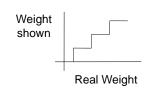



Today's lecture

- ▶ Understand the difference between analogue and digital information
- Convert between decimal numbers and binary numbers

Analogue vs digital information

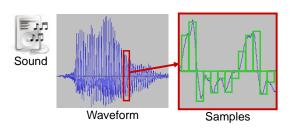

▶ Information in the real world is continuous

► Continuous signal

▶ Represented by discrete numbers

Encoding information

- Real world information is stored by a computer using numbers
- Visual information

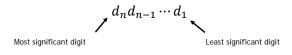


Pixels

- 1. Give each pixel colour a number.
- 2. Let the computer draw the numbers as coloured pixels (eg. black = 0).

Encoding information

Sound information


- 1. Give each sample a number (height of green box).
- 2. Let the computer move the loudspeaker membrane according to the samples.

Numbers and Computing

- Numbers are used to represent all information manipulated by a computer.
- ▶ Computers use the binary number system:
 - Binary values are either 0 or 1.
- ▶ We use the decimal number system:
 - 0 to 9 are decimal values.

Number Systems

- ► Base:
 - Specifies the number of digits used by the system.
 - Binary is base 2.
 - Decimal is base 10.
- ▶ Positional notation:
 - Describes how numbers are written.

Positional Notation

▶ Any number can be expressed as:

$$d_n * b^{n-1} + d_{n-1} * b^{n-2} + \dots + d_1 * b^0$$

where d_i is the digit at position i, and b is the base.

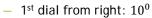
Decimal Examples

657

$$6*10^{2} + 5*10^{1} + 7*10^{0}$$

$$\downarrow$$

$$600 + 50 + 7 = 657$$


▶ 9308

$$9*10^3 + 3*10^2 + 0*10^1 + 8*10^0$$

↓
 $9000 + 300 + 0 + 8 = 9308$

Storing Decimal Numbers in a Computer

- Series of dials:
 - Each dial goes from 0 to 9.
- Information is stored digitally:
 - Finite number of states 10 per dial.
 - No in-between states.

- 2nd dial from right: 10¹

3rd dial from right: 10²

 $6 * 10^2 + 3 * 10^1 + 8 * 10^0 = 638$

etc.

Exercises

The following two questions relate to dials that have 10 different states, as discussed in the previous slide.

- ▶ Given a machine that uses 4 dials, how many different numbers can we represent?
- ▶ If we want to represent 256 different values, how many dials do we need?

Switches

- A dial is complicated.
 - Each dial has 10 different states (0 9).
 - Physically creating circuits that distinguish all states is complicated.
 - Would need to distinguish 10 different strengths of electricity (voltages).
- Switches are simple.
 - Each switch is off or on (0 or 1).
 - Physically creating the circuits is easy.
 - Switch off: electrical current cannot flow.
 - Switch on: electrical current can flow.

0

Bits and Bytes

- ► Each binary number is known as a Binary digIT, or bit.
- ▶ A bit can be either a 0 or a 1

▶ Bits are used in groups.

001

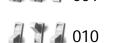
▶ A group of eight bits is referred to as a byte.

Using Binary Numbers

How many different values/states can we have with:

3 bits:

1 bit: 2 bits:


100

Exercises

- ▶ How many different values can we represent with a byte?
- ▶ If we want to represent 30 different values, how many bits would we need?

Converting binary to decimal

110

$$1 * 2^{2} + 1 * 2^{1} + 0 * 2^{0}$$

$$\downarrow$$

$$4 + 2 + 0 = 6$$

10110

$$1 * 2^{4} + 0 * 2^{3} + 1 * 2^{2} + 1 * 2^{1} + 0 * 2^{0}$$

$$\downarrow$$

$$16 + 0 + 4 + 2 + 0 = 22$$

Converting from decimal to binary

35

Read the remainders from the bottom up.

2	106		
2	53	0	+
2	26	1	ı
2	13	0	ı
2	6	1	ı
2	3	0	ı
2	1	1	ı
	0	1	١

ry

2 ders 2 up. 2

Read the remainders from the bottom up.

▶ 35 is 100011 in binary

▶ 106 is 1101010 in binary

Exercises

▶ What is the decimal equivalent of 101111?

▶ What is the binary equivalent of 123?

Prefixes

- ► A group of 8 bits is a byte
 - ► A group of 4 bits is a **nibble**
- ▶ Bytes are the common unit of measurement for memory capacity
- ▶ There are two sets of prefixes:
 - Decimal
 - Binary

Decimal prefixes

10 ⁿ	Prefix	Symbol	Decimal
1	none		1
10 ³	kilo	K	1000
10 ⁶	mega	М	1,000,000
10 ⁹	giga	G	1,000,000,000
10 ¹²	tera	Т	1,000,000,000,000
10 ¹⁵	peta	Р	1,000,000,000,000,000
10 ¹⁸	exa	E	1,000,000,000,000,000,000
10 ²¹	zetta	Z	1,000,000,000,000,000,000

Binary prefixes

2 ⁿ	Prefix	Symbol	Decimal
2 º	none		1
2 ¹⁰	kibi	Ki	1024
2 ²⁰	mebi	Mi	1,048,576
2 ³⁰	gibi	Gi	1,073,741,824
2 ⁴⁰	tebi	Ti	1,099,511,627,776
2 ⁵⁰	pebi	Pi	1,125,899,906,842,624
2 ⁶⁰	exbi	Ei	1,152,921,504,606,846,976
2 ⁷⁰	zebi	Zi	1,180,591,620,717,411,303,424

Prefixes in Computer Science

- ► Both decimal and binary prefixes are used in Computer Science
- Decimal prefixes are preferred because they are easier to calculate, however binary prefixes are more accurate

Binary prefix	Decimal prefix	Value (bytes)
8 bits	1 byte	same
1 KiB (1 x 2 ¹⁰ bytes)	1 KB (1 x 10³ bytes)	1024 ≠ 1000
1 MiB (1 x 2 ²⁰ bytes)	1 MB (1 x 10 ⁶ bytes)	1,048,576 ≠ 1,000,000

Example - hard disk sizes

- ▶ A 160GB hard disk is equivalent to 149.01GiB
 - ► 160GB = 160 x 10⁹
 - ightharpoonup 149.01GiB = (160 x 10⁹) ÷ 2³⁰

Exercises

▶ Which has more bytes, 1KB or 1KiB?

► How many bytes are in 128MB?

Summary

- ▶ Computers use the binary number system
 - ▶ We can convert numbers between decimal and binary
- Decimal prefixes and binary prefixes are used for counting large numbers of bytes

