

Databases 1 – Organisation and Creation

Lecture 21 - COMPSCI111/111G SS 2018

- Pre-lecture reading:
 - Read material/lecture-handout prior to your lecture
- Post-lecture Quizzes: a set of multiple choice questions after each lecture
 - ▶ Go to https://coderunner2.auckland.ac.nz
 - Allow students to revise material after each lecture
- In-class Exercise
 - One question/exercise during lecture (discuss or work in groups)
- Kahoot
 - On their personal devices, players can then join by going to *kahoot.it* in their web browser(on install the kahoot app to your own device), and entering the pin displayed on the screen at the front of the room
 - > They then enter their nickname, seeing it displayed at the front
 - They then use their device to answer each question, with the aim to get as many points as possible and get to the top of the leaderboard

- What is a database?
- Understanding how data is organised in a database
- Creating a database in Microsoft Access

What is a database?

- A (typically large) collection of data about a particular topic, organized systematically
- **Examples**:
 - Catalogue of library books
 - Patients' files in a clinic
 - Entries in an address book
 - Students in a class
- Computers allow us to store and manage databases that contain very large amounts of information

Aspects of a database

- Before we can create our database, we need to decide how to:
 - 1. Organise data in our database
 - 2. Enter data in our database
 - 3. **Retrieve** data from our database
 - 4. **Present** the retrieved data to the user

1. Organising data - models

- A model defines how data is organised and structured within the database
 - We're going to look at the relational model in this course
- When deciding what data to store in a database, we need to think about:
 - ▶ Entities: things about which we store information
 - ▶ Eg. students in uni, courses in uni
 - ▶ Relationships: specific connections among entities
 - ▶ Eg. *students* enrolled in *CompSci111/111G*

Organising data - tables

- The relational model was developed by Edgar Codd in 1970
- Data is stored and organized in tables
 - A table's columns are called **fields**; an entity's attributes
 - A table's rows are called records; one instance of an entity

P. Patty

A collection of tables form a database

StudentId	Name	Address	Phone
12345	C. Brown	12 Apple St.	555-1234
67890	L. Van Pelt	34 Pear Ave.	555-5678

56 Grape Blvd.

Field

555-9999

Record

Organising data

▶ Tables are connected together using **relationships**, thereby creating links between different entities

	[Enrolments				
		StudentID	Code	Date er	rolled	
		5468975	COMPSCI101	01/01/2	016	
		1258956	COMPSCI101	15/12/2	015	
	Ī	1258956	COMPSCI107	15/12/2	015	
	Students				Courses	
ID	Name	Date of birth	n l	Code	Title	Semester
5468975	Joe Cameron	19/08/1992		COMPSCI111	Practical Computing	SS 2016
1258956	Steve Smith	17/05/1995		COMPSCI101	Programming	S1 2016
6697826 Tom Bloggs 30/06/196		30/06/1965		COMPSCI107	Advanced Computing	S1 2016

Organising data

- There are two parts to a relationship; primary key and foreign key
- ▶ 1. Primary key:
 - Generally, all tables must have a primary key field
 - All records must have a value in the primary key field
 - The primary key's values must be unique

Organising data

2. Foreign key

- A field in one table that is related to a primary key field in another table
- Creates a connection between the two fields
- Can take blank values and/or repeated value depending on the relationship type

→ StudentID	Code	Date enrolled
5468975	COMPSCI101	01/01/2016
1258956	COMPSCI101	15/12/2015
1258956	COMPSCI107	15/12/2015

	Students	7.
ID 🖁	Name	Date of birth
5468975	Joe Cameron	19/08/1992
1258956	Steve Smith	17/05/1995
6697826	Tom Bloggs	30/06/1965

2. Referential integrity

- An important concept underlying relationships between tables
- Referential integrity requires all values of a foreign key field to be:
 - Present in the related primary key field, OR
 - Null (ie. blank)
- Helps to ensure the data in the primary key and foreign key is valid and consistent

	Students	
ID 💡	Name	Date of birth
5468975	Joe Cameron	19/08/1992
1258956	Steve Smith	17/05/1995
6697826	Tom Bloggs	30/06/1965

	Enrolments	
StudentID	Code	Date enrolled
5468975	COMPSCI101	01/01/2016
1258956	COMPSCI101	15/12/2015
1258956	COMPSCI107	15/12/2015

