Welcome to COMPSCI111/111G

Summer School 2016

Today's class

- Introduction to COMPSCI111/111G
 - People
 - Assessment
 - Labs
 - Test and exam
- Introduction to hardware
- Bits, bytes and digital information

Lecturers

- Damir Azhar
 - ▶ damir.azhar@auckland.ac.nz
 - ▶ 303S, Level 3, room 390
- Reuel Baptista
 - ► reuel.baptista@auckland.ac.nz
 - 303S, Level 5, room 567
- Paul Ralph
 - ▶ p.ralph@auckland.ac.nz
 - 303S, Level 4, room 492
- We all have an open door policy. Visit anytime or email for an appointment

Course coordinator and lab supervisor

- Ann Cameron
 - ▶ 303S, Level 4, room 479
 - ▶ a.cameron@auckland.ac.nz
 - Open door policy. Visit anytime or email for appointment
- Contact Ann if you have questions about the course or labs

Computer Science Support Network

Radu Nicolescu 303-587 Ext: 86831 E-mail: r.nicolescu@auckland.ac.nz

Ann Cameron Room: 303S.479 Ext: 84947

E-mail: ann@cs.auckland.ac.nz

Pat Riddle Room: 303S.392 Ext: 87093

Email: pat@cs.auckland.ac.nz

Paul Denny Room: 303S.465 Ext: 87087 Email: paul@cs.auckland.ac.nz

Angela Chang Room 494 Ext: 86620

Email: angela@cs.auckland.ac.nz

Andrew Luxton-Reilly.
Room: 303S.479
Ext: 85654
Email: andrew@cs.auckland.ac.nz

Marks for COMPSCI111/111G

- ► Theory: exam and test
- Practical: labs
- Need to pass half of the theory and half of the practical in order to pass the course

Exam (60%)

Test (20%) Labs (20%)

Test

- Wednesday 27 January, 11.30am-12.30pm F&PA Auditorium
- ▶ The test will cover lectures 1-14 and labs 1-5

Labs

- An opportunity to practise what you learn in lectures
 - 2 compulsory 3-hour labs each week
 - > 9 labs worth 20% of final mark
 - 10% of each lab's mark is given for arriving on time
 - Hand in lab assignment before start of next lab
- Before labs start on Thursday please:
 - Buy a lab manual from UBS
 - ► Find the First Floor Teaching Lab (FTL 303S-175)
 - Make sure you have a USB drive

Exam

Date and location will be announced by the Exams Office

Class representative

CLASS REP

Places to find information

- Canvas and email announcements
- ► The course website: www.cs.auckland.ac.nz/courses/compsci111ssc
- You need to purchase a 2016 Summer School lab manual from UBS
- Coursebook; available on the home page of the course website
- ► The Computer Science student forum: http://forums.cs.auckland.ac.nz
- ▶ Any of the COMPSCI111/111G teaching staff ☺
 - ▶ Please use your University email account when emailing us

Computer Hardware

Lecture 1 - COMPSCI111/111G SS 2016

Today's lecture

- Identifying the key components in a computer
- Understanding how these components work
- Using this knowledge to understand computer specs

Overview of a computer

Processing

Computer hardware

- "Those parts of the system that you can hit with a hammer (not advised) are called hardware"
- Key design principle of modularity

Form factors

System units come in lots of different form factors

Inside the system unit

Inside a laptop

Power supply unit

Converts AC voltage to DC voltage for use within the computer

Motherboard

► The main circuit board to which all components are connected, allowing them to communicate with each other

Central processing unit (CPU)

- ► The 'brain' of a computer. Processes data in a computer using its instruction set
- Performance measured in instructions per second
- Clock speed (measured in Hertz [Hz]) measures the speed at which electrical signals pass through the processor
- CPUs must be kept cool, generally using a heatsink and fan

CPUs - transistors

32 nm Planar Transistors

22 nm Tri-Gate Transistors

CPUs - Moore's Law

- Gordon Moore (Intel co-founder) stated in a 1965 paper:
 - 'The number of transistors on a single integrated circuit doubles approximately every 18 months, while the price remains the same.'
- ► So...
 - In 3 years, CPUs will be 4 times faster
 - ▶ In 15 years, CPUs will be 1000 times faster

CPUs - Moore's Law

- Moore's Law has been an important guide for many aspects of the tech industry, especially in CPU manufacture
- We're finding it more difficult to keep up with Moore's Law as we reach the limits of our fabrication technology

