THE UNIVERSITY OF AUCKLAND

FIRST SEMESTER, 2005 Campus: Tamaki

COMPUTER SCIENCE

COMPUTER SYSTEMS

(Time allowed: TWO hours)

NOTE: DO NOT START, DO NOT OPEN SCRIPT!

UNTIL INSTRUCTED TO DO SO

Please write your family name, given name and student ID at the top of every page. Answer all questions on the exam paper in the spaces provided. The exam is worth 70% of your final grade.

No calculators are allowed!

There are three parts to the test. Part A (worth 10%) is on Data Representation, Part B (worth 30%) is on Unix, Part C (worth 60%) is on Assembly.

Section:	Α	B	C	Total
Possible marks:	10	30	60	100
Awarded marks:				

SURNAME:

FORENAME(S):

STUDENT ID:

QUESTION/ANSWER SHEET	2	COMPSCI 210
Surname:		
Forename(s):		

Section A: Data Representation

1. Multiple choice (up to 6 marks): Put a tick or cross in the box on the left of the correct answer (or answers).

Important: In some questions you need to possibly mark more than one box in a given question to get full marks for that question. Incorrect answers on the MCQ are penalised (one mark off for each incorrect answer).

(a) The number 78_{10} is equal to the following:

	66_{12}		116_{8}		01001100_2		$4D_{16}$
(b) The nu	mber $1B6_{16}$ is equal	to the fo	llowing:				
	None of the others		1101101010_2		666_8		436_{10}
(c) Expres	ss the unsigned binary (0011110	0.11010_2 as a decimal	l, assumi	ng the format bbbbb.b	bbbbb ₂ :	
	None of the others		31.56250		-30.56250		30.6250
(d) The int	teger binary expression	n 10111	$001_2 << 3 - 101_2 >$	> 2 is e	quivalent to:		
	none of the others $10111_2 - 10110_2$ 00011_2 10110_2						
respon	dix A gives a table for ding to the encoding of of an 8-bit byte with th	of the as	cii string "1234" (Ass	-			

64636261_8
31323334_{16}
34333231_{16}
61626364_8

Surname:

Forename(s):

(f) Can the irrational number π be expressed exactly in IEEE single precision floating point format?:

definitely not
only with 64-bits VAX data representation
yes
possibly

2. Compute the 20-bit binary fraction representation of $\frac{1}{63}$. Show your working. [4 marks]

QUESTION/ANSWER SHEET	4	COMPSCI 210
Surname:		
Forename(s):		

Section B: Unix

3. Assuming this is a content of the file called Info.txt give the output produced by executing each of the following commands.

With 5 different campuses and 30,000 students, it can be somewhat daunting, especially as a new student, to find your feet. The Schools Partnership Office (contact (09)3737969)

(a) grep '[0-9]' Info.txt

[2 marks]

(b) grep -n '^ [A-Z]' Info.txt

[2 marks]

(c) grep -n '^[^A-Z]' Info.txt

[2 marks]

5

Surname:

Forename(s):

(d) cat Info.txt | wc -w

[2 marks]

[2 marks]

(e) cat Info.txt | grep '[0-9]' |tr -d"("|tr -d")"

4. (a) Give a shell pipeline command to count the number of lines that contain the text "UNIX" in a file named Compsci210.txt. [2 marks]

(b) Write a command to clear the group's read permission flag for a file "**readme.txt**" in the current directory. [2 marks]

Surname:

Forename(s):

(c) Give a shell command to list all files that end with ".s", in your current directory and any of it's sub-directories. [2 marks]

(d) Give a one line command which will save in alphabetically **reverse** order, a list of all files in the current working directory, to a file called **reverse.txt**. [2 marks]

(e) Explain the difference between wildcards and regular expressions. Give examples of commands you will use them in. Give one symbol that looks the same but have different meaning and one example of symbol that has same meaning, but look different in wildcards and regular expression.
 [2 marks]

7

Surname:

Forename(s):

5. Write a Bash script that is called "Calculator.bash", this script will accept 3 parameters, 1st parameter is a first number, 2nd parameter is either + or - and indicates an operator and 3rd parameter is the second number. [5 marks]
 Shell script should return result of either subtraction or addition of two number depending on the

Shell script should return result of either subtraction or addition of two number depending on the parameter.