Insert 9998881, COMPSCI111, 22/12/2016 into Enrolments \mathbf{x}

Insert 6697826, COMPSCI105, 16/12/2016 into Enrolments √

Types of relationships

There are three kinds of relationship that can exist between tables

One to one: one record in PK related to one record in FK

▶ Eg. student can only have one transcript

- One to many: one record in PK related to multiple records in FK
 - Eg. student can have multiple addresses

Types of relationships

Books

Many to many: multiple records in PK related to multiple records in FK

▶ E.g. An Author can write several Books, and a Book can be written by several Authors

Authors

- ▶ E.g. many students can be enrolled in many papers
- The many-to-many relationships are usually implemented by a pair of one-to-many relationships

Aspects of a database

- Before we can create our database, we need to decide how to:
 - 1. Organize data in our database
 - Models, tables, relationships
 - Enter data in our database
 - 3. **Retrieve** data from our database
 - 4. **Present** the retrieved data to the user

- Application software that is used to manage databases.
- ▶ Four main functions:
 - Definition
 - Update
 - Querying
 - Administration
- **Examples**:
 - Microsoft Access
 - Microsoft SQL Server
 - MySQL

Creating a database

Creating a new database

Creating a table

New table button

Creating a table

- Design view: create/view the fields in the table
- Datasheet view: create/view data in the table

Datasheet view

- Allows us to enter data into our table
- Need to ensure that we enter the correct type of data in each field (eg. no text in a number field)

- Relationships view allows us to create relationships between fields in different tables
- ▶ Database Tools tab → Relationships button

Inserting data

Can we insert this record in the Enrolments table?

▶ This won't work; Student I D's value ('5') doesn't exist in the primary key I D

Authors		
ID	FirstName	Surname
1	Sarah	Buchman
2	Wendy	Heydemark
3	Hallie	Hull

Books				
ID		BookTitle	AuthorID	
	1	200 Years of German Humor		1
	2	Ask Your System Administator		2
	3	How about Never?		1

- 1. What is the primary key ...?
- 2. What is the primary key and foreign key ...?
- 3. What is the ...

- A database is used to store information in a systematic and orderly manner
- The relational model uses tables to store information about entities and relationships to connect tables together
- Relationships require tables, primary keys, foreign keys
- Referential integrity helps to maintain consistency in our database
- Microsoft Access is a popular DBMS that we can use to insert and manage data in our database
- Post-Lecture-Quiz: PLQ_21
 - https://coderunner2.auckland.ac.nz/moodle/mod/quiz/view.php?id=627

Practical in-class Exercise

- Create a blank database
 - Start Access 2016
 - Choose the "Blank desktop database"
 - ▶ File Name: Employees.accdb
 - Click the Create button
 - Note: The blank database will be presented. The "Tables" tab will already be selected for you.
 - Choose View->Design View. You will be prompted to save the table. Call it Departments and click OK
 - ▶ Add the following fields: DEPT_CODE, DEPARTMENT_NAME
 - Set the primary key
 - Choose Create->Table. Repeat the above steps.
 - ▶ Table name: Employees
 - ▶ Add the following fields:
 - □ EMPLOYEE_ID, FIRST_NAME, LAST_NAME, DEPT_CODE, HIRE_DATE, CREDIT_LIMIT, PHONE_NUMBER, MANAGER_ID
 - □ Set the primary key, foreign key and the relationship between them

Practical in-class Exercise

▶ Enter the following values:

Departments:

- 'ACT', 'ACCOUNTING'
- ▶ 'EXE', 'EXECUTIVE'
- 'MKT', 'MARKETING'
- 'PER', 'PERSONNEL'
- 'SAL', 'SALES'
- 'SHP', 'SHIPPING'

Employees:

- 201, 'SUSAN', 'BROWN', 'EXE', '01-JUN-1998', 30, '3484'
- 202, 'JIM', 'KERN', 'SAL', '16-AUG-1999', 25, '8722', 201
- 203, 'MARTHA', 'WOODS', 'SHP', '02-FEB-2009', 25, '7591', 201
- 204, 'ELLEN', 'OWENS', 'SAL', '01-JUL-2008', 15, '6830', 202
- 205, 'HENRY', 'PERKINS', 'SAL', '01-MAR-2006', 25, '5286', 202
- 206, 'CAROL', 'ROSE', 'ACT'