

COMPSCI 111/111G

L2-6/1

Bits and Bytes

Exercise Sheet

The following three questions relate to dials that have 10 different states (0-9).

Exercise 1: Given a machine that used 4 dials, how many different numbers could we represent?

104 = 10,000 numbers (ie 0-9999)

Exercise 2: If we wanted to represent 123 different colours, each encoded as a different number, how many dials do we need?

3 dials (ie. hundreds, tens, ones)

Exercise 3: If we used numbers to represent each letter of the alphabet, how many dials would we need to store a single letter?

2 dials, since there are 26 letters in the alphabet

Exercise 4: How many different numbers can we represent using 3 bits?

23 = 8 numbers (ie. 0-7)

Exercise 5: How many different numbers can we represent using 4 bits?

2 = 16 numbers (ie 0-15)

Exercise 6: How many different numbers can we represent using 5 bits?

25 = 32 numbers (ie. 0-31)

Exercise 7: How many kB are there in 4GB?

Exercise 8: How many MiB are there in 1TiB?

Exercise 9: Which is bigger, 1 MB or 1 MiB?

Exercise 10: If it took 256 bytes to store one picture, and we wanted to send 40 pictures, how many bytes would be required? Use the most appropriate prefix in your answer.

Exercise 11: What decimal number is equal to the binary number 1101?

$$\frac{1}{2^{3}} \frac{1}{2^{2}} \frac{0}{2^{1}} \frac{1}{2^{6}} \Rightarrow 2^{3} + 2^{2} + 2^{6} = 8 + 4 + 1 = 13_{10}$$

Exercise 12: What decimal number is equal to the binary number 101010?

$$\frac{1}{2^{5}} \frac{0}{2^{1}} \frac{1}{2^{3}} \frac{0}{1^{2}} \frac{1}{2^{1}} \frac{6}{2^{0}} \Rightarrow 2^{5} + 2^{3} + 2^{1} = 32 + 8 + 2 = 42,0$$