For example: Calculator.bash 2 - 1 1 Calculater.bash 2 + 5 7

6. Write a shell script called "Conv.bash" that accepts a line of space delimited binary numbers, coverts those to hexadecimal and prints them out. [5 marks] For example:
Conv.bash 1000 0100 0010 0001

Conv.bash 1000 0100 0010 0 0x8421 Conv.bash 0101 0100 0x54

Surname: _____

Forename(s):

Section C: Assembly

7. (a) Provide 2 different ways to subtract the content of register \$T1 from register \$T2, \$T2 holding the result.

(b) What is the main difference between the instructions **ldwu** and **ldw**?

[2 marks]

(c) Show content of the registers \$T0 and \$T1 after following commands have been executed: [2 marks]
Idl \$T0, 0x9178;
Idlu \$T1, 0x9178;

(d) What is the purpose of the value held in the RA?

[2 marks]

(e) What is the purpose of the following instruction **stq \$ra, savRet(\$sp)**;

[2 marks]

Surname:

Forename(s):

- 8. For each of the following questions answer either True or False. You will be awarded 2 marks per right answer.
 - (a) On Alpha there are total of 64 floating and integer registers. They all are 64 bits long.
 - (b) Command Idiq \$T0, a; loads char "a" into register \$T0.
 - (c) Command **stb \$T0**, **1**(**\$T2**); retrieves byte stored in memory at the location of **1**(**\$T2**) and stores it into **\$T0**.
 - (d) The instruction **sra \$T0**, **\$T1**; is a genuine alpha instruction and performs arithmetic shift right by **\$T1** bits, of the content **\$T0**.
 - (e) Command br while; means break while loop.

Surname:

Forename(s):

9. (a) Assume the following section program is to be executed: data { align quad; one: byte 0x29; align quad; two: quad 0x123456789abcdefg; align quad; message: asciiz "0xabc948"; align quad; three: quad; align quad; last: word 0xbeee; }

Further assume that the memory address corresponding to label one is **0x100000** and the memory has been reset beforehand. Indicate the contents of each byte of memory (and the correct addresses labels are referring to) after the program section has executed. Display all values in hexadecimal. Use little Endian format. [15 marks]

label	memory address	contents	label	memory address	contents

Surname: _____

Forename(s):

(b) Assuming initially the memory content from the previous question, compute the value of registers modified after executing each instruction of the assembly code provided below. [10 marks]

ldiq \$t0, two;	\$t0=	
ldwu\$t1, 4(\$t0);	\$t1=	
ldiq \$t3, last;		
ldb \$t4, 0(\$t3);		
cmpeq \$t4, \$t3, \$t5;		
cmple \$t4, \$t1;		
mov 24, \$t6;		
ldiq \$t0, 2;		
addq \$t0, 10;		
negq \$t0;		

12

Surname:

Forename(s):

10. The opcode and function code (if any) of some Alpha instructions are shown in the table below. All values are in hexadecimal. The formats of integer operate, memory and branch instructions are displayed below.

instruction	opcode	function code	instruction	opcode	function code
addq	10	20	mulq	13	20
subq	10	29	sll	12	39
stq	2d		sra	12	3c
cmple	10	6d	lda	8	
cmpeq	10	2d	ldq	29	
bne	3d		stl	2c	

Operate instruction format

31	26	25	21	20	16	15	13	12	11	5	4	0
opc	ode	R	la	R	b	0	00	LF	func	tion	R	lc

31 26	25 21	20 13	12	11 5	4 0
opcode	Ra	value	LF	function	Rc

Branching instruction format

31	26		21	20	0
op	code	de F	Ra	displacement	

Memory instruction format

31	26	25	21	20	16	15	0
opcode		R	la	R	b	displacement	

QUESTION/ANSWER	SHEET
-----------------	-------

Surname:

Forename(s):

(a) Disassemble the hexadecimal value **0x40410523** as an Alpha instruction. Show your working. [5 marks]

(b) Produce the hexadecimal value associated to the following instruction: comple \$T5, 0x2, \$T1; Show your working.

