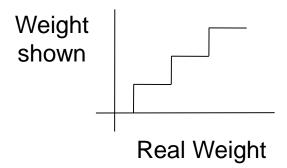
Bits, bytes and digital information

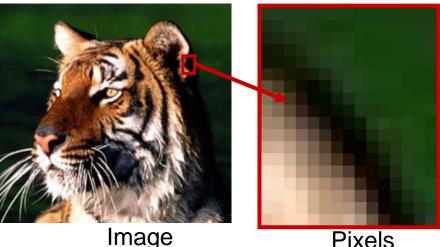
Lecture 2 - COMPSCI111/111G SS 2016

Today's lecture


- Understand the difference between analogue and digital information
- Convert between decimal numbers and binary numbers

Analogue vs digital information

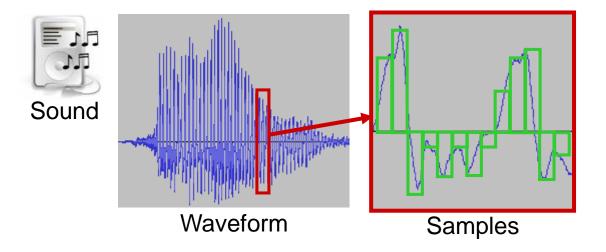
- Information in the real world is continuous
 - Continuous signal



- Information stored by a computer is digital
 - Represented by discrete numbers

Encoding information

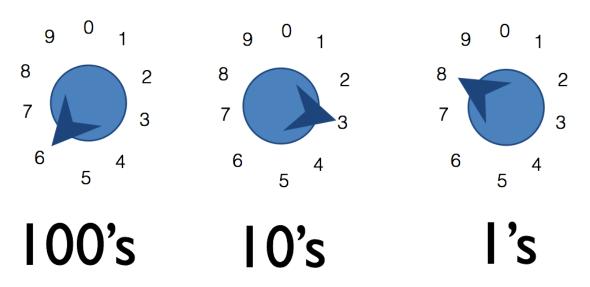
- Real world information is stored by a computer using numbers
- Visual information



Pixels

- 1. Give each pixel colour a number.
- 2. Let the computer draw the numbers as coloured pixels (eg. black = 0).

Encoding information


Sound information

- 1. Give each sample a number (height of green box).
- 2. Let the computer move the loudspeaker membrane according to the samples.

Decimal numbers

- ► The decimal number system is a base 10 system
- You can think about it as a dial with 10 positions:

$$600 + 30 + 8 = 638$$

Decimal numbers

- The number of dials corresponds to the numbers that can be generated
- So:
 - ► Possible numbers = 10ⁿ
 - Range = 0 to 10ⁿ-1
- ► For example, if we have four dials...
 - ► Therefore:
 - $ightharpoonup 10^4 = 10,000 \text{ possible numbers}$
 - ▶ Note 10 = base 10 and 4 = number of dials
 - Range = 0 to 9999 (ie. 0 to 10⁴-1)

- A number whose value is either 0 or 1
- ► Too complex to create 10 states in electronic circuitry. Much easier if we have two states like a switch, ON and OFF
- This is how binary numbers work; 0 usually means OFF and 1 usually means ON

0

- Each binary number is called a bit (binary digit)
- Using strings of bits, we can represent any whole number
- Using one switch (ie. one bit) we can generate up to two numbers (ie. 0 and 1)

Using two switches (ie. two bits) we can generate up to four numbers

Josef Josef	Binary 00	Decimal 0
OF 21	01	1
Ord	10	2
он	11	3

- So:
 - ▶ Possible numbers = 2ⁿ
 - Range = 0 to 2ⁿ-1
- ► For example, if we have four switches...
 - ► Therefore:
 - \triangleright 2⁴ = 16 possible numbers
 - ▶ Note 2 = base 2 and 4 = number of switches
 - ▶ Range = 0 to 2^4 -1:
 - ▶ 0000₂ to 1111₂
 - \triangleright 0₁₀ to 15₁₀

Converting binary to decimal

With decimal numbers, each dial's position has a value:

$$1 * 10^{3} + 5 * 10^{2} + 2 * 10^{1} + 1 * 10^{0}$$
 $1000 + 500 + 20 + 1$
 $= 1521_{10}$

Similarly with binary numbers, each switch's position has a value. Convert 1101₂ to decimal:

$$1 * 2^{3} + 1 * 2^{2} + 0 * 2^{1} + 1 * 2^{0}$$
 $1 * 8 + 1 * 4 + 0 * 2 + 1 * 1$
 $= 13_{10}$

Converting binary to decimal

- Convert 10011₂ to decimal
- Convert 35₁₀ to binary

Prefixes

- A group of 8 bits is a byte
 - ► A group of 4 bits is a **nibble**
- Bytes are the common unit of measurement for memory capacity
- ▶ There are two sets of prefixes:
 - Decimal
 - Binary

Decimal prefixes

10 ⁿ	Prefix	Symbol	Decimal
1	none		1
10 ³	kilo	K	1000
10 ⁶	mega	M	1,000,000
10 ⁹	giga	G	1,000,000,000
10 ¹²	tera	Т	1,000,000,000
10 ¹⁵	peta	Р	1,000,000,000,000
10 ¹⁸	exa	E	1,000,000,000,000,000
10 ²¹	zetta	Z	1,000,000,000,000,000,000
10 ²⁴	yotta	Y	1,000,000,000,000,000,000,000

Binary prefixes

2 ⁿ	Prefix	Symbol	Decimal
2 ⁰	none		1
2 ¹⁰	kibi	Ki	1024
2 ²⁰	mebi	Mi	1,048,576
2 ³⁰	gibi	Gi	1,073,741,824
2 ⁴⁰	tebi	Ti	1,099,511,627,776
2 ⁵⁰	pebi	Pi	1,125,899,906,842,624
2 ⁶⁰	exbi	Ei	1,152,921,504,606,846,976
2 ⁷⁰	zebi	Zi	1,180,591,620,717,411,303,424
2 ⁸⁰	yobi	Yi	1,208,925,819,614,629,174,706,176

Prefixes in Computer Science

- Both decimal and binary prefixes are used in Computer Science
- Decimal prefixes are preferred because they are easier to calculate, however binary prefixes are more accurate

Binary prefix	Decimal prefix	Value (bytes)
8 bits	1 byte	same
1 KiB	1 KB	1024 ≠ 1000
1 MiB	1 MB	1,048,576 ≠ 1,000,000

Example - hard disk sizes

- ► A 160GB hard disk is equivalent to 149.01GiB
 - ► 160GB = 160 * 10⁹
 - \blacktriangleright 149.01GiB = (160 * 10⁹) / 2³⁰

Examples

- Which has more bytes, 1KB or 1KiB?
- ► How many bytes are in 128MB?
- ▶ What is the decimal prefix for 10¹² bytes?

Summary

- Computers use the binary number system
 - ▶ We can convert numbers between decimal and binary
- Decimal prefixes and binary prefixes are used for counting large numbers of bytes