CPUs - other measures

- Power efficiency and heat are just as important as clock speed
- Modern CPUs have multiple cores, increasing their processing capacity
- New kinds of processors, such as system on chip (SoC) are commonly used in mobile and embedded devices

Wirth's Law

Niklaus Wirth stated in 1995 that 'software gets slower more rapidly than hardware gets faster'

Primary memory

- Used to store data for quick access by CPU
- Main form of primary memory is Random Access Memory (RAM)
- RAM is volatile memory
- More RAM improves a computer's speed by providing more quick access memory
- Capacity is measured in bytes, clock speed measured in Hz
- Many types of RAM; common type is DDR3 SDRAM

Secondary memory

- Used to store files for repeated access over time
- Also known as non-volatile storage; the storage medium retains its contents without electricity
- Many forms of secondary storage:
 - Hard disk drive (HDD)
 - Solid state drive (SSD)
 - ▶ CDs, DVDs, Blu-ray
 - USB drives, external HDDs

Hard Disk Drive (HDD)

- Stores data on spinning magnetic disks. Data is read and written by moving heads
- Advantages:
 - Cheap storage medium
 - Widely used and supported
 - Can have very large capacity drives
 - Long operating life
- Disadvantages:
 - Noisy operation
 - Can consume more power than SSDs
 - Fragile, needs to be handled carefully

Solid State Drive (SSD)

- Stores data on flash memory, the same technology used by USB drives
- Advantages:
 - Silent operation
 - Higher read/write rates when compared to HDDs
 - Low power usage
 - More durable
 - Use less space
- Disadvantages:
 - Costlier than HDDs
 - Can wear out faster than HDDs

Memory capacity

Measured in bytes

Plain Text (approx.)

1 byte

— 1 KB

1 MB

— 1 GB

Music (approx.)

— 1 GB

DVD (approx.)

— 1 GB

1 character - using ASCII standard for encoding

13 lines/1000 characters in our course notes

300 pages

175 phone books

2 hours

20 minutes

Expansion cards

- Additional circuit board that provides extra functionality
- Examples: sound card, graphics card, network card
- Plugged into motherboard using slots that follow certain standards:
 - ► ISA
 - ► PCI-E
 - AGP

Graphics card

- Used to perform graphics processing and run the computer's monitors
- Consists of:
 - GPU (built-in/discrete)
 - Video memory
 - Heatsink and fan
 - Ports

Redundant Array of Independent Disks (RAID)

- RAID pools HDDs/SSDs together to form a larger, more reliable data storage mechanism
- Each RAID configuration has its own strengths and drawbacks
- RAID is commonly used in servers

RAID configurations

- Numerous configurations, we're focusing on two:
 - RAID 0 data stripes used to increase speed
 - RAID 1 data redundancy used to increase reliability
- RAID 10 combines RAID 0 and RAID 1 together

RAID 10

Input devices

- Peripherals that enables the user to provide information to the computer
- Common input devices:
 - Keyboard
 - Mouse
 - Webcam
- Other input devices:
 - Voice recognition
 - Biometric scanners
 - RFID tags

Output devices

- Peripherals that present information processed by the computer to the user
- Output devices include:
 - Computer monitor
 - Printer
 - Speakers
 - Touchscreens
- New forms of output include:
 - Virtual reality

Connectors and buses

- All peripherals are connected to the motherboard via ports
- Ports form part of a bus
- Wired connections:
 - USB (Universal Serial Bus)
 - Firewire and Thunderbolt high speed buses
 - Ethernet
 - VGA, DVI and HDMI for monitors
- Wireless connections:
 - ▶ Wi-Fi
 - Bluetooth

Computer specs

- How much primary memory does this computer have?
- How many cores does the processor have?
- Does this computer have a motherboard?
- Does this computer have a graphics card?

Inspiron M301z

Get extra memory & power for faster multitasking on the move

- AMD Athlon™ II Neo K345 Dual-Core Processor
- Genuine Windows® 7 Home Premium 64bit (English)
- 4GB (2 X 2 GB) 2 DIMM DDR3 1333Mhz (operating at 800MHz)
- 320GB 7200RPM Hard Drive
- 13.3 HD WLED True Life (1366x768)
- Integrated ATI Mobility Radeon™ HD 4225

Online Price \$1,0995

Summary

- Computers process input from the user and other sources and provide output
- Computer systems are designed using the principle of modularity
- System units are made up of a number of components working together:
 - Power supply
 - Motherboard
 - ▶ CPU
 - Primary and secondary memory
 - Connectors and buses