[5 marks]

14

Surname: _____

Forename(s):

(c) Produce the hexadecimal value associated to the following instruction: lda \$T1, l(\$T0); Show your working. [5 marks]

QUESTION/ANSWER SHEET	15	COMPSCI 210
Surname:		
Forename(s):		

Overflow page 1

QUESTION/ANSWER SHEET	16	COMPSCI 210
Surname:		
Forename(s):		

Overflow page 2

Surname: _____

Forename(s):

b7	0 0	0 0	1 1	1 1
b6 b5	$\begin{array}{ccc} 0 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{ccc} 1 & 1 \\ 0 & 1 \end{array}$	0 0	$\begin{array}{ccc} 1 & 1 \\ 0 & 1 \end{array}$
BITS	0 1			
	CONTROL	SYMBOLS	UPPER CASE	LOWER CASE
b4 b3 b2 b1		NUMBERS		
0 0 0 0	0 NUL 0 DLE 20	³² SP 0 20 40 30 60	64 80 @ P 40 100 50 120	96 112 60 140 70 160
0 0 0 1	1 SOH DC1	33 49 ! 1	65 81	97 113
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21 41 31 61 34 50	A Q 41 101 51 121 66 82	a q 61 141 71 161 98 114
0 0 1 0	STX DC2	" 22 42 32 62	B R 42 102 52 122	b r 62 142 72 162
0 0 1 1	³ ETX DC3	³⁵ # 3	67 83 C S	99 115 C S
0 1 0 0	3 13 23 4 20	23 43 33 63 36 52	43 103 53 123 68 84	63 143 73 163 100 116
0 1 0 0	EOT DC4 <u>4</u> <u>4</u> <u>14</u> <u>24</u> <u>5</u> <u>21</u>	\$ 4 24 44 34 64 37 53	D T 44 104 54 124 69 85	d t 64 144 74 164 101 117
$0 \ 1 \ 0 \ 1$	ENQ 5 NAK 25	% 5	E U 45 105 55 125	e u 65 145 75 165
0 1 1 0	⁶ ACK SYN	³⁸ ⁵⁴ 6	70 86 F V	102 118 v
	6 6 16 26 7 23	26 46 36 66 39 55	46 106 56 126 71 87	66 146 76 166 103 119
0 1 1 1	BEL ETB 7 7 17 27 8 24	, 7 27 47 37 67 40 56	G W 107 57 127	g W 67 147 77 167 104 120
1 0 0 0	⁸ BS ²⁴ CAN ³⁰	(8	$ \begin{array}{c} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 0 0 1	9 17 EM	41 57 9	73 89 Y	105 121
	9 11 19 31 10 26		49 111 59 131 74 90	I Y 69 151 79 171 106 122
1 0 1 0	LF SUB		J Z Z	j z 6A 152 7A 172
$1 \ 0 \ 1 \ 1$	UT 127 ESC 33	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	⁷⁵ 91 4B 113 5B 133	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1 1 0 0	¹² FF FS	44 60 <	76 92 L	6B 153 7B 173 108 124
	II II C 14 1C 34 13 29 29 34	2C ' 54 3C 74 45 61	4C 114 5C 134 77 93	6C 154 7C 174 109 125
$1 \ 1 \ 0 \ 1$	CR GS D 15 1D 35		M] 4D 115 5D 135	$\left[\begin{array}{c c} m & \\ \mathrm{^{6D}} & \mathrm{^{155}}_{7\mathrm{D}} & \\ \end{array} \right] \right\} _{175}$
1 1 1 0	¹⁴ SO RS	46 62	⁷⁸ 94 ^	n 126 ~
1 1 1 1	E 16 1E 36 15 31	47 63	4E 116 5E 136 79 95	6E 156 7E 176 111 127
1 1 1 1	SI US F 17 1F 37		0 <u>–</u> 4F 117 5F 137	o DEL 6F 157 7F 177
	LEGEND	CHAR hex oct		
		hex oct		

Appendix A

Figure 1: American Standard Code for Information Interchange (ASCII)

QUESTION/ANSWER SHEET	18	COMPSCI 210
Surname:		
Forename(s):		

Appendix B-Unix

Useful commands cd chmod cp ls mkdir mv rm rmdir echo cat head tail uniq sort cut paste find grep