1	1	3	ETX	3	13	DC3	23	23	#	43	33	3	63	43	С	103	53	S	123	63	с	143	73	s	163	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1		0	0	4	ЕОТ			DC4			\$			4			D			т			d		116	t		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						4 5		4			24			44			64			104			124			144			164	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1		0	1	5	ENQ	5	_	NAK	25		%	45	_	5	65		E	105		U	125		е	145		u	165	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1		1	0		ACK			SYN			&			6			F			V			f			v		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						6 7		6			26			46			66			106			126			146			166	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1		1	1	7	BFL	7		EIR	27			47		1	67		G	107		VV	127		g	147		W	167	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0		0	0	8	BS	10		CAN	90		(50		8	70		Н	110		Х	190		h	150		х	170	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0		0	1	9		10		ГМ	30		``	30		0	10			110		V	130		:	150			110	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0		0	1	-	пі	11		EIVI	31)	51		9	71		I	111		Ŷ	131		I	151		у	171	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0		1	0	A	LF	12		SUB	32		*	52		:	72		J	112		Ζ	132		j	152		z	172	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0		1	1	11	VT			FSC	01								ĸ			ſ	102		k	102		ſ		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				-	-		vi	13		LJC	33		Т	53		,	73		IX.	113		L	133		n	153		ι	173	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1		0	0	с	FF	14	1C	FS	34	$_{2C}$,	54	3C	<	74	4C	L	114	5C	\	134	6C	I	154	7C		174	
D 15 1D 35 2D 55 3D 75 4D 115 5D 135 6D 155 7D 14 30 46 62 78 94 110 126	1	1		0	1	13	CR			GS		45	_		61	=		77	М			1		109	m			}		
							en	15			35			55			75			115		1	135			155		J	175	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1		1	0		SO	16		RS	36			56		>	76		Ν	116		^	136		n	156		~	176	
1 1 1 1 1 SI US / ? O _ 0 DEL	1	1		1	1		SI			US			/			?			0			_			0			DEL		
										<u>.</u>	37	dec			3F		77	4F		117	5F		137	$6 \mathrm{F}$		157	$7\mathrm{F}$		177	
												CHA																		

Figure 1: American Standard Code for Information Interchange (ASCII)

Appendix B-Unix

Useful commands cd chmod $^{\rm cp}$ lsmkdir $\mathbf{m}\mathbf{v}$ \mathbf{rm} rmdir echo cat head tail uniq sort cut pastefind grep